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Publication bias and questionable research practices in primary research can lead to badly
overestimated effects in meta-analysis. Methodologists have proposed a variety of statistical
approaches to correct for such overestimation. However, much of this work has not been
tailored specifically to psychology, so it is not clear which methods work best for data typically
seen in our field. Here, we present a comprehensive simulation study to examine how some
of the most promising meta-analytic methods perform on data that might realistically be
produced by research in psychology. We created such scenarios by simulating several levels
of questionable research practices, publication bias, heterogeneity, and using study sample
sizes empirically derived from the literature. Our results clearly indicated that no single
meta-analytic method consistently outperformed all others. Therefore, we recommend that
meta-analysts in psychology focus on sensitivity analyses—that is, report on a variety of
methods, consider the conditions under which these methods fail (as indicated by simulation
studies such as ours), and then report how conclusions might change based on which conditions
are most plausible. Moreover, given the dependence of meta-analytic methods on untestable
assumptions, we strongly recommend that researchers in psychology continue their efforts on
improving the primary literature and conducting large-scale, pre-registered replications. We
provide detailed results and simulation code at https://osf.io/rf3ys and interactive figures at
http://www.shinyapps.org/apps/metaExplorer/.
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Statistical techniques for analyzing the results from a
set of studies in aggregate—often called meta-analysis—are
popular in psychology and many other scientific disciplines
because they provide high-powered tests, the ability to ex-
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amine moderators across studies, and precise effect size esti-
mates that are useful for planning future studies and making
policy decisions. However, just as the results from individ-
ual studies can be made completely misleading by bias (e.g.,
Simmons, Nelson, & Simonsohn, 2011), so too can meta-
analytic results. To address this, researchers have developed
statistical techniques designed to identify and correct for
bias. Without having a particular preference in any specific
method, we present a neutral comparison (Boulesteix, Wil-
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son, & Hapfelmeier, 2017) of how several promising meth-
ods perform when applied to simulated data that could have
plausibly been produced by research in psychology. Our goal
is to help researchers in psychology know what to expect
from different methods when conducting meta-analysis in the
face of bias.

Meta-analysis

Meta-analytic techniques involve synthesizing a set of
results from studies investigating the same empirical phe-
nomenon (Borenstein, Hedges, Higgins, & Rothstein, 2011).
Most often, the results from the individual studies take the
form of effect size estimates, and because meta-analyses are
usually applied to studies with dependent variables measured
on different scales, effect size estimates are typically stan-
dardized. The typical goal of a meta-analysis is to produce a
single summary estimate of the hypothetical true underlying
effect, δ, estimated by each effect size in the dataset. This is
usually called fixed-effect meta-analysis (Cooper, Hedges, &
Valentine, 2009) and can be modeled as di = δ + ei, where
di is the observed effect size for study i that differs from the
true underlying effect, δ, by some amount of sampling er-
ror ei, which is normally distributed with a mean of 0 and
a variance of vi. (See the glossary for the meanings of all
symbols.)

Another common model known as random-effects meta-
analysis (Cooper et al., 2009) holds that each study pro-
vides an estimate, di, of a different, related true effect, Ti—
that is, di = Ti + ei. This approach allows for the pos-
sibility that researchers attempting to study the same phe-
nomenon may nonetheless be studying different underlying
effects that vary as a function of, for example, different oper-
ationalizations of the independent variable or different pop-
ulations. In this model, Ti = δ + ui, where δ is the mean
of the true effects estimated by the individual studies and
the ith study’s deviation from this mean, ui, is normally dis-
tributed with a mean of 0 and a variance of τ2. Applying the
random-effects model to an observed set of studies provides
an estimate of the average true underlying effect, δ, and the
amount of between-study heterogeneity, τ2. For this paper,
we use random-effects meta-analysis as our baseline for “un-
corrected” meta-analysis. It should be noted, however, that
determining which uncorrected estimator for the average true
underlying effect to use is an active area of study itself (Baker
& Jackson, 2013; T. Stanley & Doucouliagos, 2015; Schmid,
2017; Rice, Higgins, & Lumley, 2017; Veroniki et al., 2016).

Bias

The effects being estimated by meta-analysis can be sys-
tematically over- or underestimated in the face of bias, which
is caused by factors that affect the analysis and reporting
of the individual studies in the meta-analytic dataset. We
consider two primary sources of meta-analytic bias in our

simulation study: publication bias and questionable research
practices.

Publication bias occurs when the probability of results en-
tering the published record is affected by the results them-
selves (Rothstein, Sutton, & Borenstein, 2006). For exam-
ple, if researchers strongly believe that an effect is real and
positive, statistically non-significant or negative estimates of
that effect may never be submitted for publication or may
be rejected by reviewers and editors (Greenwald, 1975; Ster-
ling, Rosenbaum, & Weinkam, 1995; Rothstein et al., 2006;
Ferguson & Heene, 2012). In other words, statistically non-
significant results, or those results that contradict accepted
theory, are left in the “file-drawer.” Since the data set col-
lected by the meta-analyst depends on the availability of
studies on the topic of interest, and published data are much
easier to find, publication bias can result in a meta-analytic
sample that over-represents statistically significant, theory-
consistent studies. This can lead to misleading meta-analytic
results in terms of inflated estimates of the average true un-
derlying effect and increased false positives during hypoth-
esis testing. And although we do not focus on it here, it is
important to note that such bias also affects estimates of het-
erogeneity in complex, non-linear ways (e.g., Jackson, 2007;
Augusteijn et al., 2018).

A related but independent form of bias is the use of ques-
tionable research practices (QRPs; also referred to as the
undisclosed use of researcher degrees of freedom or “p-
hacking”). QRPs are said to occur when researchers favor a
specific analytic approach (e.g., removing outliers or covari-
ates) from the variety of potential approaches based on the
results it yields. These choices may be justifiable, yet simul-
taneously arbitrary and motivated (Simonsohn, Simmons, &
Nelson, 2015b). Like publication bias, this behavior can re-
sult in overestimates of the true effect, as analyses that yield
significant results are highlighted and analyses that do not
yield such results are censored. All bias-correcting methods
that have been applied in this study only address publication
bias, but not QRPs.

Simulation studies of bias correction in meta-analysis

Many simulation studies have been conducted to com-
pare the performance of methods that correct for bias in
meta-analysis (e.g., Hedges & Vevea, 1996; Moreno et al.,
2009; Rücker, Carpenter, & Schwarzer, 2011; T. Stanley
& Doucouliagos, 2014; Simonsohn, Nelson, & Simmons,
2014; van Assen, van Aert, & Wicherts, 2015; R. C. van
Aert, Wicherts, & van Assen, 2016; McShane, Böcken-
holt, & Hansen, 2016; T. Stanley, 2017). However, there
is very little overlap between these studies in terms of either
the methods they examine or the simulated conditions they
explore—different simulation studies implement bias differ-
ently, sample sizes are drawn from different distributions,
and the value and form of the simulated true underlying ef-
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fects varies widely. This lack of overlap is not surprising
given that there is an effectively infinite number of possible
combinations of different conditions to explore and no way
of determining which conditions have actually led to any real
dataset. In other words, not only is there an inherent di-
mensionality problem in these simulation studies, but there
is also no ground truth. These problems are often not dis-
cussed in simulation studies, and indeed, many of the studies
cited above—explicitly or implicitly—recommend the use of
a single method, despite the fact that each simulation study
examines performance in only a limited subset of possible
conditions and among a handful of correction methods.

Our goal is not to identify a single method that should be
used in all situations. Instead, we aim to (1) add to the ex-
isting literature by exploring a further set of conditions that
may plausibly represent real data from research in psychol-
ogy, (2) compare a larger set of meta-analytic methods that,
to our knowledge, have yet to be directly compared, and (3)
discuss how our results can facilitate sensitivity analysis in
meta-analysis. 1

Disclosures

R (R Core Team, 2016) scripts are available at Github
https://github.com/nicebread/meta-showdown. Furthermore,
we provide interactive figures and tables which allow a de-
tailed exploration of the results (http://www.shinyapps.org/

apps/metaExplorer/). Supplemental material, which includes
a comprehensive presentation of our results, is available at
https://osf.io/rf3ys. We declare that we have no conflicts of
interest with respect to the authorship or the publication of
this article. We report how we determined our sample size,
all data exclusions, all manipulations, and all measures in the
study.

ECC, FDS, and JH developed code and managed the sim-
ulation study. ECC, FDS, JH, and WMG planned the project
and wrote the manuscript. We would like to acknowledge
Tyler Yost for helpful comments on an earlier version of the
simulation code and manuscript. A preprint of this paper is
available at https://osf.io/rf3ys.

Methods

Simulation

We simulated the number of meta-analyzed studies, k, as
one of four values (10, 30, 60, 100). All simulated individual
studies had a two-group experimental design, so all effect
sizes took the form of a standardized mean difference, Co-
hen’s d. Notably, there is reason to think that this may be the
most commonly used effect size measure in psychology (see
Table S1 in Fanelli, Costas, & Ioannidis, 2017). Cohen’s d is
an estimate of the true underlying effect δ, which we chose to
simulate as taking one of four values (0, 0.2, 0.5, 0.8) corre-

sponding to the null hypothesis and Cohen’s “rule of thumb”
values for small, medium, and large effects, respectively.

Heterogeneity. As mentioned, the true underlying effect
δ may vary across studies based on the heterogeneity param-
eter τ. We simulated three values for τ (0, 0.2, 0.4)2 that may
plausibly represent research in psychology: In an analysis of
187 meta-analyses using standardized mean differences pub-
lished in Psychological Bulletin from 1990–2013 (van Erp,
Verhagen, Grasman, & Wagenmakers, 2017), 50% of all es-
timates of τ were smaller than 0.2, and 80% were smaller
than 0.4.3

Study-level data. Independent samples were randomly
generated for the control and experimental group, where ob-
servations in the control group were drawn from a normal
distribution with mean of 0 and standard deviation of 1, and
observations in the experimental group were drawn from a
normal distribution with a mean of Ti and standard devia-
tion of 1. Ti was defined as the sum of δ and ui, where ui

was drawn from a normal distribution with mean 0 and stan-
dard deviation τ. Note that Ti, therefore, represented a study-
specific true effect that varied randomly if τ was greater than
0. Cohen’s d and the variance v of the effect size were
then calculated (see glossary) and a two-tailed independent-
samples t-test was applied to generate a t-value and p-value.

