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ABSTRACT

Motivation: Current sequencing technologies produce a large
number of erroneous reads. The sequencing errors present a major
challenge in utilizing the data in de novo sequencing projects as
assemblers have difficulties in dealing with errors.
Results: We present Coral which corrects sequencing errors
by forming multiple alignments. Unlike previous tools for error
correction, Coral can utilize also bases distant from the error
in the correction process because the whole read is present in
the alignment. Coral is easily adjustable to reads produced by
different sequencing technologies like Illumina Genome Analyzer
and Roche/454 Life Sciences sequencing platforms because the
sequencing error model can be defined by the user. We show that our
method is able to reduce the error rate of reads more than previous
methods.
Availability: The source code of Coral is freely available at
http://www.cs.helsinki.fi/u/lmsalmel/coral/.
Contact: leena.salmela@cs.helsinki.fi
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1 INTRODUCTION
Next-generation sequencing technologies, such as Illumina Genome
Analyzer, Applied Biosystems SOLiD and Roche/454 Life Sciences
DNA sequencing platforms, produce a vast amount of reads in
a single run. Vagaries of the reads produced by each sequencing
machine are still being discovered.

Correction of errors in short reads is a critical task in
bioinformatics. The variety of errors and biases of the current
sequencing platforms must be addressed if the data is to be used
to maximum effect. Error correction aims to revert these mistakes
made by a sequencing platform by exploiting the redundancy of
the data and judging each base in a read as correct or incorrect (and
then ideally correcting it). Error correction helps to achieve high data
use in de novo assembly. Furthermore, the computational demands
of assembly algorithms are reduced significantly if reads are first
corrected. Although we evaluate here the impact of error correction
on de novo assembly, the technique could also be useful in other
applications because error correction can potentially increase the
mappability of reads in resequencing as well as in other applications
of high-throughput sequencing.

∗To whom correspondence should be addressed.

Error characteristics of the different platforms are complex,
making error correction a difficult task. For instance, the Roche/454
sequencing platform produces reads with indel errors, due mainly
to homopolymers, whereas the SOLiD and Illumina platforms
are prone to substitution errors. Dohm et al. (2008), Chaisson
et al. (2009), and Schröder et al. (2010) investigate quality score
evolvement, error characteristics and biases of short sequencing
reads.

The first error correction method that is aimed at short read
datasets is built into the assembly tool Euler SR (Chaisson and
Pevzner, 2007; Chaisson et al., 2004). It uses the spectral alignment
method, which first establishes a spectrum of trusted k-mers from
the input data and then corrects each read so that it contains only
sequences from the spectrum. Shrec by Schröder et al. (2009)
followed, a stand-alone error correction method. Shrec is based on
a parallelized suffix-trie data structure that holds a set of reads and
corrects errors with a majority voting scheme. Shrec was extended
by Salmela (2010) to accommodate hybrid sets of reads from
various sequencing technologies, with different read lengths and
error characteristics. HiTEC by Ilie et al. (2010) uses a suffix array
of the reads to count how many times short sequences are present in
the read set and use these counts to correct the reads. The approach
by Yang et al. (2010) revisits the idea of Chaisson and Pevzner
by overlaying reads with trustworthy tiles (pairs of k-mers), and
correcting differences between the reads and the tiles to obtain error
corrected read sets. Quake by Kelley et al. (2010) is another recent
method that relies on spectral alignments to correct reads.

In this article, we present Coral (=CORrection with ALignments),
a novel approach, which relies on multiple alignments of short
reads to correct errors in the data. The idea of using multiple
alignments for correcting sequencing reads is not new. For example,
the preprocessing in the Arachne assembler (Jaffe et al., 2003) and
the MisEd error correction tool (Tammi et al., 2003) use multiple
alignments to correct reads from the older Sanger technology
(Sanger et al., 1977). Our new tool is the first to apply this approach
to short read data.

