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ABSTRACT

Network telescopes have been invaluable for collecting in-
formation about dynamics of large-scale worm events. Yet,
a telescope’s observation may be incomplete due to scan
congestion drops, hardware limitations, filtering and pres-
ence of NATSs, a worm’s non-uniform scanning strategy or
its short life. We investigate inaccuracies in telescope obser-
vations that arise from worm-induced congestion drops of
worm scans and show that they may lead to significant un-
derestimates of the number of infectees and their scanning
rate. We propose a method to infer worm-induced conges-
tion drops from telescope’s observations and use them to
accurately estimate global worm dynamics. We apply our
methods to CAIDA telescope’s observations of Witty worm’s
spread, and release corrected statistics of worm dynamics for
public use.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: General;
C.2.3 [Computer-Communication Networks]: Network
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1. INTRODUCTION

Network telescopes help researchers observe Internet-wide
security incidents. A telescope monitors all traffic sent to
an unused but assigned portion of the IPv4 address space.
This traffic is assumed malicious since no legitimate services
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are offered by the monitored IPs. Network telescopes have
been used to collect information about worm propagation
dynamics [1, 2, 3], and about DDoS attacks that use spoofing
[4].

Internet-wide worm spread events are also studied through
theoretical modeling and simulation, which are necessary to
test approaches for early worm detection or to evaluate col-
laborative defenses. Models and simulators must have high
fidelity in reproducing worm’s propagation dynamics. This
fidelity is tested by comparing the output from a model or
a simulator with worm spread dynamics observed by a tele-
scope. To perform this comparison observed worm dynamics
must be somehow projected into the global (Internet-scale)
view of the worm spread.

Researchers tend to make two assumptions when infer-
ring global worm dynamics from a telescope’s observation:
(1) large telescopes observe each infected host with minimal
delay, thus the observed and the actual number of infected
hosts are identical, (2) the number of scans sent by an in-
fectee can be obtained by multiplying its scans received at
the telescope by the telescope’s size. But these assumptions
are clearly wrong! During a large-scale worm spread worm-
induced congestion may occur at many points in the Internet
and lead to packet drops. Thus a telescope will not observe
the portion of scans sent into the Internet corresponding to
its size, but potentially a much smaller number of scans that
survive congestion. Large congestion loss can also cause un-
bounded delays at observing infectees that scan at a low
rate. Errors in inferring global worm dynamics from tele-
scope’s observations propagate into worm models and sim-
ulators, which are calibrated to match incorrect data. We
propose a method to correct congestion-induced observation
errors thus ultimately improving the accuracy of worm mod-
els and simulators.

There are other possible sources of observation error in ad-
dition to congestion, such as presence of NATs, non-uniform
scanning, short lifetime of infectees, network administra-
tor actions or measurement equipment errors. While all
these behaviors have been observed in the Internet, we are
yet unclear if a telescope’s observation can be corrected
for them. This is why we focus on correcting congestion-
induced errors only in this paper. We validate the accuracy
of our inference by correcting CAIDA telescope’s observa-
tion on Witty worm [5] and comparing our result with the
ground truth obtained from forensic analysis [6]. We re-
lease detailed estimates of global Witty dynamics at http:
//wuw.cis.udel.edu/ weis/Witty for public use.



2. RELATED WORK

Weaver et al [7] explore techniques to scale down worm
spread events for reconstruction in a limited-size network,
e.g., a testbed. It is unclear if this approach can be reversed
to scale up a telescope’s observation and infer global worm
spread dynamics.

Kumar et al [6] reconstruct the random number genera-
tor (RNG) states of each infectee by analyzing the Witty
worm’s binary code and the CAIDA telescope’s observation
of Witty’s scans. This forensics yields information about
each individual infectee: its sending rate, number of disks,
duration of the uptime, etc. Hamadeh and Kesidis [8] gen-
eralize worm forensics using RNG information. While worm
forensics produces more accurate information about worm
spread dynamics than our approach, it has a few deficien-
cies: (1) current forensics techniques work only for worms
that use linear congruential RNG, (2) worm binary or source
code must be available for dissection, which delays analysis
and requires human involvement, (3) results may be inac-
curate if the telescope experiences significant packet loss or
temporary failure. Our approach complements worm foren-
sics by quickly and automatically inferring global worm dy-
namics from a telescope’s observation as the worm spreads
and in situations that do not meet requirements for worm
forensics.