Simulated sample sizes were based on an empirical dis-
tribution of sample sizes (Marszalek, Barber, Kohlhart, &
Holmes, 2011; Marszalek, 2011), which provides per-group
sample sizes from 1225 studies from four journals (Jour-
nal of Abnormal Psychology, Journal of Applied Psychol-
ogy, Journal of Experimental Psychology: Human Percep-
tion and Performance, and Developmental Psychology) from
the years 1995 and 2006. After removing sample sizes
smaller than 5, the strongly right-skewed per-group sample
size distribution had a median of 23 (25% quantile: 14, 75%
quantile: 50). We found that an inverse gamma distribution
clearly showed the best fit according to the log-likelihood
(compared to a negative binomial, log-normal, gamma, or
Weibull distribution). For our simulations, we used a trun-
cated inverse gamma distribution (truncated at n = 5 and n =

1It is worth noting that our original intent with this study was
in fact to identify, if possible, a single best method across many
conditions. Further consideration and helpful comments from our
peers changed our minds on this.

2In terms of the heterogeneity metric I2, these values of τ = 0.2
and 0.4, in combination with the specific primary sample sizes we
simulated, are approximately equal to the descriptors proposed by
Pigott (2012) for “medium” (I2 = 50%) and “large” (I2 = 75%)
heterogeneity: random-effects meta-analysis of the unbiased data
(no publication bias, no QRPs, aggregated over k and δ), yields an
average observed I2 of 46% (SD = 17%) when τ = 0.2 and 77%
(SD = 10%) when τ = 0.4.

3One should keep in mind that the estimates of τ reported by van
Erp et al. van Erp et al. (2017) may be over- or under-estimates as
a result of bias (Augusteijn et al., 2018).
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Figure 1. Comparison of the empirical per-group sample size
distribution (histogram) from Marszalek, Barber, Kohlhart,
and Holmes (2011) with the best fitting inverse gamma curve
(continuous line). X-axis truncated at n = 400 for better vis-
ibility. Figure available at https://osf.io/rf3ys, under a CC-
BY4.0 license.

1905, which was the largest observed per-group sample size
in the Marszalek, 2011 data set) with shape = 1.153 and scale
= 0.046 to sample our per-group sample sizes. Figure 1 com-
pares the empirical per-group sample size distribution with
the best fitting curve.

Publication bias. For the simulation of publication bias,
we used two censoring functions (“medium publication bias”
and “high publication bias”) which compute a probability
that a study is published, based on the study’s one-tailed p-
value. If the effect is in the “correct” direction, both func-
tions return a 100% probability of publication when ponetailed

< .025. “Marginally” significant effects with .025 ≤ ponetailed

< .05 are published with a exponentially decreasing probabil-
ity that reaches a constant level of 20% (medium publication
bias) or 5% (high publication bias) for .5 > ponetailed ≥ .05.
If the effect is in the “wrong” direction (ponetailed ≥ .5),
the censoring function for medium publication bias returns
a 50% probability of publication when ponetailed ≥ .9995
(high publication bias: 20%). This probability is expo-
nentially decreasing for .9995 > ponetailed ≥ .995, until it
reaches a constant level of 5% (medium) or 0% (high) for
.995 > ponetailed ≥ .5 (see Figure 2). In our simulation, a
random Bernoulli draw using the probability computed by
these censoring functions determined whether a study was
“published”.4 Studies were continually simulated until the

target number of k studies had been reached. In the “no pub-
lication bias” conditions, all studies were included regardless
of p-value or sign of effect.

To our knowledge, this specific implementation of publi-
cation bias is comparable to, but different from, those used in
previous simulation studies (e.g., Bayarri & DeGroot, 1991;
Guan & Vandekerckhove, 2016). Our primary reason for
choosing this approach was that we did not want our pub-
lication bias functions to exactly match those assumed by
any of the bias-correcting methods being examined (Iyengar
& Greenhouse, 1988; McShane et al., 2016, i.e.,), as this
might give an overly optimistic assessment of performance
by those methods (Simonsohn, Simmons, & Nelson, 2017b).
Furthermore, it is an open question as to whether methods
that have been previously tested on data produced with more
straightforward publication bias functions would be robust to
our more nuanced implementation.

Questionable Research Practices (QRPs). We studied
four forms of QRPs: (1) Optional removal of outliers, (2)
optional selection between two dependent variables, (3) op-
tional use of moderators, and (4) optional stopping. Each
data set that would have QRPs applied to it was designed to
simulate a study with a two-by-two (experimental group vs.
the control group; level one of the moderator vs. level two
of the moderator) design and two dependent variables. Each
dependent variable was measured across n observations. The
moderator divided the simulated data set in half in a way that
was independent of the dependent variable (i.e., the moder-
ator had no main effect on the dependent variable) and the
treatment (i.e., no collinearity between moderator and treat-
ment). The two dependent variables were correlated at r =

0.20.
QRPs were applied so as to simulate the behavior of a

researcher fishing for statistical significance. For the “maxi-
mal QRP treatment”, the simulated researcher first tested the
main effect of experimental manipulation on the first depen-
dent variable. If this effect was not statistically significant
and positive, the simulated researcher removed outliers (de-
fined as observations with an absolute value z-score greater
than 2).5 If this second test was not positive and signifi-
cant, the simulated researcher moved to the second depen-
dent variable and repeated the above steps. If no positive and
significant effect was found, the researcher moved back to
the first dependent variable and tested for an interaction ef-
fect between the experimental manipulation and the modera-
tor. In the presence of a significant interaction, the researcher
compared the experimental and control groups in only the
subgroup defined by the first level of the moderator. This ex-

4If the probability of publication was 0.25, for example, we drew
one random sample from a Bernoulli distribution where p = 0.25. If
the sample value was 1, the simulated result was "published."

5We also could have deleted only outliers in one direction, which
would have made the p-hacking more efficient.

https://osf.io/rf3ys
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(B) Medium publication bias
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Figure 2. Censoring functions which return the probability of publication given a one-tailed p-value. The x-axis has a log-
arithmic scale on both sides of ponetailed = .5 to increase the visibility of the function at the high and low ends of the scale.
Figure available at https://osf.io/rf3ys, under a CC-BY4.0 license.
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amination was conducted first with and then without outliers.
If no positive and significant effect was found, the second
subgroup defined by the second level of the moderator was
assessed in the same way. In the absence of a positive and
significant effect at the second level, the researcher moved to
the second dependent variable and repeated the same proce-
dure.

Additionally, the simulated researcher could opt to col-
lect some additional amount of data (see below). After each
additional collection effort, the QRPs described above were
repeated. Thus, for each data collection effort, simulated re-
searchers could potentially apply 12 comparisons. If none
of these analyses produced a positive and significant effect,
the first test (experimental vs. control on the first dependent
variable with outliers untouched and no division by the mod-
erator) was taken as the final result.

To organize different levels of severity, we created three
types of individual QRP strategies a simulated researcher
could adopt: (1) pure (no use of QRPs); (2) moderate (op-
tional dependent variables and the addition of three observa-
tions per cell for up to three data collection efforts); and (3)
strong (use of optional outliers, optional dependent variables,
optional moderators, and the addition of three observations
per cell for up to five data collection efforts). Given the sam-
ple sizes of our simulated primary studies, the moderate QRP
strategy results in an inflated false-positive rate (computed in
conditions without heterogeneity, without publication bias,
and only counting directionally consistent results) of 9%, the
strong strategy in 27%. Note that more aggressive p-hacking
beyond our “strong” setting is easily possible, for example
by examining even more dependent variables, doing only di-
rectional outlier exclusion, etc. For example, Simmons et al.
(2011) report a false positive rate of 61% by combining cer-
tain types of p-hacking.

As it is unlikely that every researcher in a field applies
QRPs in the same fashion, we defined three QRP environ-
ments to describe possible prototypical research fields with a
specific severity of QRP application. Each QRP environment
was characterized by a mixture of simulated researchers with
individual QRP strategies: (1) none (100% of simulated re-
searchers adopted the pure strategy); (2) medium (30% pure,
50% moderate, and 20% strong), leading to a 11% false-
positive rate; and (3) high (10% pure, 40% moderate, and
50% strong), leading to a 17% false-positive rate.

Not all QRP types have the same distorting impact on
a meta-analysis. Furthermore, some QRP types lead bias-
correcting techniques to overestimate the true effect, while
other types lead to an underestimation (R. C. van Aert et al.,
2016). Our goal was not to investigate the differential im-
pact of distinct QRP types on bias correction, but rather to
investigate some combinations of QRPs that may be plausi-
ble in real settings (John, Loewenstein, & Prelec, 2012). As
there are infinite possibilities of how QRP can be done, and

Table 1
Simulation parameters

Experimental factors Levels

True underlying effect (δ) 0, 0.2, 0.5, 0.8

Between-study heterogeneity (τ) 0, 0.2, 0.4

Number of studies in
the meta-analytic sample (k) 10, 30, 60, 100

Publication bias (PB) None, medium, strong

QRP environment (QRP) None, medium, high

an infinite number of ways how these individual researcher
strategies can be combined to QRP environments, our results
are best considered as a sensitivity analyses that explores the
effect of a range of three plausible QRP environments on
meta-analytic results. This does not necessarily generalize
to other implementation of QRPs.

Design. To summarize, we simulated data for 432
unique combinations of five fully-crossed factors (Table 1).
We simulated 1,000 meta-analyses for each of the 432 condi-
tions. For a random selection of conditions we also computed
10,000 simulations and computed the Monte Carlo simula-
tion error (Koehler, Brown, & Haneuse, 2009). These com-
parisons clearly demonstrated that 1,000 replications lead
to sufficiently stable estimates (see supplementary material,
https://osf.io/rf3ys).

Performance metrics

For the hypothesis test of whether the estimate provided
by each meta-analytic method differs from zero, we evalu-
ated the false positive (Type I error) rate at δ = 0 and the true
positive rate (i.e., the statistical power) at δ = 0.2, 0.5, and
0.8.

Following the recommendations of Burton, Altman,
Royston, and Holder (2006), we measured the bias-adjusting
performance of each method in terms of mean error (ME),
root mean squared error (RMSE), and 95% coverage proba-
bility (see glossary).

Meta-analytic methods

We examined the performance of seven estimators. Fur-
ther details on our specific implementations are available in
the supplemental material https://osf.io/rf3ys.

