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ABSTRACT

Motivation: Comparison of read depths from next-generation
sequencing between cancer and normal cells makes the estimation
of copy number alteration (CNA) possible, even at very low coverage.
However, estimating CNA from patients’ tumour samples poses
considerable challenges due to infiltration with normal cells and
aneuploid cancer genomes. Here we provide a method that corrects
contamination with normal cells and adjusts for genomes of different
sizes so that the actual copy number of each region can be
estimated.
Results: The procedure consists of several steps. First, we identify
the multi-modality of the distribution of smoothed ratios. Then we
use the estimates of the mean (modes) to identify underlying ploidy
and the contamination level, and finally we perform the correction.
The results indicate that the method works properly to estimate
genomic regions with gains and losses in a range of simulated data
as well as in two datasets from lung cancer patients. It also proves
a powerful tool when analysing publicly available data from two cell
lines (HCC1143 and COLO829).
Availability: An R package, called CNAnorm, is available at
http://www.precancer.leeds.ac.uk/cnanorm or from Bioconductor.
Contact: a.gusnanto@leeds.ac.uk
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Cancer cells often exhibit severe karyotypic alterations: whole
chromosome gain or loss and structural rearrangements such as
amplifications, deletions and translocations result in widespread
aneuploidy (Hartwell and Kastan, 1994). The ability to detect copy
number alterations (CNAs) of cancer cells is a crucial step to
access the severity of chromosomal rearrangements and to find
chromosomal regions where breakpoints are located. Furthermore,
comparison of CNAs across tumours from different patients makes
it possible to find regions commonly duplicated or lost to highlight
the locations of cancer-related genes. Several methodologies are
available to detect CNAs. Comparative genomic hybridization
(CGH) (Kallioniemi et al., 1992), array CGH (aCGH) (Pinkel et al.,
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1998), single nucleotide polymorphism (SNP) array (Bignell et al.,
2004) and, more recently, a new generation of sequencing machines
enabled massively parallel sequencing (Roche 454, Illumina GAII,
HiSeq, MiSeq, ABI SOLiD, Ion Torrent PGM), making it possible
to sequence full genomes at affordable cost.

We previously showed (Wood et al., 2010) how it is possible to
multiplex several samples in one Illumina GAII lane making copy
number analysis by sequencing affordable and competitive with
aCGH or SNP arrays. Between one and eight million aligning reads
(compared to approximately half a billion reads for full coverage)
are enough to provide genome-wide CNA at 50 kb resolution. As
we expect sequencing technologies to become more widespread,
affordable and accurate, copy number analysis by low coverage
sequencing will become even more convenient and informative.
Furthermore, sequencing is possible even with low amounts of DNA
extracted from formalin-fixed paraffin-embedded specimens (Wood
et al., 2010).

Finally, one advantage of sequencing compared with array
technology is that the signal scales linearly to the input DNA
and does not show saturation nor background noise typical of
hybridization techniques.

One of the first steps to take when analysing these data is
normalization. The total intensity of signal from array technology
or the total number of reads from sequencing does not reflect
the total DNA content of the cells of interest, but it is largely
determined by various technical aspects, tuned to achieve the
maximum intensity range (array technology) or highest number of
reads (sequencing). The normalization is a crucial, non-trivial and
often underestimated step which can have enormous repercussions
on downstream analysis and conclusions. In this article, we present
a computational tool, called CNAnorm, to correct, normalize and
scale the data from low coverage sequencing experiments.

1.1 A problem with multiple solutions
From a theoretical point of view, it is often impossible with cancer
cells to determine the actual ploidy using array or sequencing
technology. As an example, we can consider a fully tetraploid
genome and a normal one. Since input DNA is adjusted to a given
amount (usually dictated by technical requirements), signal from
these two samples will be comparable and it would not be possible
to distinguish the tetraploid from the diploid genome. However if,
for instance, a chromosome loss (gain) occurred in the tetraploid
genome, we could detect a ratio of 3/4 (5/4) between the signal
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from that chromosome and the rest of the genome. A similar loss
(gain) in a diploid genome would result in a ratio of 1/2 (3/2). A
further complication arises when we deal with DNA from patient
tumour samples as these are infiltrated with normal cells resulting
in inevitable contamination with the patients’ normal DNA. This
means that, if we observe a ratio of 3/4 for a given region, we
cannot determine if it is due to a loss from a tetraploid genome of
100% tumour sample (as described above) or a loss from a diploid
genome contaminated with 50% normal cells.