Zou et al [9] correct the bias a small telescope may ex-
perience in observing number of infected hosts, which stems
from the delay between a host’s infection and any of its scans
hitting the telescope’s address space. This bias is strictly
probability-based and orthogonal to observation errors from
scan drops, which we correct in this paper. For telescopes
of size /8 probability-based bias should be minor.

3. TELESCOPE OBSERVATION ERROR

We use the term global observation to refer to worm spread
features — number of infected hosts, scans sent into the In-
ternet and infectees’ scanning rates — that would be ob-
served if we could reliably monitor all Internet hosts. Local
observation refers to the same features observed at a net-
work telescope.

Precision of a telescope’s observation depends on many
factors, including its size and location [10]. The larger a
telescope’s size, the better its precision. For example, a tele-
scope covering 1/256-th portion of the IPv4 address space
should expect to see 1 out of every 256 worm scans, as-
suming uniformly random scanning and no scan loss. The
expected maximum delay to observe an infected host is af-
ter it sends 255 scans, which is a small detection delay for
fast-scanning worms. In absence of packet drops, a locally
observed number of infected hosts at this telescope should be
nearly identical to the globally observed one, and a locally
observed number of scans (from each infectee and cumula-
tive) should be 1/256-th portion of the globally observed
one.

The standard inference approach [1, 2, 3] is to multi-
ply locally observed number of scans by the telescope’s size
to obtain its global observation, and to assume that the lo-
cally and globally observed numbers of infected hosts are
equal.

A telescope’s precision also depends on the distribution
of its size across the IPv4 address space, with distributed
telescopes having higher precision and smaller detection de-

lay than continuous ones [11]. Popular Internet telescopes
like the ones operated by CAIDA [12] and the University of
Wisconsin’s WAIL lab [13] monitor a continuous 1/256-th
portion of IPv4 space.

3.1 Telescope Error

There are several factors that can introduce error in a
telescope’s local observation and make the standard infer-
ence approach inaccurate.

Scan drops due to congestion. A telescope may have
a large delay in observing an infectee if its scans are heavily
dropped due to congestion. Congestion drops also lead to
errors in estimating the total number of scans in the Inter-
net. A telescope of size 1/N of IPv4 space expects to see
1/N portion of all scans. In presence of packet drops this
expectation is clearly violated because the telescope cannot
see 1/N of all scans sent by infected hosts — some were
dropped.

Figure 1 from [1] shows the number of scans per second
received at the WAIL’s /8 telescope during Slammer worm
propagation, multiplied by 256. This number peaks at 80
million packets per second. When multiplied by Slammer’s
scan size of 404 bytes and divided by 256, the total volume
of scans received by WAIL is 1 Gbps, which is same as a
widely popular network link rate. It is very unlikely that
Slammer infectees were scanning at exactly that cumulative
speed. Rather, they were scanning at a higher speed and
the telescope’s incoming link limited its observation.
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Figure 1: Slammer, observed by WAIL telescope

Can a telescope observe 1/N portion of scans successfully
reaching their destinations? This is highly unlikely either,
because congestion on the routes from infectees to the tele-
scope may differ significantly from congestion on the routes
from infectees to other destinations. To illustrate this imag-
ine a simplified Internet where core links have limitless band-
width and all drops occur on the last-hop link to the des-
tination. If the last-hop link to the telescope is 10 times
smaller than all other last-hop links, the telescope will see

m of all received scans ! — 10 times less than expected!

Let p be the probability that a scan will reach its desti-
nation, and let it linearly depend on the bandwidth of the
last-hop link to the destination. Each scan sent into the In-

ternet arrives at the telescope with probability 1% and it

arrives at other destinations with probability p - % Thus
1
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Presence of NATs. Many infectees may reside behind
a single NAT — their scans appear at the telescope to ar-
rive from a single source, thus skewing the local observation
of the number of infected hosts [14]. It is possible to dis-
ambiguate NATted hosts using IP ID field information in
packet headers [15] for certain operating systems.