Most of the recent error correction tools are aimed at reads
from the Illumina Genome Analyzer platform and therefore they
are limited to correcting substitutions which is the dominant error
type in Illumina reads. Coral is easily adjustable to different error
models of the various sequencing platforms. Furthermore, adjusting
the error model is easily accessible to the end user who only needs
to set the familiar parameters of multiple alignments, gap penalty
and mismatch penalty, to appropriate values according to the error
model. For example, for Illumina reads one needs to set the gap
penalty to a high value effectively disallowing indels, whereas one
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can set equal values to gap penalty and mismatch penalty for reads
from the Roche/454 Life Sciences sequencing platform where indels
are a common error type. Allowing the user to adjust the error model
makes Coral also ready for data from the future single molecule
sequencing technologies (Gupta, 2008) where indels may again be
a common error type.

This article is organized as follows. We define the error correction
problem in Section 2 and introduce the algorithms behind Coral
in Section 3. In Section 4, we compare our new method with the
established tools through experimental validation and then continue
to investigate the impact of error correction on short read assembly.
We conclude in Section 5 with discussion and suggestions for further
work.

2 ERROR CORRECTION PROBLEM
Reads are random samples of nucleotide sequences from a target
genome of length N . Thus, a read is a sequence of characters from
the DNA alphabet {A, C, G, T, N}. There are r reads whose length
varies from mmin to mmax. We denote the length of read i by mi.
The combined total length of the reads is M =∑r

i=1mi. A read may
contain three types of errors: substitutions, insertions and deletions.
We denote by e the maximum estimated error rate of a read. Thus,
a read of length mi may contain at most e·mi errors.

Coverage is the expected number of times a position in the genome
is sequenced. Therefore, coverage equals M/N . All error correction
methods rely on the coverage of the reads being moderately high
so that every position of the genome is sequenced several times
with high probability. Reads from low coverage regions cannot
be corrected because there is insufficient data to infer the correct
sequence.

The task of an error correction algorithm is to detect and correct
the errors in the reads. If we knew for each read its position in the
target genome, we could form a multiple alignment of all the reads
and correct them towards the consensus sequence of the alignment.
All error correction methods use some heuristics to determine which
reads align to the same genomic position and comparing this read
set correct the reads towards the consensus of the set.

3 ERROR CORRECTION BY ALIGNING MULTIPLE
READS

Our approach takes reads that share common k-mers and forms multiple
alignments of these reads. The correction of the reads is then based on these
alignments and their consensus sequences. Each step of our algorithm is
discussed in detail below.

3.1 Indexing the reads
We start by indexing all k-mers that occur in the reads or their reverse
complements. We create a hash table which associates a k-mer with a list of
reads where it occurs. In this basic scheme, each k-mer is actually indexed
twice: first in the forward direction and then in the reverse. The read lists
for both are the same. To save space, we only store a k-mer and the list
of reads where it occurs if the k-mer is lexicographically smaller than its
reverse complement. We further note that if k is odd, a k-mer and its reverse
complement cannot be equal and thus either one is lexicographically smaller.
If k is even, a k-mer and its reverse complement can be equal. In this case,
we do not store either of the k-mers because the orientation of the read
cannot be deduced from that k-mer. We also leave out any k-mers containing
indeterminate characters, i.e. N’s.

To construct the k-mer index, we extract each k-mer from each read and
add it to the corresponding list. This can be achieved in O(mi) time per read,
where mi is the length of the read, and so the whole construction takes O(M)
time.

3.2 Forming multiple alignments
The next step is to form multiple alignments. Each multiple alignment is
based on one read which we call the base read of the alignment. We retrieve
from the k-mer index all reads that share at least one k-mer with the base read.
This read set together with the base read is called the k-mer neighbourhood
of the base read.

The multiple alignment is then computed for the k-mer neighbourhood of
the base read. The first read is set as the initial consensus of the alignment.
The reads are then aligned against the consensus one by one using a variant
of the Needleman–Wunsch algorithm (Needleman and Wunsch, 1970). We
allow free gaps in the beginning and end of the alignment for both the new
read and the consensus, allowing us to find prefix-suffix overlaps between
the read and the consensus. Otherwise the parameters for alignment can be
set by the user. After the alignment of each read, the consensus is updated
according to the alignment as follows. If there is an insertion in the read,
we add a new column to the multiple alignment at that position and update
those reads that are already aligned to include the gap. Then we compute
for each column in the multiple alignment, the most prevalent base or gap
which then becomes the consensus at that position.