This scenario is quite common in tumours from patients because
genomes are frequently aneuploid and contamination is largely
inevitable. These aspects are often overlooked by algorithms that
analyse CNA data. They are usually designed to analyse cell lines
with the assumption that the underlying genome is not only pure,
but also largely diploid or the average or median ploidy is to
be considered ‘normal’. There are some algorithms that perform
normalization without assuming that the size of the cancer genome
is comparable with the normal one (Castle et al., 2010; Chen et al.,
2008; Staaf et al., 2007; van Houte et al., 2009) and, most likely,
the best results can be achieved when using SNP array (Greenman
et al., 2010; Yau et al., 2010) or high coverage sequencing, because
information on the frequency of the underlying variant can inform
on the absolute copy number.

Similarly, tools that analyse high-throughput sequencing data to
obtain CNA are already available. Some are focused on germ line
CNV (Xie and Tammi, 2009; Yoon et al., 2009) where aneuploidy
and contamination are not an issue, whereas others are designed to
detect cancer CNA (Chiang et al., 2009; Ivakhno et al., 2010; Kim
et al., 2010). These algorithms, however, do not consider tumour
contamination and mostly assume implicitly that the overall size
of the two genomes are comparable. To our knowledge, the only
exception is FREEC (Boeva et al., 2011) which optionally performs
correction for contaminating normal tissue if the ploidy of the most
abundant copy number is provided. Unfortunately, this information
is not usually available when dealing with patients’ tumour samples.
The main goal of those tools, however, is the segmentation, i.e.
detecting where a change in copy number occurs.

In this study, we do not make any assumption on the overall size
of the tumour genome, nor its purity. We designed CNAnorm to
take advantage of the linearity of signal to provide information on
underlying ploidy and tumour content, with the only assumption
that the tumour is largely monoclonal or, if polyclonal, most clones
share most of the alterations. When multiple solutions are possible,
we select the most conservative among the compatible ones,
where the most abundant copy number has the smallest number of
deviations from diploidy. Furthermore, it allows the user to correct
the most conservative solution provided by the software if other
independent analyses (e.g. FISH, flow cytometry, known tumour
content) can guide the experimenter’s choice. Finally, CNAnorm
uses a third-party segmentation tool, DNAcopy (Olshen et al.,
2004), to output data not only corrected for contamination and
aneuploidy, but also segmented.

2 METHODS

2.1 Samples
Using an Illumina GAII, we produced 1836450 and 1653081 reads from
DNA isolated from a fresh frozen lung tumour resection specimen and paired

blood, respectively, from patient LS041. Similarly, we produced 3089173
test and 2545305 control reads from patient LS010. Details on sample
preparation, DNA extraction and library preparation are described by Wood
et al. (2010). We also considered publicly available datasets and we used
44762968 test and 34293547 control reads from cell line HCC1143 (Chiang
et al., 2009) as well as 18546568 test and 22269150 control reads from cell
line COLO-829 (Pleasance et al., 2010).

2.2 Sequence alignments, filtering and GC content
Sequences were aligned using the bwa suite (Li and Durbin, 2009) against
assembly hg19 of the human genome. Only sequences that could be uniquely
aligned and with mapping quality ≥37 were used. For each window, we
calculated the average genomic GC content. A Perl script (bam2window.pl)
that reads sam/bam files and optionally calculated GC content can be freely
downloaded from the CNAnorm website. It produces the table required as
input to CNAnorm.

2.3 Read counts
To identify the copy number, we count the number of reads per
non-overlapping fixed-width genomic regions (window). Throughout the
analysis, unless specified differently, we set the window size so that the
median number of reads for each window in the sample with least reads is
30. For samples with more reads (HCC1143 and COLO-829), we set the
window size to 50 kb wide.