Non-uniform scanning. A worm that scans in a non-
uniform manner will result in a telescope receiving more or
less than its share of scans. Non-uniform scanning could be a
result of the worm using subnet scanning, deliberately avoid-
ing telescope’s monitoring, or specifically targeting a tele-
scope. Our inference would apply to such worms if we could
correctly estimate the scanning bias, e.g., from a worm’s
source code.

Limited life of infectees. An infectee can stop scan-
ning before its scans reach the telescope. Some worms abort
scanning after a given time (e.g., Code Red [2]), or they in-
teract with the host machine in a destructive manner that
can disable it from sending more scans (e.g., Witty [3]). An
infectee can also be deactivated by network administrators.

Measurement equipment errors. A telescope’s mea-
surement equipment may be overloaded and incorrectly record
some scans. This is visible from Figure 1 where breaks and
irregularities in the recorded scans indicate likely equipment
failure.

This paper focuses only on estimating and correcting for
telescope observation errors due to worm-induced conges-
tion. Errors from other sources may be equally or more sig-
nificant than congestion errors, but we are currently unsure
if they can be estimated from a telescope’s observations.

3.2 Assumptions about Worms and Internet

1. Constant infectee scanning rate: Unless rate vari-
ations are built into the worm’s propagation mechanism,
which was not observed in worms to date, an infectee will
send out scans at the highest possible rate allowed by its
CPU speed, memory, network interface speed, operating sys-
tem, etc. This maximum sending rate varies for different
infectees but remains constant for the same infectee. Our
inference holds only for worms that scan at a constant or
predictable rate.

2. Packet loss due to worm-induced congestion:
Worm scans can be lost due to congestion, routing failure or
security actions such as filtering. We assume that majority
of packet losses are due to worm-induced congestion so that
packets sharing the same routing path experience the same
congestion and the same packet loss probability. This is
usually true during the growth phase of a fast worm’s prop-
agation, because routing changes and security actions have
larger delays than it takes the worm to infect all vulnerable
hosts.

3. No significant congestion in the early stage of
the worm spread: We assume that there exists an early
stage of the worm spread, when heavy congestion drops are
experienced by none or a few infectees. We say that early
stage ends at some time 7" when congestion starts seriously
affecting telescope’s observation. Hosts infected before time
T form an early set and are called early infectees, while the
rest are late infectees.

While T has no physical meaning, since congestion builds
up slowly and differently on different paths, being able to
distinguish between hosts infected early or late in the worm
spread helps us estimate congestion levels by observing send-

ing rate of those early infectees. As long as T is such that
the early set contains majority of hosts that were first ob-
served by the telescope without scan drops, our estimates
are accurate. Too large a set leads to lower-than-actual scan
rate estimates (due to packet drops that are assumed to be
absent), which underestimates global worm dynamics. We
infer T from a telescope’s observations, and show in our vali-
dation that a range of values produces satisfactory inference
accuracy.

3.3 Scan Arrival Ratio — Early Infectees

Scan arrival ratio P;(t) of an infectee i at time ¢ is the
percentage of worm scans sent by this infectee to the tele-
scope that is successfully received. Let an infectee i be
observed by the telescope during the early stage of worm
spread, when packet drops do not significantly alter obser-
vations. It sends S;(t) packets to the telescope each second,
and according to our assumption 1 about the constant scan-
ning rate S;(t) & S;, where S; is the constant scanning rate
of the infectee i to the telescope.

Let R;(t) be the number of scans from ¢ received at the
telescope at time ¢ and let 7" be the time when the early stage
ends. According to our assumption 3 about no significant
congestion in the early stage, we have

R;i(t) ~ S;(t) = S; when t < T (1)

In reality R;(t) varies a little even when ¢ < T' due to packet
delay, packet reordering, and random scanning, and we av-
erage it to calculate S; as

Si~ > Ri(k)/T (2)

k=1

Scan arrival ratio of early infectees, P;(t), is 1 for t < T and
R;(t)/S;, for t > T.