This procedure works reasonably well when the reads are very similar. If
the reads are more divergent, the returned multiple alignment might not be
very good. However, if the reads are not from the same genomic location,
i.e. the reads are very dissimilar, we do not want to use the alignment for
correction anyway, and thus for our purposes it is enough that the multiple
alignment algorithm returns good alignments if the reads are very similar.

We use several techniques to speed up the computation of alignments.
If the k-mer neighbourhood of the base read is very large, we discard the
alignment even before computing it as it is likely that the set contains
reads from several genomic positions. We also discard the alignment before
computing it if the k-mer neighbourhood is very small so that the depth of
the alignment could not be sufficiently high for error correction.

Most of the reads are in the k-mer neighbourhood of several reads and
thus they are aligned and corrected several times. If a read has already been
aligned and corrected, it is often error free. Thus, many reads align error free
against the consensus. Therefore, we use the indexed k-mer that caused the
read to be included in this alignment to locate the most probable position for
alignment. Then we try to align the read without errors against the consensus
at that position. If this succeeds, we can skip the full alignment computation
which is time consuming.

If at least one of the k-mers that a read shares with the base read occurs
only once in the read, we use that to locate the most probable position for
alignment. We then speed up the computation by using a banded Needleman–
Wunsch algorithm where the width of the band equals 2 ·e ·mi +1 where mi

is the length of the read.
If we find that a read only aligns against the consensus with many errors

indicating that it is not from the same genomic position as the previous reads,
we immediately discard this multiple alignment and move on to process the
next one.

If gaps are not allowed, we use a linear method to establish a gapless
alignment between the read and the consensus sequence. We locate the most
probable position for alignment based on the k-mers that the read shares with
the base read as outlined above and then form a gapless alignment at this
position.

It takes O(min) time in the worst case to align a read of length mi against
a consensus sequence of length n. The length of the consensus sequence
should not exceed twice the maximum length of a read. In the worst case,
the k-mer neighbourhood of each read contains L reads where L is the limit
on the size of the k-mer neighbourhoods. We use each read as a base read,
and thus computing the multiple alignments takes O(MmmaxL) in the worst
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Fig. 1. An example multiple alignment of six reads with quality scores and three sequencing errors shown in boxes. The quality of the multiple alignment is
0.968. (i) In column 8, there is an insertion in read 2. The quality scores of reads 1 and 3 shown in bold face are computed as averages of the quality scores of
the bases flanking the gap. The support of the consensus at that column is 0.67 and the weighted support is 0.70. (ii) In column 24, there is a mismatch in read
6. Here the support of the consensus is 0.83 and the weighted support is 0.86. If the support and the weighted support meet the corresponding thresholds, the
quality score of the substituted base will be 38. (iii) In column 27, there is a deletion in read 4. The quality score of read 4 shown in bold face is calculated
as an average of the bases flanking the gap. The support of the consensus is 0.83 and the weighted support is 0.87. If the support and the weighted support
meet the corresponding thresholds, the quality score of the inserted base will be 40.

case. However, in practise the runtime is better as the k-mer neighbourhoods
are not that large on average and for many reads we can quickly compute
error-free alignments because the read aligns perfectly against the consensus.

If gaps are not allowed, the optimization technique described above allows
us to compute the alignment of a read of length mi against the consensus in
O(mi) time. In this case, computing the multiple alignments takes O(ML) in
the worst case.

After computing the multiple alignment, we check if there are any reads
that do not share at least k positions with the base read. This basically means
that the read was so dissimilar to the base read that not even their common
k-mers are aligned to the same position. If such reads are found, we discard
them and recompute the multiple alignment for the other remaining reads. If
there are still reads that do not share at least k positions with the base read,
the whole multiple alignment is discarded.