Random-effects meta-analysis (RE). We applied the
random-effects meta-analysis as described above using the
metafor package in R (Viechtbauer, 2010). This approach
makes no adjustment for publication bias or QRPs. We used
the REML method for estimating between-study variance.

https://osf.io/rf3ys
https://osf.io/rf3ys
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Trim-and-fill (TF). Trim-and-fill (Duval & Tweedie,
2000) was introduced as a diagnostic test for publication
bias based on funnel plot asymmetry (a scatter plot of ef-
fect size estimates against the standard error of those esti-
mates). Publication bias introduces clear rightward asymme-
try in a funnel plot (see supplemental material) by censoring
non-significant and negative observations. Trim-and-fill it-
eratively removes (i.e., trims) observations from one side of
the funnel plot until a criterion for symmetry is met and then
fills observations back into the funnel plot along with im-
puted observations reflected about the mean. Standard meta-
analytic methods can then be applied to a data set including
both observed and imputed studies.

Several previous simulation studies suggest that, although
trim-and-fill can correct for bias in some cases, not only do
other methods tend to outperform it, but it generally fails
with increasing heterogeneity (e.g., Terrin, Schmid, Lau, &
Olkin, 2003; Peters, Sutton, Jones, Abrams, & Rushton,
2007; Moreno et al., 2009; Idris & Ruzni, 2012; Simonsohn
et al., 2014). For example, Terrin et al. (2003) examined
the coverage probability of trim-and-fill both with and with-
out heterogeneity. They observed that trim-and-fill coverage
decreased as heterogeneity increased, primarily because the
method imputed studies that were not missing when effect
sizes from large studies (i.e., those near the top of the funnel
plot) were far from the average overall effect. In addition to
unnecessarily correcting for bias, more recently it has been
suggested that trim-and-fill also does not correct enough for
bias that does exist (Simonsohn et al., 2014; Simonsohn,
Simmons, & Nelson, 2017a; van Assen et al., 2015).

Overall, no conclusion has been reached on the best way
to implement trim-and-fill, as performance can vary widely
with different versions of the algorithm in different condi-
tions (Peters et al., 2007; Moreno et al., 2009). Therefore, we
use the default algorithm provided by the metafor package.
Notably, trim-and-fill did not always converge. Across all
conditions, it returned a valid estimate in 95% of data-sets.
Non-convergence mostly happened at k ≥ 60 with strong
publication bias.

Weighted average of the adequately powered studies
(WAAP-WLS). T. Stanley and Doucouliagos (2017) pro-
posed the use of an intercept-only weighted least squares
(WLS) meta-regression estimator as a replacement for the
naive fixed-effect and random-effects meta-analytic models.
Simulation studies (T. Stanley & Doucouliagos, 2017; T.
Stanley, 2017; T. Stanley, Doucouliagos, & Ioannidis, 2017)
suggested that the WLS estimator performed on par with the
fixed-effect and random-effects models when the assump-
tions underlying those models were true, but outperformed
both of them when they were violated (e.g., in the presence
of publication bias).

Scholars have suggested extending this WLS estimator to
reduce the impact of potential publication bias (Ioannidis,

Stanley, & Doucouliagos, 2017; T. Stanley et al., 2017). In
this extension, one first performs a WLS meta-analysis on
all primary studies to get an (potentially biased) estimate of
the true underlying effect. Then one performs a second WLS
meta-analysis on only those studies that have 80% statistical
power to detect this estimated effect size—that is, a weighted
average of adequately powered (WAAP) studies. This ap-
proach attempts to avoid bias by discarding underpowered
studies, which must overestimate the true effect to find sta-
tistical significance. If there are no or only one adequately
powered study in the dataset, the WLS estimate for the entire
dataset is used as a fallback solution. This conditional esti-
mator, called WAAP-WLS, applies WAAP when there are at
least two adequately-powered studies and WLS otherwise.

Across all conditions, WAAP-WLS returned 77% WAAP
and 23% WLS estimates. In small-k, small-δ conditions,
there were not enough adequately powered studies, and
100% of estimates used WLS. In large-k, large-δ conditions,
100% of estimates used WAAP.

Previous simulation studies suggest that WAAP-WLS is
comparable to WLS, standard fixed-effects meta-analysis,
and random-effects meta-analysis in the absence of hetero-
geneity and publication bias; however, as those conditions
change, WAAP-WLS has outperformed both WLS and stan-
dard meta-analysis (T. Stanley et al., 2017). The same sim-
ulation study suggested, however, that WAAP-WLS in turn
has been outperformed by PET-PEESE (see below) in terms
of efficiency and overall bias.

p-curve. A p-curve is the distribution of all statistically
significant p-values from the set of studies of interest (i.e., ps
< 0.05; Simonsohn et al., 2014). The shape of the p-curve
is a function of the statistical power of the studies, which
is itself a function of the sample sizes and the true effect
size. When studies have no statistical power (i.e., when the
null is true) then the distribution of significant, independent
p-values is uniform between .00 and .05. With increasing
power, this distribution becomes increasingly right-skewed.
Because the degree of right skew is a function of the average
study power, p-curve can use the degree of right-skew to (a)
test the absence of a real effect and (b) estimate the average
effect size corrected for publication bias.

Previous simulations by Simonsohn et al. (2014) demon-
strated that some typical QRPs cause p-curve to underesti-
mate the true effect size. Later work by R. C. van Aert et al.
(2016), however, suggested that both upward and downward
bias can be present in p-curve depending on the specific type
of QRPs. Additional work demonstrated that p-curve overes-
timates the average true underlying effect when there is het-
erogeneity (Simonsohn et al., 2014; R. C. van Aert et al.,
2016).

Critically, Simonsohn et al. (2014) interpret the p-curve
estimate differently from how we use it here: “It is the av-
erage effect size one expects to get if one were to rerun all
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studies included in the p-curve” (p. 667; see also Simmons,
Nelson, & Simonsohn, 2018). In our view, however, meta-
analysts generally aim to recover the mean effect size of all
conducted studies—indeed, that is the purpose of the other
estimators we examine. For consistency with all other esti-
mators, we therefore interpret p-curve in this fashion; how-
ever, in the supplemental material, we also assess p-curve’s
ability to recover the average true effect size of all studies
submitted.

We implemented p-curve as recommended by Simonsohn
et al. (2014) with the following settings. Only statistically
significant and directionally consistent studies were submit-
ted to the p-curve. If significant but negative studies were
present, they were discarded. Consequently, when no signif-
icant studies in the positive direction were in a set, p-curve
does not return an estimate (0.8% of all simulations). Across
all conditions, p-curve returned an estimate in 99.2% of all
simulated data-sets. Not surprisingly, the method failed to
produce an estimate almost exclusively at k = 10, δ = 0, and
no publication bias.

In some cases, p-curve can return an estimate with a neg-
ative sign, even though all studies entered had positive signs.
In their web-app http://www.p-curve.com, Simonsohn, Nel-
son, and Simmons suggest one should only interpret non-
negative effect size estimates from p-curve. When p-curve
returns a negative effect size estimate, they suggest setting
the negative estimate to zero, which we did in our study.6

Concerning the test for the presence of an effect, we relied
on the test for evidential value (i.e., the test for right skew-
ness) for the full p-curve (Simonsohn, Simmons, & Nelson,
2015a), which is conceptually equivalent–but not statistically
equivalent–to a test for µ > 0. Furthermore, p-curve estima-
tion does not provide confidence intervals, so we could not
assess this aspect of estimation (see below).

p-uniform. Like p-curve, the p-uniform method also
considers only the statistically-significant results. It is based
on the idea that the distribution of p-values is uniform condi-
tional on the population effect size (van Assen et al., 2015).
Hence, it focuses on the p-value distribution under the alter-
native hypothesis, and it yields a fixed-effects estimate of the
true effect by finding the value d∗ which makes the condi-
tional distribution of p-values as uniform as possible.

p-uniform provides a hypothesis test, an estimate of the
bias-corrected effect size, and a confidence interval around
that estimate. Computationally, p-curve and p-uniform only
differ by an alternative implementation of the estimation al-
gorithm, so in general p-curve and p-uniform are expected
to have similar strengths and weaknesses (McShane et al.,
2016). For the computation of the p-uniform estimate, we
used the Irwin-Hall estimator as implemented in the puni-
form package (van Aert, 2017) and recommended by R. C.
van Aert et al. (2016). We also followed the recommenda-
tion of R. C. van Aert et al. (2016) and set the estimate to

zero if the average of all significant p-values was larger than
.025, because under a positive true effect the average p-value
is lower than .025.7

Just as p-curve, p-uniform does not return an estimate
without significant studies in the positive direction (0.8% of
all simulations). Across all conditions, p-uniform returned
an estimate in 99.2% of all simulated data-sets, where in
10.4% of all computations the estimate was replaced by zero.

PET, PEESE, and PET-PEESE. The precision-effect
test (PET; T. Stanley & Doucouliagos, 2014) is a meta-
regression approach to adjusting for small-study effects (see
supplemental material). Small-study effects are said to exist
when the observed effect size gets larger as the standard error
grows (i.e., the sample size shrinks; see also the closely re-
lated Egger’s test for publication bias, Egger, Smith, Schnei-
der, & Minder, 1997). One cause of this pattern is publication
bias, although other benign causes also exist (Sterne, Gav-
aghan, & Egger, 2000; T. Stanley & Doucouliagos, 2014).
PET fits a linear regression line to this relationship, then ex-
trapolates to estimate the effect size of a hypothetical study
with a standard error of zero (i.e., a study with infinite sample
size and perfect measurement). The result is an estimate of
the true underlying effect that has been corrected for publi-
cation bias and other small-study effects. Of course, if small-
study effects have many benign causes, this may represent a
substantial over-correction.

PET is a weighted-least-squares regression where effect
size is regressed on its standard error: di = b0 + b1sei + ei,
where b0 and b1 are the intercept and slope terms describing
the linear relationship between the ith effect size estimate di

and its associated standard error sei. The regression model
is weighted by the inverse of the variance (i.e., the squared
standard errors) of the effect size estimates. The intercept b0
represents the estimated effect size when the standard error
is zero.

The precision-effect estimate with standard error (PEESE)
(T. Stanley & Doucouliagos, 2014) fits a quadratic relation-
ship between effect size and standard error. The rationale
is that if there is some true effect, low-precision studies
are poorly powered and publishable only when the effect is
badly overestimated. On the other hand, high-precision stud-
ies will be well-powered and routinely publishable without
such overestimation. Thus, publication bias (and the ob-
served small-study effect) is expected to be stronger when
the standard error is larger. A quadratic relationship can
model such differences in bias across standard errors. PEESE
is the weighted-least-squares regression model where ef-

6Technically, we constrained the numerical optimizer to values
≥ 0. In 10.3% of all cases the estimate was < 0.0001.