We now explain how to detect the end of the early stage
T and identify early infectees. According to the epidemic
model, during the initial stage of a uniform-scanning worm’s
propagation, there is an exponential increase in the number
of infected hosts [9]. Exponential stage ends either when
most of the vulnerable hosts are compromised or when con-
gestion increases so much that it slows down the growth.

We calculate the end of the early stage T as the time when
the number of infected hosts departs from the exponential
model. This implies that the end of the exponential stage is
the same as the end of the early stage. This is true if there
is severe congestion during the exponential growth, because
it must slow down the growth and thus end both stages. If
severe congestion occurs after the exponential growth stage
or never, we will underestimate the value of T'. This is fine,
since the accuracy of our inference depends on two condi-
tions: (1) early set is sufficiently large not to introduce bias
and (2) majority of early infectees were first observed during
a congestion-free period. Both conditions hold when conges-
tion occurs after the exponential stage.

We measure the match between the number of infected
hosts and the exponential model by computing the R-squared
value [16], which is a statistical measure to show goodness
of fit between a model’s prediction and measured values.
We calculate T as the time when the R-squared value starts
to continuously decrease from 1, which indicates a decisive
departure from the model.



3.4 Scan Arrival Ratio — Late Infectees

We now discuss how to estimate the scan arrival ratio for
late infectees. According to our assumption 2 about conges-
tion as the main source of scan drops, we expect infectees
that share the route to the telescope to experience same
congestion and have the same scan arrival ratio (although
their scan sending rates may differ). Thus a late infectee’s
scan arrival ratio can be obtained from the ratio of an early
infectee with whom it shares the route to the telescope.

We assume that infectees that belong to the same BGP
atom share the full route to the monitor. This may not be
true for large atoms and paths that traverse large ASes, but
is the best assumption we can make in absence of detailed,
router-level, Internet routing maps, which are not available
today. Information about BGP atoms and AS-level rout-
ing paths can be obtained from RouteViews [17]. In addi-
tion to BGP atoms, we investigated different strategies for
identifying infectees which share a route, including grouping
them by network prefix. None of these resulted in sufficient
amount of route sharing, and thus reduced the accuracy of
our inference.

For each late infectee j we attempt to identify an early
infectee ¢ within the same BGP atom. On success, we as-
sume that ¢ and j have the identical scan arrival ratio, i.e.
Pj(t) = Pi(t). On failure, we calculate the average scan ar-
rival ratio of all early infectees and assign it to the infectee
j as its scan arrival ratio:

2ien i(t)
ik Si
By knowing P;(t), we can calculate S;(t) as

Py(t) = ®3)

5,0 = T4 (4)

Note that our assumption 1 about the constant scanning
rate, S;, still holds, but its estimate, S;(t), is being recalcu-
lated each second. We define the telescope’s aggregate scan
arrival ratio P,g4(t) as:

Proa (D) = % (5)

4. INFERRING GLOBAL OBSERVATIONS

In this section we explore how to accurately estimate global
observations of worm dynamics from local ones.

4.1 Number of Infected Hosts

If an infectee ¢ sends S;(t) scans to the telescope during the
t-th second and its scan arrival ratio is P;(t), the probability
that all scans are lost is (1 — P;(¢))%®, which is also the
probability that this infectee is not seen by the telescope
during the t-th second. In general, this probability should
be quite small for infectees that scan at a high rate, and if
the congestion is not extremely severe.