The window size is a tuning parameter that can be optimized for the
data available. However, this is beyond the scope of this article. From our
experience in several different samples, selecting window size in which there
are 30–180 read counts per window on average strikes a reasonable balance
between error variability and bias of CNA. Using a much smaller window
size, e.g. on average 1–5 reads per window, will result in many genomic
regions with zero read count and make the overall analysis non-informative.
At the other extreme, using a much bigger window size will ‘smooth out’
some pattern of alteration (i.e. increasing bias).

2.4 CNA
To proceed, let xjk be the observed number of reads from a tumour sample
or genome in chromosome j=1,...,h, and window k =1,...,nj , where nj is
the number of windows in chromosome j so that the total number of reads
in the genome is n=∑h

j=1 nj . Let yjk be the observed number of reads in
the normal sample. The normalization is performed on a sample-by-sample
basis. To identify CNA ρjk , either as gains and losses in the tumour genome,
we intuitively estimate it as an observed ratio between the tumour and normal
genomes in each genomic window

ρ̂jk =rjk = xjk

yjk
(1)

for each chromosome j, and window k. However, this is a bias estimate as
we describe next.

A normal genome has two copies of (autosomal) chromosomes, while a
tumour genome may have zero, one, two and further multiple duplications.
So, the ratios ideally takes any value in G≡{gu}={0,0.5,1,1.5,2,...}
corresponding to tumour copy numbers P≡{pu}={0,1,2,3,...}. In reality,
due to (i) error, (ii) different number of reads recorded (sequencing coverage),
(iii) different size of tumour and normal genomes and (iv) contamination by
normal sample in the tumour sample, the estimates ρ̂jk will not necessarily
take a value in G (see Section 2.8 on contamination). Moreover, the observed
CNA corresponding to normal genomic regions may not be centered to ratio
one. We deal with the first problem by delineating the error variability in
a linear model as described briefly in Section 2.6. We deal with the other
problems by shifting and scaling the ratio to estimate CNA as described
below.

Taking the above problems into considerations, the simplest ratio rjk is a
bias estimator, because it has not taken into account the different number of
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reads in each genome. Each sample may acquire a different level of coverage
from the experiment, so that the ratio in Equation (1) may not be properly
aligned. A common approach to solve this problem is by normalizing for the
total number of reads. However, this assumes implicitly that both genomes
involved are of equal size. This is a reasonable assumption when searching for
germline CNV, but cannot be applied when one genome could be aneuploid.

We estimate the CNAin several steps below. These steps will be elaborated
further in the subsequent sections.

(1) Calculate the ratios rjk = xjk

yjk
, and correct them for GC content

(Section 2.5).

(2) Smooth the signal from rjk to obtain r̃jk . This step reduces noise and
highlights the information about genomic alterations. In this article,
we use the smooth segmentation approach (Huang et al., 2007) as
described in Section 2.6.

(3) Perform normalization on the distribution of r̃jk so that the most
common genomic regions are centered to ratio one. This can be
written as

ρ̂a
jk = r̃jk δ̂ (2)

where δ is a genome-wide alignment coefficient. The coefficient takes
into account the different size of tumour and normal genomes. This
step is elaborated further in Section 2.7.

(4) The above estimates ρ̂a
jk have not taken into account the tumour

sample contamination. In this step, we estimate the level of
contamination, ψ̂, and correct the distribution of ρ̂a

jk to obtain the
estimates of CNA ρ̂jk . This is discussed further in Section 2.8. The
observed ratio for each window rjk (not only r̃jk) can be corrected
accordingly once the estimates δ̂ and ψ̂ are obtained.

(5) At this point, the original data can be segmented using any
segmentation tool and results are corrected accordingly. CNAnorm
uses DNAcopy (Olshen et al., 2004).