7Although in this special case no p-value and no CI are pro-
vided, we treated these cases as “do not reject H0”. Hence, the
special case is utilized in the computation of the false-positive error
rate, but not in the coverage probability metric.

http://www.p-curve.com
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fect size is regressed on the square of the standard error:
di = b0 + b1se2

i + ei. As in PET, the weights are the inverse of
the variances and the intercept is interpreted as an estimate of
the true underlying effect that is uninfluenced by small-study
effects.

Simulation studies suggest that PET outperforms PEESE
when the true underlying effect is zero, whereas PEESE
outperforms PET when the true underlying effect is non-
zero (T. Stanley & Doucouliagos, 2014). In an attempt to
offset the opposite biases of PET and PEESE, T. Stanley
and Doucouliagos (2014) proposed the conditional estima-
tor PET-PEESE. PET-PEESE considers the statistical signif-
icance of the PET estimate to decide whether PET or PEESE
is taken as the final estimate. When the estimate from PET is
statistically non-significant (i.e., the estimated true effect is
not distinguishable from zero) in a one-sided test at α = 5%,
the PET estimate is taken. In contrast, when the estimate
from PET is statistically significant, the PEESE estimate is
used as the value for the conditional PET-PEESE estima-
tor. As suggested by T. Stanley and Doucouliagos (2014),
we will only focus on the conditional PET-PEESE estimator,
but report the performance of the separate PET and PEESE
estimators in the supplemental material.

Although initial simulation results indicated promising
performance by PET-PEESE (T. Stanley & Doucouliagos,
2014), two later simulations detailed some weaknesses. One
observed that the standard random-effects meta-analysis es-
timator outperformed PET and PEESE in some ways, such
as greater estimation efficiency (lower mean squared er-
ror) when heterogeneity was present (Reed, Florax, & Poot,
2015). Another found that PET-PEESE performance was un-
acceptable under conditions that seem common in psychol-
ogy – a small number of studies, small samples across all
studies, and high heterogeneity (T. Stanley, 2017).

Selection model (3PSM). Selection model approaches
to mitigation of bias in meta-analysis have been in use for
some time (Hedges, 1984; Iyengar & Greenhouse, 1988;
Hedges & Vevea, 1996). Here, we employ the three-
parameter selection model (3PSM) as developed by Iyen-
gar and Greenhouse (1988) and recently discussed by Mc-
Shane et al. (2016). This model’s three parameters represent
the average true underlying effect δ, the heterogeneity of the
random effect sizes τ2, and the probability p1 that a non-
significant effect enters the literature. The last parameter, p1,
is modeled by a step function with a single cutpoint at p =

.025 (one-tailed), which corresponds to a two-tailed p-value
of .05. This cutpoint divides the range of possible p-values
into two bins: significant and non-significant. The three pa-
rameters are estimated using maximum likelihood.

We implemented 3PSM using the default function in the
weightr package (Coburn & Vevea, 2017). If no p-value
is present in one of the bins, the probability p1 cannot be
estimated. In this case, the weightr package uses a plu-

gin value of .01, which makes it possible to estimate the
model (Vevea & Woods, 2005). However, even with this
plugin value some models could not be estimated due to non-
convergence. Across all conditions, 3PSM returned an esti-
mate in 91.5% of all simulated data-sets. Estimation mostly
failed at k = 100, δ = 0.2 and at least medium publication
bias and/or QRPs.

Several previous simulation studies of selection models
exist (e.g., Terrin et al., 2003; Hedges & Vevea, 1996).
However, to our knowledge, only one examines the specific
method we implement here: McShane et al. (2016) compared
3PSM to p-uniform and p-curve, both of which can be un-
derstood as single parameter selection models (i.e., only µ is
estimated, publication bias is set to 100% and heterogeneity
is set to 0). In that study, 3PSM clearly outperformed both
p-uniform and p-curve in terms of estimation and hypothesis
testing in conditions where δ ≤ 0.30 and τ > 0 or incomplete
bias allowed some non-significant studies to be published.

Results

Presentation of results

We simulated 1,000 meta-analyses under 432 unique con-
ditions (Table 1) and analyzed each with seven different
meta-analytic methods. Here, we avoid an exhaustive pre-
sentation of the results and give instead a more focused
report. However, all of our findings, including informa-
tion on convergence probabilities and exact values for ME,
RMSE, and coverage probabilities for all conditions, are
available in supplemental material (https://osf.io/rf3ys). We
also provide several interactive figures and tables (http://
www.shinyapps.org/apps/metaExplorer/) as a means of en-
couraging researchers to explore combinations of conditions
that they find to be particularly relevant to their own work.

In the following sections we provide figures only for con-
ditions in which δ = 0 (i.e., H0 or “under the null”) or δ = 0.5
(i.e., H1 or “under the alternative”) and how this behavior
changes as heterogeneity is added (τ = 0.2). Furthermore,
we focus only on k = 10 and k = 60 and for cases with no
publication bias or strong publication bias. The influence of
QRPs is discussed separately at the end of this section.

Rather than providing exact values for ME, RMSE, and
coverage, we display the distributions of effect size estimates
in terms of means and the 95% quantile ranges in Figure 4.
In our view, these values are more intuitive, and they allow a
visual assessment of ME (the means) and RMSE (the range).
Figure 3 shows both the false-positive rates (when δ = 0) and
the statistical power (when δ = 0.50) of each method.

Some methods did not always return an estimate. This
includes both intended cases (i.e., when no significant, di-
rectionally consistent studies are available for p-curve and
p-uniform), as well as failures to produce an estimate, for
example due to non-convergence. Consequently, we report

https://osf.io/rf3ys
http://www.shinyapps.org/apps/metaExplorer/
http://www.shinyapps.org/apps/metaExplorer/
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the summaries of all computations that did return an esti-
mate, but readers should be aware that this implies a con-
ditional interpretation: The reported ME, RMSE, and error
rates are conditional on the method providing a result. If a
method performs well when it returns an estimate, but does
not return an estimate the majority of the time, this should
be taken in to consideration when comparing that method to
others. In Figures 3 and 4, symbols indicate if a method did
not return an estimate in more than 25%, 50% or 75% of the
1000 simulation runs. Table 1 in the supplemental material
reports the exact percentages of returned estimates for each
method in each condition.

No publication bias, no QRPs

Type I error rate. Under the null, most methods had
appropriate Type I error rates, although error rates for 3PSM
and p-uniform were more conservative (0-3%) than the nom-
inal alpha rate. p-curve and p-uniform sometimes failed to
provide an estimate due to the scarcity of statistically signif-
icant results, especially when k was small.

The addition of heterogeneity lead to a small increase
(<10%) in Type I error rates for random-effects meta-
analysis and trim-and-fill. Type I error rates raised moder-
ately (10-30%) for WAAP-WLS and PET-PEESE. Type I er-
ror rates for p-curve and p-uniform raised considerably (8-
56%). Heterogeneity did not increase Type I error rates for
3PSM, which remained excessively conservative.

Power. At k = 10, random-effects meta-analysis offered
the best power of all methods, followed closely by trim-and-
fill and 3PSM. Power was poorer for p-curve, PET-PEESE,
and WAAP-WLS, and the power of p-uniform was markedly
poorer in small k. Despite this, all methods had 100% power
by k = 60.

The addition of heterogeneity at k = 10 slightly increased
the power of p-curve and p-uniform and slightly reduced the
power of trim-and-fill. The power of 3PSM, WAAP-WLS,
and PET-PEESE fell by more, 5–15 percentage points. De-
spite this, all methods had >95% power at k = 60.

ME. All methods were generally unbiased, with some
exceptions. At k = 10, trim-and-fill and PET-PEESE demon-
strated slight downward bias (about -0.02); these downward
biases were mitigated by larger k. p-curve and p-uniform
both exhibited upward bias under the null. For p-uniform,
the mean estimate was 0.30 at k = 10 and 0.20 at k = 60.
For p-curve, the mean estimate was 0.89 at k = 10 and 0.55
at k = 60. However, both were unbiased when the null was
false. This upward bias is likely caused by these methods’
truncation from below at zero — there are no negative un-
derestimates to cancel out positive overestimates.

Heterogeneity had little effect on the bias of random ef-
fects, WAAP-WLS, and 3PSM. It added some upward bias
to p-curve and p-uniform. It added a very slight downward
bias to trim-and-fill and PET-PEESE.

RMSE. Random-effects meta-analysis provided the
most efficient results and smallest RMSE. RMSE was
slightly greater for trim-and-fill and WAAP-WLS, moder-
ately greater for 3PSM and PET-PEESE, and noticeably
greater for p-uniform and p-curve. RMSE was particularly
poorer for p-curve and p-uniform when the null was true,
consistent with their upward bias (and also potentially be-
cause these methods use only statistically significant results,
of which there are fewer). 3PSM also had relatively high
RMSE when the null was true and k was small.

Heterogeneity only slightly increased the RMSE of ran-
dom effects. Heterogeneity caused slightly larger increases
in RMSE for trim-and-fill, WAAP-WLS, 3PSM, and PET-
PEESE. Heterogeneity tended to slightly increase the RMSE
of p-curve and p-uniform, presumably by causing bias.
However, when the null was true or k was small, heterogene-
ity improved the RMSE of these methods, presumably by
increasing the number of significant results to draw upon.

95% CI coverage. Coverage rates of random-effects
meta analysis, PET-PEESE, and trim-and-fill were ideal at
95%. WAAP-WLS, p-uniform, and 3PSM also had approxi-
mately correct coverage rates (± 2%).

Heterogeneity caused slightly poorer coverage for all
methods, particularly p-uniform. For random-effects meta-
analysis and 3PSM, greater k helped to restore coverage
rates. For PET-PEESE, p-uniform, and WAAP-WLS, greater
k exacerbated the undercoverage. (Recall that p-curve does
not give a confidence interval.)

Strong publication bias, no QRPs

In the face of strong publication bias, sets of meta-
analyzed results often consisted of only significant results,
especially when k was small.

Type I error. Random-effects meta-analysis suffered
from false-positive rates of 98% and higher. Trim-and-fill
had slightly lower, but still unacceptable Type I error rates
in excess of 70%. WAAP-WLS had poor Type I error rates
at low k (>85%), but unlike random-effects and trim-and-fill
methods, Type I error rates decreased with increasing k (45%
by k = 60). 3PSM had lower Type I error rates (31%) at k
= 10, but these errors increased with increasing k (82% by
k = 60). p-curve, p-uniform, and PET-PEESE had approxi-
mately conservative Type I error rates ranging from 3-10%.