3.3 Correction of reads
To measure the quality of the multiple alignment, we compute for each
aligned read the fraction of aligned positions where the read agrees with the
consensus sequence of the alignment. The positions where both the consensus
and the read have a gap are ignored when computing the fraction. The quality
of the multiple alignment is then defined as the minimum of the above values.
If the quality is higher than 1−e, the alignment will be used to correct the
aligned reads. Figure 1 shows an example of a multiple alignment. Here
the fractions of aligned positions where the reads agree with the consensus
sequence are 1.000, 0.970, 1.000, 0.969, 1.000 and 0.968. The lowest of
these is 0.968 which is also the quality of the alignment.

For each position of the consensus, we define the support of the consensus
as the number of reads that agree with the consensus at that position divided
by the total number of reads aligned at that position. For each aligned read, we
then compare the read and the consensus sequence in each aligned position.
If they do not agree, we correct the read to agree with the consensus if
the support of the consensus is at least ts where the support threshold ts
(0.5≤ ts <1.0) is a parameter of the method. See Figure 1 for examples of
computing the support of the consensus.

If quality scores are available for the base calls, we make an additional
check before allowing correction. If there is a gap in the aligned read, we
set the quality score for the gap to the average of the quality scores of the

bases flanking the gap. We then compute the weighted support of a position
of the consensus sequence by dividing the sum of the quality scores of the
bases agreeing with the consensus with the sum of the quality scores of all
bases aligned at that position. We then correct the base only if this exceeds
the quality threshold tQ (0.5≤ tQ <1.0), which is another parameter of the
method. The quality score of the corrected base is set to the average quality
of the bases agreeing with the consensus at that position. See Figure 1 for
examples of computing the weighted support of the consensus.

The combined length of all reads in a multiple alignment cannot exceed
Lmmax and at most eLmmax positions are considered for correction. The
quality threshold tQ can be computed in O(L) time for those positions and
thus the worst case complexity is O(Lmmax) to detect potential errors and
O(eL2mmax) to correct the detected errors.

3.4 Complexity
The worst case runtime is dominated by the computation of the multiple
alignments and is thus O(MmmaxL) if gaps are allowed and O(ML) if only
mismatches are allowed.

The reads contain M bases in total and thus the total number of k-mers
is also O(M). The k-mer index consist of a hash table that hashes k-mers to
their occurrence lists and the occurrence lists for each different k-mer. There
cannot be more than O(M) different k-mers and thus the hash table takes at
most O(M) space. Each position in the reads creates at most one entry in
the occurrence lists and thus the space complexity of the occurrence lists is
O(M). Therefore, the total space complexity of the k-mer index is O(M). The
space complexity of computing the multiple alignments is O(Lmmax +m2

max).
If the number of reads exceeds the maximum read length, the space of the
k-mer index clearly dominates. Thus, the overall space complexity is O(M).

3.5 Choosing parameters
If all reads in the k-mer neighbourhood of a read originate from close by
positions in the genome, their multiple alignment will be suitable for error
correction. Thus, we should choose the length of a k-mer so that with high
probability each k-mer occurs only once in the genome. Therefore, k should
be chosen so that k ≥�log4 N� where N is the length of the genome. If k
is larger than half the length of a read, then the middle base of the read
is contained in every k-mer of the read. Furthermore, if the middle base is

1457

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/27/11/1455/217071 by U
.S. D

epartm
ent of Justice user on 16 August 2022



[15:07 12/5/2011 Bioinformatics-btr170.tex] Page: 1458 1455–1461

L.Salmela and J.Schröder

Table 1. Datasets for evaluation of error correction performance

Dataset key D1 D2 D3 D4

Reference organism
Name Escherichia coli Staphylococcus aureus
Reference sequence NC_000913 NC_003923
Genome size (Mb) 4.6 2.8

Dataset
Accession number (SRA) SRR000868 SRR022918 NA SRR022866
Read length (bp) 56−625 47 35 76
Number of reads 0.23M 7.1M 3.8M 8.9M
Number of bases (Mb) 59 338 138 673
Sequencing platform (library name) Roche 454 (2121724656) Illumina GAII (Solexa-4733) Illumina GA I Illumina GAII (Solexa-8293)