Let Ir(t) be the number of infected hosts by the end of
time ¢, and To(t) be the local observation of this number by
the telescope. We define the following variables at time ¢,
observing time as a discrete variable:

Alr(t) =1Ir(t) — Ir(t—1)
Alo(t) = Io(t) — To(t — 1)
Uo(t) = Ir(t) — Io(t)

newly infected hosts (6)
newly observed infectees (7)

unobserved infectees (8)

Due to packet loss Alo(t) ¢ Alr(t), but To(t) C Ir(t). Let
Smed(t — 1) be the median scanning rate of infectees seen
before time t. We could use the average value instead of the
median, but this approach favors high-rate scanners, while
most of the infectees missed by the telescope are low-rate
scanners. We estimate Alr(t) and Uo(t) as:

Alo(t)

Alr(t) =
) Pagg(t —1))Smealt=1))

—Uo(t—1) (9)

(1—(1-

Uo(t) = Alr(t) + Uo(t — 1) — Alo(¢) (10)

where 1—(1— Pagq(t — 1))%meat=1 is the probability that at
least one scan is observed at the telescope from an infected
host. At time zero AIr(0) = Alo(0), and P,44(0) = 1. The
global observation of the number of infected hosts is

Ir(t) = i AIr(k) (11)
k=0

Table 1 illustrates our inference of the global number of
infected hosts from local observations. For space reasons
values in Table 1 are rounded and we omitted index ¢ from
column names.The shaded area contains values that we ei-
ther set by default (darker shade) or obtain from local obser-
vations (lighter shade), while the white area contains values
inferred using Eq. (6-11). Column /o is calculated by adding
values in the column AJo, up to and including time ¢. For
each row (i.e. each value of ) we then calculate in the fol-
lowing order: AIr using Eq. (9), Ir using Eq. (11), and
Uo=Ir—Io.

t| Alo | Pagg | Smea | Io | Alr Uo Ir
0 0 1 0 0 0 0 0
1 1 0.8 5 1 1 0 1
2 3 0.5 5 4 319.6x1071 4
3 2 0.5 5 6 | 2.06 0.065 6.06
4 3 0.2 5 9| 3.03 0.097 9.10
5 6 0.2 5| 15 | 8.83 2.92 | 17.92

Table 1: Example of inferring Ir

4.2 Number of Scans in the Internet

Let a telescope cover 1/N of the IPv4 address space. We
can estimate the global scanning rate at time t as the sum
of the scans sent by all globally observed infectees at time ¢.
We obtain this by calculating the sum of scans sent by all
locally observed infectees at time ¢, and then use the inferred
number of globally observed infected hosts Ir(t) to correct
this sum. The global worm scanning rate C(¢) is:

Ir(t
Y s

i€lo(t)

C(t) ~

i€lo(t)

4.3 Infectees’ Scanning Rate

Let a telescope cover 1/N of the IPv4 address space. Be-
cause of our assumption that infectees send scans into the
Internet at a constant rate, we use the maximum of S;(¢)



values for estimation of an infectee’s scanning rate B;:

B; ~ maxtzo(Si(t)) - N

) N (13)

A~ maxe>o(

P: (t)

S. VALIDATION

We validate our method by using the trace of the Witty
worm spread as observed by the CAIDA telescope [5], and
obtained from the DATCAT repository [18] to infer global
observations of number of infectees, number of scans and
infectees’ scan rates. We then compare the infectees’ scan
rates to the ground truth shown in Kumar et al [6] and
inferred via their forensic approach. We are not aware of any
other forensic work that would provide additional ground
truth for our validation.

The CAIDA telescope monitors a /8 block of IPv4 address
space. The trace we obtained contains all the worm scans
sent to the monitored address space beginning on March
19, 2004 at 4:45 am UTC. All IP addresses in the trace
are shown in the original, non-anonymized version. To be
comparable with the forensic analysis in [6], we only focus
on the first 75 minutes of the trace, including 45.46 million
UDP packets with source port 4,000. We apply our inference
on infectees that contribute more than 20 scans, as is done
in [6].
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Figure 2: Number of infected hosts

We first identify the early set of infectees by measuring
how the telescope’s observation matches the prediction of
worm propagation by the epidemic model. Figure 2 shows
the evolution of the R-squared value between the observed
number of infectees and the derived model, over time. The
match quality deteriorates at the very onset of the worm
propagation (drop to around 0.8 during first few seconds)
because the worm used a hitlist [3, 6]. IPs on the hitlist got
infected quickly causing faster-than-exponential growth. Af-
terwards, the match between the observed and the predicted
number of infectees improves, which is shown in the increase
of the R-squared value. The prediction starts to deteriorate
again after the first 400 seconds, and falls continuously, in-
dicating the end of the worm’s early (exponential growth)
propagation stage. Infectees observed before 400 seconds
form our early infectee set.