The addition of heterogeneity slightly reduced the Type I
error rate for random-effects, but error rates still approached
100% with increasing k. Trim-and-fill was generally not af-
fected. Heterogeneity reduced Type I error in WAAP-WLS
when k was small but increased it at large k; error rates
were still quite high (50+%). Heterogeneity substantially
increased the Type I error rates of p-curve and p-uniform,
leading to error rates of 40+% at k = 10 and 98+% at k = 60.
Heterogeneity also substantially increased the Type I error
rate of PET-PEESE (+33 percentage points or more). Het-
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Figure 3. false-positive rates (when δ = 0) and statistical power (when δ = 0.5) for all methods across all conditions. k =

meta-analytic sample size. τ = heterogeneity. Symbols on the left and right border of each panel indicate when a method
computationally did not return a result in a substantial proportion of the 1000 simulations: *: < 750/1000, #: < 500/1000, !: <

250/1000 successful computations. Figure available at https://osf.io/rf3ys, under a CC-BY4.0 license.

https://osf.io/rf3ys
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Figure 4. Means (points) and inner 95% quantile ranges (whiskers) of effect size estimate distributions when δ = 0 and when
δ = 0.5 for all methods across all conditions. k = meta-analytic sample size. τ = heterogeneity. Symbols left and right
of the whiskers indicate when a method computationally did not return an estimate in a substantial proportion of the 1000
simulations: *: < 750/1000, #: < 500/1000, !: < 250/1000 successful computations. Figure available at https://osf.io/rf3ys,
under a CC-BY4.0 license.

https://osf.io/rf3ys


A COMPARISON OF META-ANALYTIC METHODS 13

erogeneity increased 3PSM’s type I error rates at low k (+14
percentage points) but reduced it substantially at higher k (-
48 percentage points).

Power. Random-effects meta-analysis and trim-and-fill
had approximately 100% power at all levels of k. Other
methods had slightly poorer, but still good (89+%) power,
even at k = 10. Listed in order of ascending power, they are:
PET-PEESE, p-uniform, WAAP-WLS, 3PSM, and p-curve.
Note that “good power” in this case is accompanied by high
type I error–that is, the null is frequently rejected because
methods overestimate the true underlying effect.

Heterogeneity had little influence on power. When k = 10,
it reduced the power of PET-PEESE by 13 percentage points,
WAAP-WLS by 7 percentage points, and 3PSM by 5 per-
centage points. It slightly increased the power of p-curve
(1 percentage points) and p-uniform (4 percentage points).
Power of all methods still approximated 100% at k = 60.

ME. Under the null, many methods were badly biased
upwards. Random effects meta-analysis estimated the null
effect as about 0.33. Trim-and-fill did not substantially re-
duce this bias, estimating the effect as about 0.22. WAAP-
WLS was quite biased at small k (0.27) and became less bi-
ased with greater k (0.13). At k = 10, p-curve, p-uniform,
and 3PSM overestimated null results (∼0.15), but less so than
other methods, and the bias decreased with increasing k (to
0.05-0.11), with the strongest benefits observed with p-curve
and p-uniform. PET-PEESE was unbiased.

When the null was false, random effects still slightly over-
estimated the true effect (∼0.05). Trim-and-fill and WAAP-
WLS both reduced this slight bias, yielding estimates that
were only very slightly biased. p-curve, p-uniform, and
3PSM were unbiased in estimating the true effect. PET-
PEESE tended to slightly underestimate the true effect, al-
though this tendency was ameliorated with increasing k (-
0.06 at k = 10, -0.02 at k = 60).

Adding heterogeneity to a true effect of zero tended to cre-
ate upward bias. Random-effects meta-analysis, trim-and-
fill, WAAP-WLS, and PET-PEESE all demonstrated slight
increases in upward bias under heterogeneity. p-curve and
p-uniform demonstrated substantial upward bias under het-
erogeneity (∼0.25). In contrast, 3PSM did not demonstrate
greater bias under heterogeneity.

Adding heterogeneity to a true nonzero effect also tended
to move estimates slightly upwards. This caused slightly
greater upward bias in random effects, trim and fill, and
WAAP-WLS; slightly reduced downward bias in PET-
PEESE; and created slight upward bias in p-curve and p-
uniform (∼0.06). 3PSM remained unbiased.

RMSE. Given the null, RMSE was considerably ele-
vated for random effects. All adjustments lead to some im-
provement in RMSE, with the exception of p-curve when k
= 10. WAAP-WLS and trim and fill lead to modest improve-
ments, and p-uniform, p-curve, 3PSM, and PET-PEESE lead

to successively greater improvements. The difference in ben-
efits between TF and WAAP-WLS vs 3PSM, p-curve, p-
uniform, and PET-PEESE was particularly pronounced at
higher k.

Given a true effect, RMSE of random effects meta-
analysis was not terrible. Most methods again provided some
benefit to RMSE, with the exception that, given small k,
p-uniform and p-curve did not improve RMSE, and PET-
PEESE increased RMSE. 3PSM, WAAP-WLS, and trim-
and-fill provided modest improvements in RMSE. Given
larger k, all methods yielded improvements in RMSE, with
trim-and-fill, WAAP-WLS, and 3PSM being slightly more
efficient than p-uniform, p-curve, and PET-PEESE.

Adding heterogeneity to a true effect of zero caused
modest increases in RMSE for all methods, and all meth-
ods provided some benefit relative to unadjusted random-
effects. The greatest improvement was provided by 3PSM,
followed by PET-PEESE, p-curve, p-uniform, and trim-and-
fill. WAAP-WLS improved with k, performing worse than p-
curve and p-uniform at k = 10 but better than those methods
at k = 60.

Adding heterogeneity to a true nonzero effect caused mod-
erate increases in RMSEfor all methods. Again, all methods
provided some benefit relative to unadjusted random-effects,
and these benefits were comparable across methods; the one
exception was that PET-PEESE caused an increase in RMSE
when k was small.

95% CI coverage. Given the null, because of the con-
siderable publication bias, 95% CI coverage was very poor
without adjustment (<3%). All methods lead to some im-
provement in coverage. Benefits of trim-and-fill were slight
(28% at k = 10, 0% at k = 60). Benefits of WAAP-WLS
increased with k but did not improve beyond 55% coverage.
Benefits of 3PSM, on the other hand, decreased with k, yield-
ing 68% coverage at k = 10 but 18% coverage at k = 60.
p-uniform and PET-PEESE were the only methods to yield
good coverage rates (90–94%).

Given a true effect, unadjusted random effects CI coverage
was much better (86%). However, as k increased, coverage
fell, presumably due to some combination of bias and insuf-
ficient CI width (e.g., at k = 10, coverage was 86%, but at
k = 60, coverage was only 42%.) All adjustments achieved
approximately correct coverage rates (90–97%) with the ex-
ception of PET-PEESE, which demonstrated undercoverage
that grew worse with increasing k.

Given the null and heterogeneity, random effects CI cov-
erage was slightly better but still very poor. All adjustments
slightly improved CI coverage, with the greatest benefits ob-
served from 3PSM (52% coverage at k = 10, 65% coverage
at k = 60) and PET-PEESE (60% coverage at k = 10, 36%
coverage at k = 60). These are still suboptimal coverage
rates.

Given a true effect and heterogeneity, random effects CI



14 CARTER, SCHÖNBRODT, GERVAIS, HILGARD

coverage substantially worsened relative to homogeneity. All
adjustments somewhat improved CI coverage. At low k,
3PSM, WAAP-WLS, and p-uniform brought the greatest im-
provements, reaching coverage of 78%, 81%, and 87%, re-
spectively. At high k, coverage of p-uniform and WAAP-
WLS coverage fell noticeably (∼68% coverage) while 3PSM
improved to 93% coverage.

The influence of QRPs

Influence of QRPs on naive meta-analysis. QRPs gen-
erally led to an increase in bias in random-effects meta-
analysis. This increase was greatest when there was medium
publication bias and the null was true; under these circum-
stances, high use of QRPs could double ME from 0.15 to
0.32. At small k and medium bias, QRPs could also approx-
imately double the Type I error rate from 51% to 95%; at
higher k, publication bias alone was enough to cause Type
I error rates approaching 100%. The effect of QRPs was
smaller given strong publication bias and a true null: an
increase from about 0.32 to 0.44. Here the damage is pre-
sumably lesser because publication bias had already inflicted
considerable mean error. Additionally, when there was a true
effect of δ = 0.5, or when there was no publication bias, the
influence of QRPs on ME and RMSE was minimal.

However, when k was large, QRPs did lead to noticeable
increases in Type I error even in the absence of publication
bias. For example, high QRPs increased Type I error to 19%,
even though the ME remained a mere 0.03. (k = 60, δ = 0, τ
= 0, no publication bias, high QRPs). QRPs similarly tended
to harm confidence interval coverage.

In summary, for our simulation design and for random-
effects meta-analysis, QRPs can exacerbate the effects of
publication bias when there is no effect; however, in our
simulation, the effects of QRPs on ME are modest when (1)
there is no publication bias, (2) publication bias is already
quite strong, or (3) there is a true effect. Thus, QRPs, such
as we have implemented them, seem to play a small role in
meta-analytic bias on their own. In the company of moderate
publication bias, however, QRPs can lead to a considerable
amplification of problems.

Influence of QRPs on bias-corrected meta-analysis.
The effect of QRPs in our simulation varied as a function
of both method and performance metric. In this section, we
focus chiefly on bias as the metric. We do this because the ef-
fects of QRPs on bias are the most straightforward and com-
municable. The effects of QRPs on RMSE, error rates, and
coverage were generally a function of whether QRPs caused
an increase or decrease in bias: Where QRPs reduced the
absolute value of ME, RMSE and coverage probability gen-
erally improved; where QRPs increased the absolute value
of ME, RMSE, coverage rates, and Type I and II error rates
were accordingly poorer. In some cases, a curvilinear ef-
fect was observed; as QRPs increased, an initial positive bias

would be reduced, then become a negative bias, causing these
metrics to first improve, then deteriorate. The influence of
QRPs was generally strongest when there was a null or small
effect, presumably because studies with medium or large true
effects required less p-hacking to publish.