Mapping specifics
No. of reads mapped to ref. 0.22M 3.4M 3.3M 4.2M
Percentage 98.8 48.4 86.9 47.7
Genome coverage 12.2× 35.0× 40.6× 113.7×

The dataset D2 is not archived in NCBI’s Sequence Read Archive, but publicly available on http://www.genomic.ch/edena.php.

erroneous, the read does not contain any correct k-mers and most likely it
will not participate in any correct multiple alignments. Therefore, k should
also be smaller than half the length of a read.

The parameter e should be chosen to reflect the maximum expected error
rate in the reads. However, setting e to a large value risks over correcting the
reads because then even poor multiple alignments will be used for correction.

The support threshold ts is related to the coverage of the read set.
If we estimate that the lowest coverage in any part of the genome is
c then ts should be set to (c−1)/c. Again a too low value risks over
correction because corrections will then be made even if the support
for the consensus is weak, while a too high value leaves reads from
areas with low coverage uncorrected. The quality threshold should be set
similarly.

Finally, one can set the parameters governing the computations of the
alignments which are match reward, mismatch penalty and gap penalty.
These should be set according to the the error model of the sequencing
technology used. For example, Illumina reads gap penalty should be set high
to disallow gaps in the alignments.

4 RESULTS
The aims of the experiments were 2-fold. First, we measured
the quality of correction, and its effect on subsequent assembly.
Secondly, the computational resources required for the new method
were compared to alternative approaches (SHREC, Quake and
Reptile).1

Experimental setup: for testing we used the datasets listed in Table 1.
Unlike in other publications on the topic, we consider only real
sequencing data and no simulated reads. We believe that none of
the available read simulators can grasp the true characteristics of
next-generation sequencing technologies, and thus observations on
simulated data may be invalid. All tests were conducted on an
otherwise idle AMD Opteron machine with 4 2.6 GHz CPUs, 32 GB

1We also attempted comparison to a very recent method HiTEC by (Ilie et al.,
2010), but could not complete the experiments in time, after correspondence
with the authors lead to fixing a bug after submission.

main memory and 1024K L2 Cache. The operating system was
Ubuntu Linux version 8.04.4 LTS. The compiler was g++ (gcc
version 4.2.4) executed with the -O3 option. Times given are the
average of two runs and were recorded with the Linux/Unix time
command.

To test the performance of the short read error correction tools
under investigation, we first have to distinguish correct from
erroneous bases in the experimental data. We accomplish this
by mapping the reads to their respective references and defining
mismatches and indels as errors in the sequence reads. This is
common practise, as can be seen in the publications by (Chaisson and
Pevzner, 2007; Schröder et al., 2009; Yang et al., 2010). However,
this method bears risks, since genomic variants such as SNPs can be
defined as errors, and ambiguously mapping reads can lead to false
classifications of bases as well. This is a general problem with short
read data for applications like error correction, assembly or mapping,
since the actual genomic sequence is hardly ever known, as that is the
target of discovery. To minimize the risk of false classification, we
only consider uniquely mapping reads for our experiments.Also, this
disadvantage is the same for all of the tested methods. We used SOAP
by Li et al. (2008) for mapping the Illumina reads and SHRiMP by
Rumble et al. (2009) to map the Roche/454 reads.

We can then assess the performance of an error correction method
by identifying how many of the alleged errors in the data it can
correct [true positives (TPs)], how many errors get introduced falsely
[false positives (FPs)], how many errors remain undetected [false
negatives (FNs)] and how many correct bases remain unchanged
[true negatives (TNs)]. From these numbers, other statistics like
specificity, sensitivity or gain can be inferred, which will be
explained below.