2.5 GC correction
It is known that the ratio rjk can be influenced by the GC content in the
window (Boeva et al., 2011; Ivakhno et al., 2010). We acknowledge this
dependency by performing a loess correction to rectify the distribution of
the ratio and hence removing the dependencies on GC content. We use the
loess transformation with a multiplicative correction. Specifically

rnorm
jk = κ

Ajk
rjk, (3)

where, across all j and k, κ is the median of rjk , and Ajk ≡A(rjk) is the
estimated loess point-wise mean of rjk . In the subsequent steps, we assume
that GC correction has been performed in advance so that we can drop the
superscript norm in rnorm

jk . Further details on the GC correction and some
results are available in the Supplementary Figures S2–S5.

2.6 Smooth segmentation
With thousands of windows to consider, we need to use the spatial
information in the data to identify patterns, through smoothing. This step
is necessary in the context of low-coverage data, because random error
variability can severely affect the normalization and correction of ratio
distribution. This, in turn, would result in bias estimates of proportion which
would lead to wrong assignment of the diploid group. In our context, this
step is critical to guide the normalization and scaling process. However, in
case of large excess of reads, typically >500 per window, this step could
be skipped.

It is important to note that we do not propose a new segmentation
method in CNAnorm. In this study, we implement the smoothing approach
as proposed by Huang et al. (2007) that employs a linear model where
we assume that the second-order difference of the random-effect parameter
follow a Cauchy distribution. The estimates of the random effects are the

segmented ratio r̃jk . After normalization and scaling, CNAnorm optionally
performs a segmentation as implemented by Olshen et al. (2004), although
other segmentation methods can generally be used.

2.7 Genome-wide normalization
Genome-wide normalization is a step to correct the location of the
distribution of the copy number ratio by estimating δ from the segmented ratio
data r̃jk . Owing to systematic gains and losses, the ratio rjk shows a multi-
modal distribution. The segmented ratio r̃jk exhibits the multi-modality of
the distribution more clearly after removing unwanted random errors in the
smoothing step. The modes of the distribution of r̃jk indicate the (biased)
position of CNA in G, corresponding to different copy numbers in P. At this
stage, the modes of the distribution is not centered to the expected CNA in
G, and the estimation of δ requires us to characterize the distribution of r̃jk .

Reflecting on the multi-modality, we fit a mixture normal distribution to
the distribution of smoothed ratio of tumour over normal samples r̃jk

p(r̃jk)=
M∑

m=1

πmN(r̃jk;μm,σ
2
m), (4)

where πm are the mixing proportions,
∑M

m=1πm =1,0≤πm ≤1, for
m=1,...,M, μm and σ2

m are the mean and variance of normal distribution.
In this formulation, each of μm’s corresponds to a value in G that reflects
the ratio of tumour to normal copy numbers, and a tumour copy number
in P. At this stage, the estimates of μm are still biased estimates for CNA
in G. We will use the estimates of μm to guide us through all the steps in our
normalization and scaling methods as described next.

Our experience suggested that the normal distribution as a component is
adequate to model the distribution of r̃jk , as the distribution of r̃jk does not
show some heavy tails. Some genomic regions may exhibit extreme values
of rjk (but not r̃jk) because of low counts in xjk and yjk . This is rare and
mainly due to problems of mapping reads to some regions of the genome.
We find that the smooth segmentation approach is relatively robust, where
extreme values in the rjk do not affect our fitting of the mixture distribution
on the smoothed ratio r̃jk .

We estimate the mixture components in model (4) using a standard
expectation–maximization (EM) algorithm (e.g. McLachlan and Krishnan,
1997). In the algorithm, we put some constraints to impose identifiability (see
also the Supplementary Material). The number of components in the model,
M, is chosen using Akaike’s information criterion (AIC) across different
plausible values.