# observed infectees

We now compare our estimated distribution of Witty in-
fectees’ access bandwidth with the ground truth obtained
from the forensic analysis in [6]. We first estimate the max-
imum scan sending rate of each infectee (Section 4.3) and
then multiply this rate by the average Witty packet size
(1,070 B) to obtain access bandwidth.

Figure 3(a) shows the ground truth, our inference of the
infectee’s access bandwidth for several values of T', and its
standard inference. Standard inference underestimates in-
fectees’ bandwidths by 2-3 orders of magnitude. Our esti-
mate with 7" = 400 is much closer to the ground truth, but
it lacks “steps” that are evident there. The reason for this
lies in our estimate of the scan arrival ratio of late infectees.
If many late infectees cannot be paired with an early set
infectee (there is little route sharing), their individual dif-
ferences are lost by approximating their scan arrival ratio
with the average from the early set.

Another error in our estimate occurs for those slow scan-
ners with small access bandwidths. If the telescope only
receives scans from an infectee occasionally and lacks infor-
mation for most of the observation periods, our approach
to taking the maximum observed scan rate as the basis for
calculation of the infectee’s scan sending rate results in an
overestimate. Such infectees contribute no more than 3% of
the total scans received by CAIDA telescope thus our infer-
ence of the overall scanning rate should be correct (Figure
3(b)).

Figure 3(b) shows our estimate of the Internet-wide scan-
ning rate and compares it to the values obtained via the
standard inference. The standard inference line flattens af-
ter 800 seconds, which is the time when the 100 Mbps in-
coming link of the CAIDA telescope is saturated. Thus the
highest observed rate, scaled up by standard inference, is
3 million scans per second. Our inference with 7" = 400
detects and corrects the effect of this last-hop congestion.
At the end of 75 minutes we estimate 10 million scans per
second, which is more than a three-fold difference!

To investigate the effect of different early sets on estima-
tion accuracy we show inference with several T values in
Figures 3(a) and 3(b). A larger T, such as 2,000, tends to
underestimate the packet loss, because many infectees that
experience congestion from the start are erroneously placed
into the early set. This results in smaller inferred infectee
access bandwidths and underestimates scan rates. A smaller
T results in estimates that may be slightly larger or smaller
than the ground truth (lines for 7=50 and T=200 in Fig-
ure 3(a)) but differences are minor. These results indicate
that 7" does not need to be inferred precisely as long as it
precedes the onset of severe congestion.

Our estimate of the number of infected hosts in the Witty
trace with 7" = 400 is very close to the telescope’s original
observation (graph not shown for space reasons). Telescope
sees 11,326 hosts and we correct this to 11,516. Observation
error is small because the Witty worm was relatively slow,
with a small vulnerable population and thus did not create
excessive congestion.

6. CONCLUSIONS AND FUTURE WORK

Congestion during fast worm spread distorts a telescope’s
observation and leads to an incorrect picture of global worm
dynamics, such as underestimate of the number of infected
hosts, number of scans and infectees’ scanning rates. This
observation error propagates into worm models and simula-
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Figure 3: Correction of CAIDA telescope’s observation of Witty’s spread

tors that attempt to match inferred global worm dynamics.

We proposed an innovative approach to estimate conges-
tion packet loss from a telescope’s local observation, and to
use this loss value to correctly estimate global worm dynam-
ics. Our validation using CAIDA telescope’s Witty worm
observations and the ground truth presented in [6] shows
that: (1) our inference matches the ground truth, and (2)
our inference is significantly more accurate than the stan-
dard inference. We hope that these findings will lead to
correction of past and future telescope observations, and to
better worm models and simulators.

Our future work will investigate how a telescope’s size in-
fluences our inference accuracy, and if other sources of tele-
scope error such as NATSs, filtering, non-uniform scanning
and measurement equipment errors can be inferred from a
telescope’s local observations.
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