Such statistics, however, are not entirely satisfactory to assess
the quality of corrections of a method, because it is unclear which
statistic (when optimized) will indeed yield the best performance for
other applications depending on the data. Since error correction of
short read data really is a preprocessing step for other applications
like assembly, we assess performance on the impact on this key
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Table 2. Performance evaluation of error correction methods on different datasets

Dataset Method FP TP FN TN Sensitivity Gain Runtime (min) Memory (GB)

D1
Shrec 6.7k 138k 36.9k 105M 0.789 0.751 31.6/122.8 5.2
Coral 12.4k 169k 13.7k 111M 0.925 0.857 5.3/18.6 1.8

D2
Shrec 3k 1.3M 34k 160M 0.974 0.972 16.1/57.75 9.2
Quake 6.6k 808k 526k 157M 0.606 0.601 7.75/13.2 0.4
Reptile 4.1k 0.7M 618k 160M 0.537 0.534 10.5 1.0
Coral 2.6k 1.3M 32k 160M 0.976 0.974 8.12/16.0 2.6

D3
Shrec 3.2k 867k 103k 116M 0.894 0.890 9.5/32.1 9.2
Coral 2.9k 911k 58k 116M 0.940 0.937 4.25/13.22 1.7

D4
Shrec 2.7k 1.2M 22.5k 319M 0.982 0.979 40.1/132.4 9.9
Quake 3.4k 0.9M 293k 313M 0.758 0.755 11.75/14.6 0.7
Reptile 34.5k 0.37M 843k 319M 0.306 0.277 28.3 1.6
Coral 4.0k 1.2M 27.1k 319M 0.978 0.974 80.0/305.1 4.0

The runtime is given as total runtime and CPU time (where applicable).

application for short read data. For this purpose, we choose Edena
by (Hernandez et al., 2008), a well-established short read assembler,
to run on the corrected read sets.

Parameter configuration: the following parameters have been
selected for the various error correction methods during the
experiments:

• Shrec: standard parameters.

• Quake: ‘-k 15’ as suggested in the manual.

• Reptile: standard parameters.

• Coral: standard parameters (with the appropriate configurations
with regards to the sequencing platforms): -illumina/-454.

Note, that we did not explore the parameter space to obtain
optimal results for any of the error correction methods. In reality,
when working on a read set fresh off a sequencing platform, there
is no immediate feedback for the user, to identify good or bad error
correction, which makes parameter choices hard. For this reason, we
ran the tools with a best guess kind of configuration, to make it more
indicative of a real application. For Shrec, this meant adjusting the
cutoff value c, for Coral standard parameters and for Reptile standard
configuration as well, since it estimates all the important statistics
by itself.

Statistical error correction performance: to assess the accuracy
of the different methods by numbers, we identify the above four
categories of error classification and then deduct the following
statistics:

• Sensitivity = TP/(TP + FN), the sensitivity towards erroneous
bases.

• Gain = (TP− FP)/(TP + FN), as introduced by Yang et al.
(2010), a statistic to combine the two intuitions of removing
errors without introducing additional ones.

The results for the above datasets can be found in Table 2. We could
not obtain any results for Reptile and Quake on datasets D1 and
D3. D1 is a set of pyro-sequencing reads generated by Roche/454
sequencer and Reptile and Quake are not designed to operate with
them. D3 on the other hand does not feature quality score values,
a prerequisite for the Reptile and Quake error correction tools.

The results for Shrec on dataset D1 have been computed with the
advanced version of Shrec introduced by Salmela (2010).

The results show comparable performance between Shrec and
Coral. The crucial statistics like false positive counts, specificity
and gain are in close vicinity to each other. Only on datasets D1 and
D3, a clear difference between the tools can be seen. D3 in particular
has a relatively high error rate, giving full read alignments a slight
edge over a k-mer based method.

The other two methods fall noticeably short of the performance
of Coral, due to significantly lower TP rates.

When comparing the obtained results with the experiments in
the original papers for Shrec and Reptile (Quake does not assess the
performance on publicly available data, but on simulated reads only),
some discrepancies become obvious. For instance, the performance
of Shrec on the very same dataset D3 is inferior to that in the original
publication. Note, however, that we did not explore the parameter
space for any of the methods as mentioned above, so the full potential
can be missed by a bit. For Reptile on the other hand, we obtained
better results on the same dataset (D2) that Yang et al. analysed in
the original publication (they achieved a sensitivity of 0.527 and
gain 0.38). Still, these results fall short of the performance of Coral.