The effect of the QRPs we modeled on trim-and-fill were
similar to its effects on random-effects analysis—bias in-
creased when the null was true and there was medium or
strong publication bias. This also lead to elevated Type I
error rates (except when was there heterogeneity and no pub-
lication bias, in which case Type I error decreased slightly).
The effect of the QRPs we modeled on WAAP-WLS were
similar, but increases in bias were smaller compared to trim-
and-fill. A curious exception is that QRPs in our simulation
reduce Type I error in WAAP-WLS when there is medium
bias and large k, although these reductions still lead to unac-
ceptable (≥ 40%) Type I error rates. Perhaps in these cases,
WAAP-WLS switches from the better-powered WLS test to
the poorer-powered WAAP test.

In contrast, QRPs—as we implemented them—reduced
ME in p-curve and p-uniform. In the context of homogene-
ity, this lead to underestimation of the effect size and an in-
crease in Type II error. In the context of heterogeneity, this
reduced overestimation due to heterogeneity and reduced the
absolute value of ME, reducing Type I errors and increas-
ing Type II errors. We consider this as two simple effects of
opposite sign: Heterogeneity causes upward ME, and QRPs
cause downward ME, so they may yield a smaller absolute
ME when both present than when only one or the other is
present. QRPs also helped to reduce the upward bias in the
average p-curve/p-uniform estimates when the null was true,
perhaps by increasing the number of significant studies avail-
able.

The QRPs we modeled nudged PET-PEESE estimates
downwards. When PET-PEESE was biased upwards in our
simulation, as in the case of small or null effects with publi-
cation bias and heterogeneity, this yielded a less biased es-
timate and slightly better Type I error rates. When PET-
PEESE was unbiased or downward biased, as in the case of
nonzero true effects, this lead to greater downward bias. This
downward bias could be quite strong when the null was true.
PET-PEESE reported statistically significant effects of oppo-
site sign in many analyses; these Type I error rates tended
to grow with increasing QRPs, publication bias, and k, with
rates ranging from 9% (medium QRPs, high censoring, k =

10) to 62% (high QRPs, medium censoring, k = 100). Re-
searchers have, at times, considered a significant and nega-
tive PET-PEESE estimate as evidence that the PET-PEESE
estimate is incorrect, choosing to interpret instead less ex-
treme adjustments such as trim-and-fill (see, e.g., Bediou et
al., 2018). In these cases, such an extreme estimate from
PET-PEESE probably is incorrect, but researchers should be
aware that there is likely to be some combination of QRPs
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and publication bias in this circumstance and, perhaps, a null
effect.

QRPs, as we have implemented them, generally led to a
slight downward bias in 3PSM. This bias was stronger when
heterogeneity was present. At worst, given high heterogene-
ity (τ = 0.4), ME caused by QRPs could be as large as -0.32.
QRPs therefore tended to reduce Type I error and increase
Type II error in 3PSM.

What’s the worst that can happen to each estimator as
a consequence of the QRPs we implemented? In random-
effects meta-analysis, trim-and-fill, and WAAP-WLS, QRPs
can exacerbate the effects of publication bias. Under moder-
ate publication bias, QRPs increased the bias in these estima-
tors substantially (for random effects, from ME = 0.14 to ME
= 0.31; for trim-and-fill, from ME = 0.08 to 0.22; for WAAP-
WLS, from 0.11 to 0.15). These changes in bias caused
corresponding increases in Type I error rates and could in-
crease error rates by as much as 40 percentage points. Un-
der strong publication bias, QRPs could cause an additional
0.12 of bias, but this was less dramatic relative to the bias
already inflicted by publication bias. PET-PEESE, p-curve,
and p-uniform each could demonstrate downward bias up to
-0.14. This could cause a loss of power of up to 17 percent-
age points in PET-PEESE, 17 percentage points in p-curve,
and 37 percentage points in p-uniform. High application of
QRPs also caused PET-PEESE to frequently mistake null ef-
fects for significant negative effects (up to 62% at τ = 0, high
QRPs, medium publication bias). 3PSM could underestimate
δ = 0.5 as being as little as d = 0.31, and loss of power could
reach 32 percentage points.

As a very broad summary, the reactions of estimators to
QRPs may be considered in two clusters. For RE, trim-and-
fill, and WAAP-WLS, QRPs cause overestimation, particu-
larly of null effects. For PET-PEESE, p-curve, p-uniform,
and 3PSM, QRPs cause underestimation of true effects and
noticeable loss of power. Critically, the results described
above are specific to the way we simulated QRPs. There
are likely a variety of changes that could be made to our ap-
proach that would provide very different results. We see this
topic as an important area for future research.

Discussion

We inspected and compared the efficacy of meta-analytic
adjustments for bias across hundreds of thousands of simu-
lated literatures representing a range of true effect sizes, de-
grees of heterogeneity, degrees of publication bias, and de-
grees of questionable research practices. We assessed the re-
sults according to both the ability to reject a null effect/detect
a true effect and the ability to estimate the mean of the dis-
tribution of true underlying effects. The following provides
a coarse summary of the three overall patterns we observed,
as well as some general recommendations.

First, random-effects meta-analysis, trim-and-fill, and

WAAP-WLS showed alarmingly high false-positive rates
(Figure 3) and overestimation (Figure 4) in the face of pub-
lication bias in combination with a zero or small true effect
size. Generally, WAAP-WLS outperformed both random-
effects meta-analysis and trim-and-fill. Second, both p-curve
and p-uniform had reasonable false-positive rates and lit-
tle bias under homogeneity. With increasing heterogeneity,
however, both showed increasing false-positive rates (Fig-
ure 3) and overestimation (Figure 4), particularly for a zero
or small true effect size. This poor performance was actually
mitigated by increasing QRPs, and was primarily indepen-
dent of changes in publication bias and sample size. Again,
we note that the original authors of p-curve argue that its per-
formance should not be evaluated using the average true un-
derlying effect, as is the usual approach in the meta-analytic
literature, but rather, using the average of the effects submit-
ted to it (Simonsohn et al., 2014). Those results are avail-
able in the supplemental material, but in general, it should be
noted that p-curve showed good performance when estimat-
ing this quantity. If no QRPs are present, p-curve recovers
that quantity with very low ME, regardless of the level of
publication bias and δ. QRPs as we have modeled them in-
duced a downward bias, which was stronger for smaller δs
and for less heterogeneity. These results are consistent with
previous simulation results (Simonsohn et al., 2014).

Third, PET-PEESE and 3PSM both showed mostly rea-
sonable false-positive rates but suffered from low power at
smaller sample sizes, higher heterogeneity, and less publi-
cation bias and QRPs (Figure 3). These two methods also
showed similar patterns in terms of estimation error (Fig-
ure 4): Both methods tended to show underestimation with
decreasing sample sizes and increasing QRPs, publication
bias, and heterogeneity. Although the two methods produced
similar overall patterns of results, 3PSM almost always out-
performed PET-PEESE.

Furthermore, it is worth noting that random-effects meta-
analysis, WAAP-WLS, and PET-PEESE always returned at
least some estimate, whereas the other methods sometimes
failed to converge or could not be applied because of lack
of significant studies. Information on convergence rates is
available in the supplemental material and should be consid-
ered alongside the performance we report above—for exam-
ple, it may be that consistent failures to converge in certain
simulated conditions indicate that the method will be less ap-
plicable in real world usage.

Based on our results, we believe we can confidently make
five general recommendations.

1. If publication bias is highly unlikely (e.g., data are from
a multi-laboratory pre-registered replication), one should
prefer random-effects meta-analysis to any of the other meth-
ods we examined.

2. When there may be publication bias, do not rely on
random-effects meta-analysis alone. Publication bias can
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quickly accumulate in even small sets of published studies,
leading to overestimated effects and high Type I error rates.

3. Recognize that the popular trim-and-fill adjustment,
while efficient, reduces bias and Type I error rates only
slightly. To achieve stronger reductions in bias, adjustments
such as PET-PEESE, p-curve/p-uniform, and 3PSM should
be considered. However, one should also recognize that
these adjustments are often inefficient and individual esti-
mates may be poor, even if they are unbiased in the long
run.

4. Take steps to ensure the completeness and transparency
of the original literature. An ounce of registered report is
worth a pound of p-curve.

5. Do not use p-curve or p-uniform if heterogeneity is
expected or if many studies yield non-significant results.

Limits on generalizability

Simulation studies necessarily require making assump-
tions that might limit the generalizability of their results to
real data. Although we simulated a data generation pro-
cess that might plausibly underlie how real world research
in psychology is done, there are several limits that should be
kept in mind when considering our findings. First, in the ab-
sence of QRPs, we simulated the data generation process as
a two group design, despite the fact that real research designs
are rarely this simple. However, the vast majority of meta-
analyses use effect size measures, such as correlations and
standardized mean differences, that ignore such design com-
plexities (see, for example, table S1 in, Fanelli et al., 2017).
For example, to meta-analyze data from an experiment with
a two-by-two (or more) factorial design, one would typically
calculate a standardized mean difference (d) by either dis-
carding the factors that are not of primary interest or collaps-
ing across them. So for a two-by-two with a per-group sam-
ple size of 20, the comparison entered into the meta-analysis
would either have a total N of 2*20 = 40 (when the second
factor is discarded) or a total N of 2*2*20 = 80 (when the
second factor is collapsed). Therefore, although most de-
signs are more complex than the two-group case we simu-
late, data in meta-analyses are often reduced to this simple
form. As a result, our findings generalize to meta-analyses
where the meta-analyst has chosen to handle more complex
designs by discarding non-focal factors. In cases where the
meta-analyst collapses across the other factors, our simula-
tion likely underestimates sample size on average. However,
it should be noted that the choice to collapse is problematic
given the required assumption that the other factors do not
interact with the comparison of interest (i.e., there is a true
interaction effect of 0). Thus, our findings generalize to the
least problematic case.

A second, related issue exists if real world data are gener-
ated by single-sample designs (e.g., correlational studies). If
such studies tend to have larger or smaller sample sizes than

those with factorial designs, it’s possible our simulation ei-
ther under- or over-estimates sample size, respectively. Criti-
cally, the generalizability issue here is only related to sample
sizes, not to the fact that different study designs tend to be
summarized with different effect size measures. At the level
of the study, one can translate between most effect size mea-
sures without changing statistical significance or effect di-
rection. Given that bias acts at the study level through these
two features, the generalizability of our results holds regard-
less of whether data originally take the form of standardized
mean differences or correlations.

A third point to consider is whether our implementation
of bias mirrors bias in real-world data. We implemented
publication bias using specific functions with specific pa-
rameter values. Of course, it would be entirely possible to
use different functions or different parameters. What is un-
clear, however, is the degree to which different choices at
this level would produce different results–for example, we
intentionally modeled publication bias in a way that differed
from what 3PSM, p-curve, and p-uniform are designed for,
so it may be that these methods would show improved per-
formance under different specifications of publication bias.
Ultimately this is an empirical question and should be the
focus of future research. Additionally, our implementation
of QRPs is extremely specific and might limit the gener-
alizability of our results. Because the kinds of QRPs that
can be applied depend entirely on the design of the specific
study, there is an infinite number of possible ways to simulate
QRPs (Hartgerink, van Aert, Nuijten, Wicherts, & Van As-
sen, 2016). Thus, our results based on the QRPs we examine
likely won’t generalize to designs that are dramatically dif-
ferent than those we simulated.

Fourth, it is impossible to perfectly mirror how real data
are generated. However, it is our hope that researchers can
use the framework we have described here to close this gap
and tackle some of the issues we mention above. It would be
relatively easy, for example, to modify our code to use larger
or smaller sample sizes—thereby addressing the first two is-
sues described above—and then assess whether this substan-
tially changes how the methods perform.

Finally, bias-correction in meta-analyses is an active field
of research and multiple new methods were published af-
ter our simulations were done, for example an extension of
p-uniform, called p-uniform*, which now estimates hetero-
geneity and includes non-significant results (R. C. M. van
Aert & van Assen, 2018), or a Bayesian fill-in method called
“BALM” (Du, Liu, & Wang, 2017).

Method Performance Checks and Sensitivity Analysis for
Meta-Analysis in Psychology

Several authors have suggested the value of a sensitivity
analysis in order to evaluate the robustness of conclusions
from a meta-analysis (e.g., APA Publications and Commu-
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nications Board Working Group on Journal Article Report-
ing Standards, 2008; McShane et al., 2016; van Aert, 2017;
R. C. van Aert et al., 2016). If results do not substantially
change across a range of different methods and assumptions,
the conclusions can be considered to be robust. However, the
set of employed methods in a sensitivity analysis should only
include methods that can be expected to perform reasonably
well. Put differently, if a method is known to perform poorly
under the conditions that apply to a meta-analysis at hand, it
should not be included in a sensitivity analysis, or it should at
least be treated with skepticism and given less weight when
evaluating the results.

One of the goals of this paper is to encourage and facilitate
sensitivity analysis in meta-analysis by suggesting a two-step
procedure: First, evaluate which bias-correcting methods can
be a priori expected to perform reasonably well in research
conditions that are plausible for the meta-analysis at hand
(method performance check). Second, compute and present
meta-analytic estimates from all included methods side by
side in order to evaluate the variability (or robustness) of con-
clusions (sensitivity analysis). This evaluation should respect
the results from the method performance check and weigh
methods accordingly.

For doing a sensible sensitivity analysis, we recommend
that meta-analysts and consumers of meta-analyses focus on
the question, “Do my conclusions depend on a meta-analytic
method that performs poorly in plausible conditions?” If the
answer is “yes,” then those conclusions should clearly be re-
visited. To help ask this question, we provide an interactive
app (http://www.shinyapps.org/apps/metaExplorer/) that, for
a given method and a given definition of “performs poorly,”
identifies all of the conditions in our simulation for which the
answer to the question is “yes.” In the following, we provide
an illustration of how one might perform this form of method
performance check, and how this guides the subsequent sen-
sitivity analysis.

A real world example: Two data sets on ego depletion.
We use data from studies on the topic of ego depletion for
this example because it is relatively easy to understand and
there are data from both meta-analyses of the literature and a
large-scale pre-registered replication.

Briefly, the limited strength model of self-control holds
that any act of self-control will result in subsequent acts of
self-control being less likely to succeed—a state referred to
as ego depletion (Muraven, Tice, & Baumeister, 1998). Typi-
cally experiments aimed at examining this hypothesis involve
participants completing a sequence of two tasks—a manipu-
lation task and an outcome task. Prior to the outcome task,
participants in the “depletion” condition are given a version
of the manipulation task that is designed to require more self-
control than the version given to participants in the control
condition. Support for ego depletion is claimed when partic-
ipants in the depletion condition perform worse on the sub-

sequent outcome task than participants in the control con-
dition. Following convention, we represent this effect as a
standardized mean difference (d) where the depletion effect
is represented by higher values. In the following, we analyze
both a pre-existing meta-analytic sample of k = 116 studies
(Carter, Kofler, Forster, & McCullough, 2015) and a data
set of k = 23 studies from a pre-registered replication report
(Hagger et al., 2016). We apply each of our methods to these
two datasets—see Table 2 and Table 3.

Imagine that researchers agree to the logic detailed by
Carter and McCullough (2018) that a depletion effect of
δ ≤ 0.15 should be considered practically equivalent to zero.
Unfortunately, in this case different meta-analytic methods
would come to different conclusions (see Table 2). On the
basis of the results from the random-effects model, WAAP-
WLS, the trim-and-fill method, p-curve, p-uniform, and the
selection model, a group of researchers could conclude that
the depletion effect is practically significant with δ > 0.15.
In contrast, on the basis of results from PET, PEESE, or
PET-PEESE, a separate group of researchers could conclude
that the depletion effect is practically non-significant (i.e.,
δ ≤ 0.15). Hence, a “naive” sensitivity analysis would be
inconclusive, as the variability in results is so large that ei-
ther conclusion can be drawn. To help overcome this incon-
clusiveness, we want researchers to ask “Do my conclusions
depend on a meta-analytic method that performs poorly in
plausible conditions?”. Such a method performance check
gives guidance which results should be given more weight
and credibility.

What are “plausible conditions”? For a method per-
formance check, we need “plausible conditions”. Com-
parable to an a-priori power analysis, these considerations
should relate to the specific research environment of the
meta-analysis at hand. Only if no specific prior knowledge
is available, general knowledge about the field can be used
as an approximation. For example, some degree of bias
seems possible: In the field of psychology/psychiatry, more
than 90% of all published hypothesis tests are significant
(Fanelli, 2011)—despite the average power being estimated
as around 35% (Bakker, van Dijk, & Wicherts, 2012)—and,
whereas reported effects tend to be statistically significant,
unreported effects tend not to be (Franco, Malhotra, & Si-
monovits, 2016). Moreover, there is both direct (Franco et
al., 2016; LeBel, McCarthy, Earp, Elson, et al., 2017) and
self-report (John et al., 2012) evidence of the use of QRPs,
and several studies have found evidence of small-study ef-
fects consistent with the presence of publication bias (Bakker
et al., 2012; Kühberger, Fritz, & Scherndl, 2014; Fanelli et
al., 2017).8 In addition to bias, a degree of heterogeneity

8It should be noted that, in contrast to the above cited work, two
"meta-meta-analyses" suggest that the influence of bias in psychol-
ogy is relatively small (T. Stanley, Carter, & Doucouliagos, in press;
R. C. M. van Aert, 2018). Because of the specifics of each of these

http://www.shinyapps.org/apps/metaExplorer/
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seems very likely when diverse experimental paradigms are
summarized in a meta-analysis (e.g., not in multilab regis-
tered reports, van Erp et al., 2017; Tackett, McShane, Bock-
enholt, & Gelman, 2017; T. Stanley et al., in press). Finally,
it seems that the typical true effect in psychology research
is rather small: The median published effect size is around
d = 0.3 to 0.4 (Richard, Bond Jr, & Stokes-Zoota, 2003;
Bosco, Aguinis, Singh, Field, & Pierce, 2015), and as this
estimate is not corrected for publication bias, the typical true
effect is likely smaller. This general observation, of course,
does not preclude that some effects in psychology indeed are
large. However, as the (uncorrected) meta-analysis from the
(Hagger, Wood, Stiff, & Chatzisarantis, 2010) meta-analysis
shows an overall effect of d = 0.62, which most likely is in-
flated, we define for our specific example that plausible con-
ditions for ego depletion research have a true effect size of
δ ≤ 0.5. Therefore, of the conditions we simulated, we de-
fined that the most plausible conditions for a meta-analysis
of the set of ego-depletion studies published in (Carter et al.,
2015) will have medium to high publication bias and QRPs,
τ ≥ 0.2, and effect sizes under H1 of δ ≤ 0.5. In our interac-
tive app, we evaluate the performance of all included estima-
tors under these plausible conditions at k = 100, which is the
closest simulated value to the observed k = 116.

What is “poor performace” of a meta-analytic
method? Given the above definition of plausible condi-
tions, the next step for a method performance check is to
identify defensible choices for the definition of “poor per-
formance.” For simplicity, in this example we consider only
one metric, mean error (ME) 9, and ask whether the method
is likely to be biased enough that a true null effect is mistaken
for a practically significant effect, or conversely, a true effect
is mistaken for a practically null effect. For each possible
true effect, mean error large enough to make this mistake is
considered “poor” performance. Where δ = 0, a maximum
of ME ≥ 0.15 is poor, since this would mistake a true null
effect for a practically significant effect, on average. Where
δ = 0.2, a maximum downward bias of ME ≤ 0.05 is poor,
since a practically significant true effect would be underesti-
mated as practically non-significant. Where δ = 0.5, a max-
imum downward bias of ME ≤ 0.35 would cause the same
mistake.

Considering method performance in a sensitivity anal-
ysis. With these definitions for poor performance and plau-
sible conditions in hand, we can use the interactive app (http:
//www.shinyapps.org/apps/metaExplorer/) to judge whether
meta-analytic conclusions rely on methods that perform
poorly in plausible conditions. As a result, we see that the
conclusion that the depletion effect is practically significant
based on the results from the random-effects model, the trim-
and-fill, WAAP-WLS, 3PSM, p-curve, and p-uniform is in-
defensible, since each of these methods perform poorly in at
least one of the plausible conditions we defined (primarily

when δ = 0; Table 2). In contrast, the conclusion that the de-
pletion effect is practically non-significant—which is based
on results from PET, PEESE, and PET-PEESE—appears to
be reasonable on the basis that PET does not perform poorly
in any of the plausible conditions we examined. To summa-
rize, if one gives more weight to methods that a priori per-
form well under the hypothesized conditions, one would lean
towards the conclusion that the depletion effect is practically
non-significant.