Resource demands: for the comparison of resource demands of the
different methods, we refer again to the results in Table 2. Coral
uses significantly less memory than Shrec (between a factor 3 and
10), but more than Reptile and Quake (about a factor of 2.5 and 6
respectively). Runtime is not as easily distinguished, since Coral’s
worst case complexity correlates quadratically with the read length
(due to the dynamic programming nature of the alignments). As a
result, the runtime on the shorter reads of D2 for Coral is faster
than or comparable to the other methods, whereas it is worst on
the long reads of D4. Since ‘long’ reads (in the vicinity of about
100 bp) are the present and future of NGS platforms, this is an issue
to work on. We will discuss this further in Section 5. Quake has
to be named as the most resource effective methods from these
experiments, delivering better results than Reptile and having the
best runtime and memory usage.

Note that the experiments were conducted on a multi-core
machine as stated above. Shrec, Quake and Coral can utilize this to
their benefit, whereas Reptile is a single-threaded program. For this
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reason, we have given CPU time as an additional statistic in Table 2.
However, multi-core machines or even clusters are the reality of
most labs operating in computational biology/bioinformatics, so
we consider the wall-time comparison of the method as more
appropriate.

Impact on assembly: de novo DNA sequence assembly is one of
the key tasks applied to short reads. Assembly can benefit in two
ways from error correction. First, error-free reads can be assembled
more easily since they contain more error-free k-mers (or error-free
overlaps, depending on the data structures used in the assembly
tool). Secondly, less errors in a dataset mean less unique k-mers
(or overlaps), which can reduce the memory consumption of an
assembly tool significantly.

As discussed earlier, it is not entirely clear which statistics should
be maximized in order to obtain good error correction. Maximizing
gain, for instance, might be a sensible strategy; however, in our
experience a critical factor to successful assembly is a low false
positive rate while keeping the recall as high as possible. The
reason for this is the fragile nature of low coverage areas in the
sequencing data towards error correction. An overly ambitious tool
can easily identify these areas as erroneous and ‘correct’ them
towards something similar and more prevalent in the data, making
them unavailable for the assembly tool. This tendency of over
correction is to be kept in mind.

To assess the benefits of error correction on assembly, we chose
the Edena assembler by Hernandez et al. (2008) for our experiments.
De bruijn graph-based assemblers like Velvet (Zerbino and Birney,
2008) or SOAPdenovo (Li et al., 2010) are more popular, but
cannot show the impact of error correction as clearly, because they
incorporate their own correction techniques when processing the
graph. Edena is relying on error-free overlaps in the initial read set
and is thus more suited for our means of evaluation. When running
Edena, we varied the minimum overlap length parameter. Otherwise
standard parameters were used.

Note, that Edena requires reads to be of the same length. Quake
trims reads, if it considers them erroneous, but cannot correct them.
Consequently, we had to discard trimmed reads from the dataset.
This left 3.9M reads, or 93%. This will slightly affect the assembly
results as well as the resource demands of Edena in the following.

To measure assembly performance, we mainly focus on the N50
statistic, which gives a good indication on how successful the
assembly was. Figure 2 shows the N50 statistic of Edena’s results
when assembling datasets, which have been manipulated by different
error correction methods (on the example of dataset D4). The overlap
parameter shown on the x-axis is used in Edena for the graph
construction: only overlaps of reads longer than this minimum are
considered to create edges.

The graphs show the enhanced performance of Edena when
working with error corrected read sets: the data points for the Coral-
corrected reads exceed all the other assemblies for the investigated
overlap values, which is evidence for increased robustness of the
assembly. The N50 value is about 22% higher than if Edena runs
on uncorrected data. Shrec and Quake also achieve a positive
effect on the assembly. The reads corrected by Reptile cannot be
combined into as long contigs anymore and the performance drops
by about 5%.