Using the data from Hagger et al. (2016) and the same def-
initions of poor performance as above, we apply our analysis
using a very different set of plausible conditions. Because the
Hagger et al. (2016) data come from a pre-registered replica-
tion report, there is no reason to think that the results are
influenced by publication bias or QRPs to any substantial
degree. Furthermore, one can expect significantly less het-
erogeneity in these data as compared to those from Carter
et al. (2015) because data collection at each location was
conducted using identical study designs executed with a pre-
registered, automated script. Furthermore, there is evidence
that heterogeneity in these kinds of multilab registered re-
ports is generally low (Klein et al., 2018). Thus, of the con-
ditions we simulated, we can imagine that researchers would
view the most plausible conditions as having no publication
bias, no QRPs, τ = 0, and effect sizes under H1 of δ ≤ 0.5. In
our interactive table, we evaluate each method’s performance
using the same criteria of “poor performance” as above and at
k = 30 (which is the closest simulated value to the observed
k of 23 studies).

The results from applying the various meta-analytic meth-
ods to the Hagger et al. (2016) data set are shown in Ta-
ble 3. Unlike the results from the Carter et al. (2015) data
(Table 2), we suspect that the vast majority of researchers
would conclude that the results from the Hagger et al. (2016)
data uniformly suggest that the depletion effect is practically
non-significant. Again, we suggest to use a method’s per-
formance to evaluate whether such a conclusion is based on
results from methods that perform poorly in plausible con-

studies, it is difficult to reconcile their general conclusions. For our
analysis here, we decided to take the conservative route and err on
the side of assuming the existence of bias, but we recommend that,
when applying our approach, meta-analysts consider these issues
and explicitly describe their reasoning.

9Note that by using this metric, we are focused on the point es-
timate provided by each method, not the upper or lower bounds of
the confidence interval. Furthermore, such an evaluation of meth-
ods should also consider RMSE, error rates, and other performance
metrics, which all are provided in the online app. Furthermore, we
want to note that these considerations only take statistical proper-
ties of the estimators into account. It has been argued that other
dimensions of quality, such as the presence or absence of proper
randomization, should also go into the weighting of primary studies
in a meta-analysis (Detsky, Naylor, O’Rourke, McGeer, & L’Abbé,
1992). But this is a topic for another article.

http://www.shinyapps.org/apps/metaExplorer/
http://www.shinyapps.org/apps/metaExplorer/
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Table 2
Method performance checks for plausible conditions of the Carter, Kofler, Forster, and McCullough (2015) data

Method Estimate
Poor
(δ = 0)

Poor
(δ = 0.20)

Poor
(δ = 0.50)

Random-effects 0.43 [0.34, 0.52] Yes No No

Trim-and-fill 0.24 [0.13, 0.34] Yes No No

WAAP-WLS 0.35 [0.26, 0.43] Yes No No

p-curve 0.55 [NA, NA] Yes No No

p-uniform 0.55 [0.33, 0.71] Yes No No

PET -0.27 [-0.52, 0.00] No No No

PEESE 0.00 [-0.14, 0.15] Yes No No

PET-PEESE -0.27 [-0.52, 0.00] Yes No No

3PSM 0.33 [0.19, 0.47] No Yes No

ditions. By using our interactive table, it appears that, on
the basis of the definitions above, this conclusion is perfectly
defensible: None of the methods—except p-curve and p-
uniform—perform poorly in any of the plausible conditions
we defined (see Table 3).

To summarize, we performed two method performance
checks in two different plausible research environments. In
both meta-analyses, those methods which a priori could be
expected to show a reasonably good performance suggest
that the true effect is not practically and significantly different
from zero.

Further considerations for method performance
checks and sensitivity analyses. There are several impor-
tant points that should be considered for our proposed ap-
proach. First, this form of method performance check de-
pends on the specifics of our simulation design. Because our
simulation covers only a limited set of possible data genera-
tion processes, it is possible that our approach does not gen-
eralize to real world situations that meta-analysts and con-
sumers of meta-analysis will encounter. Indeed, because of
the infinite possible processes that might generate real world
data, generalizability will always be a concern.

Second, we suspect that some readers will worry that the
method performance checks we describe here are subject to
a kind of “assumption hacking” whereby a researcher who is
partial to a certain view can pick and choose the definitions
of plausible conditions and poor performance that provide
the result they want. This is technically correct, but the key
strength of our approach is that it is explicit and transparent.

Researchers will need to clearly state their assumptions to
run this method performance check, and consumers of the re-
sults can assess whether such assumptions appear reasonable
to them. If not, our interactive table can easily be used to run
an alternative method performance check, thereby preventing
the possibility of effective assumption hacking. Furthermore,
we suggest that analysts preregister a method performance
check prior to data collection and define which methods will
be given the biggest weight in case they disagree. Finally, we
encourage researchers to report results from all meta-analytic
methods that reasonably can be considered, even if they did
not pass some of the method performance checks, because
other researchers might want to apply a different emphasis in
their subjective evaluation.

Ways forward

Based on our results, we stress that meta-analysis in
psychology is difficult. Observable issues such as small
samples—in both the primary literature and at the level of the
meta-analysis—interact with heterogeneity and bias, both of
which are unknowable in terms of severity and functional
form (e.g., do the true effects follow a normal distribution?
Is publication bias applied as we have modeled it?). Thus, it
is hard to interpret the results of a meta-analysis in psychol-
ogy, just as it is difficult to interpret the results of any single
replication study (Braver, Thoemmes, & Rosenthal, 2014;
D. J. Stanley & Spence, 2014; Fabrigar & Wegener, 2016).

Meta-analysts might have the hope that different bias-
correcting methods all converge on a true value. However,
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Table 3
Meta-analytic estimates of the Hagger et al., 2016 data

Method Estimate
Poor
(δ = 0)

Poor
(δ = 0.20)

Poor
(δ = 0.50)

Random-effects 0.04 [-0.06, 0.14] No No No

Trim-and-fill 0.04 [-0.06, 0.14] No No No

WAAP-WLS 0.04 [-0.08, 0.15] No No No

p-curve 0.00 [NA, NA] Yes No No

p-uniform 0.00 [NA, NA] Yes No No

PET -0.03 [-0.80, 0.74] No No No

PEESE 0.00 [-0.41, 0.40] No No No

PET-PEESE -0.03 [-0.80, 0.74] No No No

3PSM 0.01 [-0.10, 0.12] No No No

our simulations show that different methods often do not
converge. For example, in the case of a null effect and
strong publication bias, PET and trim-and-fill will virtually
never give the same answer because trim-and-fill performs so
poorly. For this reason we caution against ideas of “triangu-
lation” or majority votes of multiple methods. One should in-
stead think carefully about which method(s) can be expected
to perform well. We think a good approach is the combina-
tion of a method performance check with a subsequent sensi-
tivity analysis, either as we have defined it or as put forward
by others (e.g., J. Copas & Shi, 2000; Vevea & Woods, 2005;
J. B. Copas, 2013; Kim, Bangdiwala, Thaler, & Gartlehner,
2014).

Furthermore, and along the same lines of what has been
argued for replication results (e.g., D. J. Stanley & Spence,
2014), we conclude that the field should modify its expecta-
tions about meta-analysis. Researchers in psychology should
not expect to produce a conclusive, debate-ending result by
conducting a meta-analysis on an existing literature. In-
stead, we imagine meta-analyses may serve best to draw at-
tention to the existing strengths and/or weaknesses in a lit-
erature (e.g., Carter et al., 2015; van Elk et al., 2015; Hil-
gard, Engelhardt, & Rouder, 2017). Those results can then
inspire a careful re-examination of methodology and theory,
perhaps followed by large-scale, preregistered replication ef-
forts (e.g., Hagger et al., 2016). Such registered replications
reports can then be summarized with random-effects meta-
analytic methods, which show the best performance in the
absence of bias (Figures 3 and 4).

Conclusion

In simulations we compared bias-correcting meta-analysis
methods using effect sizes, sample sizes, questionable re-
search practices, and degrees of publication bias that plau-
sibly represent real data in psychology. We found that each
of the seven methods we implemented show unacceptable
performance in at least some conditions. This is not an
entirely surprising result given previous simulation studies
(e.g., Hedges & Vevea, 1996; Moreno et al., 2009; Rücker
et al., 2011; T. Stanley & Doucouliagos, 2014; Simonsohn
et al., 2014; R. C. van Aert et al., 2016; McShane et al.,
2016; T. Stanley, 2017). However, it highlights an impor-
tant conclusion that we believe needs to be more widely ac-
knowledged: Meta-analysts and consumers of meta-analyses
in psychology should not expect to come to definitive conclu-
sions. Instead, we believe that the most productive outcomes
will be generated by method performance checks, sensitivity
analyses, and a willingness to carefully design and conduct
pre-registered replications.
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Glossary

di and vi. The observed effect size (d) and its associated
variance (v) for the ith study. We calculate d as M1−M2

S , where
M1 and M2 are the means of the two groups and S is the
pooled standard error of the two groups. The variance of d
can be calculated as n1+n2

n2n2
+ d2

2(n1+n2−2) ·
n1+n2
n2n2−2 , where n1 and

n2 are the sample sizes of the two groups.
δ. Under the fixed-effect model, δ is the hypothetical

true underlying effect estimated by each study. Under the
random-effects model, δ is the mean of the distributions of
hypothetical true underlying effects.
τ. The standard deviation of the distribution of hypothet-

ical true underlying effects assumed by the random-effects
model. It is also referred to as measuring between-study het-
erogeneity.

k. The number of studies in a meta-analytic sample.
Mean error (ME). The average of the deviations of each

estimate from the true effect (often called bias). Nonzero
ME indicates that the expected value of the estimate does not
converge on the true value in the long run, being instead too
high or too low. ME is not sensitive to variance in estimates,
so it is possible that a method produces low ME by large but
equal over- and underestimation. Such a case would yield
estimates that are accurate on average, but any individual es-
timate could be quite far from the truth.

Root Mean Square Error (RMSE). RMSE incorporates
information about average error as well as the variance (i.e.,
the efficiency) in the estimates. It is possible to observe low
RMSE even when a method produces estimates that are con-
sistently biased in one direction. Imagine a very narrow dis-
tribution of estimates that is centered a bit above the true
value. On average, the estimates are too high, but the vari-
ability of these estimates will be low. Thus, a method’s esti-
mation performance must be considered in terms of both ME
and RMSE. For both ME and RMSE, values as close to zero
as possible are desirable.

95% Coverage Probability. The proportion of each
method’s 95% confidence intervals that included the true
value of δ. Optimally, the coverage probability is at the nom-
inal level of 95%. Low coverage is problematic as most in-
tervals do not contain the true value. Coverage rates higher
than 95% may indicate exceedingly wide intervals.
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