Furthermore, we are interested in the improvement of resource
demands when performing assembly on error corrected reads, since

Fig. 2. Assembly performance of the Edena assembler on dataset D4 and
error corrected versions of it.

Table 3. Resource demands of the Edena assembler when processing read
set D4 or error corrected versions of it

Method Stage Runtime (%) Memory, GB(%)

None
1 32.2 min 1.46
2 33.6 s 0.73

Quake
1 28.4 min (−2.5) 1.46 (−0)
2 43.6 s (+30) 0.63 (−14)

Reptile
1 31.7 min (−1.6) 1.36 (−7.1)
2 28.7 s (−14.5) 0.65 (−11.2)

Shrec
1 28.9 min (−10.2) 1.31 (−10.5)
2 25.8 s (−23.3) 0.58 (−20.5)

Coral
1 28.1 min (−12.7) 1.24 (−15.1)
2 24.0 s (−28.6) 0.53 (−27.4)

The two stages in column 2 refer to the overlap graph creation step (1) and the processing
of the graph (2) within Edena. The values in parentheses in the runtime and memory
columns show the improvement over the run without any error correction. The runtime
and memory usage have been averaged over two runs of the software.

these (especially memory constraints) can be limiting factors in
the assembly process. Errors in reads do not only make assembly
a harder problem, but they also create nodes and edges in the
respective graph structures, which would not have occurred in
error-free sequencing material. These additional nodes and edges
are reflected in higher processing time and memory usage of the
assembler. Removing errors can improve these statistics, as can be
seen in Table 3.

Again, the read set, which has been generated with Coral, achieves
the best results when it comes to resource savings. This was expected
given the high recall rate observed earlier.
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5 CONCLUSION AND FUTURE WORK
In this article, we have introduced a novel error correction method. It
relies on multiple alignments of reads as well as their quality scores
to distinguish correct from erroneous bases.

Whereas most previous tools for error correction concentrate on
one sequencing technology, Coral is applicable to a wide range of
sequencing datasets. Our experiments covered data from different
Illumina technologies and Roche 454 but Coral can be easily applied
to datasets from other sequencing technologies including third-
generation sequencing platforms by adjusting the parameters of
alignments on the command line.

Coral’s error correction performance is superior to that of the
existing methods in all quality regards. This benefits the performance
of short read data applications, as we have demonstrated by the
example of de novo assembly. The very low false positive rate
compared to Shrec prevents the issue of over correcting low
coverage regions, while the high recall (compared with Reptile)
allows for a steep increase of error-free k-mers or overlaps in
the sequencing data, which leads to an increase in contig lengths
and reduction in runtime and memory requirement of the Edena
assembler.

Coral is able to outperform the competing methods because of
the beneficial nature of multiple alignments. These give a more
coherent picture of sequencing errors in the reads since whole reads
are inspected for the decision-making process. In Shrec and Reptile,
only k-mers (or tiles respectively) are investigated instead.

Future work: we are investigating the possibility to use approximate
k-mers instead of exact ones for indexing the reads. This would
be especially beneficial for very short reads because we could lift
the requirement for k to be smaller than half the length of a read.
However, as the read lengths are increasing, this is not a pressing
concern. We are also planning to investigate the possibility to update
the k-mer index when reads are corrected which would allow for
better alignments towards the end of the correcting run. We also plan
to develop methods based on sequence similarity to partition large
k-neighbourhoods into smaller subgroups that would each originate
from different part of the genome. The subgroups could then be
corrected separately.

Furthermore, Coral is at the moment not compatible with the
colour space reads from the SOLiD sequencing platform. In future,
we plan to develop a version that addresses this issue.

Finally, the resource demands of Coral need to be improved due
to the ever-growing throughput of modern sequencing technologies.
Here, Coral has demonstrated good performance on bacterial
genomes. To make Coral applicable to larger genomes, we plan to
compress the k-mer index to save space and to implement guided
choices of alignments and re-use of alignment information to speed
up the correction process.
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