Once the estimates μ̂≡ μ̂1,μ̂2,...,μ̂M are obtained, it is important for
the subsequent steps to describe the relationship between μ̂ and their
corresponding tumour copy number (ploidy) in P. For example, we generally
have a set of copy numbers P∗ ≡{p∗

m}={0,1,2,3,...,M −1} from M
components identified in the mixture model (4). However, we allow a ‘leap’in
the ploidy so that the M copy number in P∗ may contain non-unit increment.
To deal with this, we acknowledge that the ideal CNA values in G increase
linearly with copy number or ploidy P. So, for our purpose of aligning r̃jk ,
we model yμ ≡ μ̂ in a simple linear regression as

yμ =α∗ +β∗P∗ +ε (5)

where α∗ is a fixed intercept, β∗ is the regression slope for P∗, an M-vector
of ploidy or copy number and ε is the error term. If the model fit (in terms of
R2) falls below a certain threshold, we ‘juggle’ the different copy numbers in
P∗ to include values greater than M −1, and select a collection of M values
that give the best R2. The threshold is set at 0.95 by default, although it is
adjustable by user intervention.

Our next task is to identify a component in the mixture model (4), denoted
v, v∈{1,...,M}, which corresponds to the normal ploidy (ratio one in G).
This is determined as the most common component, i.e.

v=argmax
m
π̂m.

Since multiple solutions are often possible, we choose the most conservative
solution. This means that if v≤3 we assign the most common component to
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have two copy numbers (diploid). Otherwise, we assign v-th component to
have v−1 copy number (the first component corresponds to the total loss,
zero copy number).

The genome-wide normalization coefficient δ is then estimated as

δ̂= 1

μ̂v
. (6)

In practice, we replace μ̂v with E(μ̂v), the fitted value of μ̂v from the
above model (5). The estimation of δ indicates that the process of genome-
wide normalization involves identifying the mixture component which
corresponds to the normal ratio and shift the whole distribution of r̃jk

multiplicatively so that the normal ratio is centered to one.
Once the estimate δ̂ is obtained, ρ̂a

jk = r̃jk δ̂ is the estimate of ‘crude’
CNA where contamination is still present. When we have different pair of
samples from different individuals, we are dealing with different degrees of
contamination between the pairs. So, the ‘crude’ CNA between individuals
are not comparable for the purpose of, e.g. statistical testing of the genomic
regions. To make the estimate of CNA that are comparable between samples,
we need to characterize the contamination, and make a proper correction to
the distribution of ρ̂a

jk as described in the next section.

2.8 Contamination correction
In clinical situations, pure tumour cells are difficult to obtain when the
material comes from tissues of patients’ tumour. Contamination with normal
cells are inevitable. If there were no contamination, the smoothed ratio r̃jk

is expected to take any one values in G≡{gu}={0,0.5,1,1.5,2,...}. When
contamination by a normal genome is present, the smoothed ratio r̃jk will be
shrunk towards ratio one (Supplementary Fig. S1).

To estimate the contamination, we first assume that the contamination
shrinks linearly the CNA towards ratio one, e.g. ρjk =2 will be shrunk to
1<ρ̂jk<2 and ρjk =0.5 will be shrunk to 0.5<ρ̂jk<1. Given the previous
step to centre the normal copy number to ratio one, the estimate of ‘crude’
CNA ρ̂a

jk can be assumed to have come up from a shrinkage on the non-
contaminated ρ̂jk around ratio one

ρ̂a
jk =1+(ρ̂jk −1)×(1−ψ̂) (7)

where ψ̂ is the estimate of contamination proportion (0≤ ψ̂<1).
We estimate ψ by investigating how the estimates in μ̂ have been shrunk

towards μ̂v that corresponds to the copy number two. We first normalize the

estimates μ̂≡ (μ̂1,μ̂2,...,μ̂M ) into μ̂
c ≡{

μ̂c
m

}=
{
μ̂m δ̂

}
, for m=1,...,M.

The estimate of ψ̂ is given by

ψ̂= 1

M −1

∑
m

{
1− |μ̂c

m −μ̂c
v|

μ̂c
v

1

0.5×|p∗
m −p∗

v |
}
, (8)

where the summation is performed on the set m=1,...,v−1,v+1,...,M,
and p∗

m is the copy numbers in P∗, excluding p∗
v .

Now, following the relationship in Equation (7), the estimates of CNA
can be expressed as

ρ̂jk =1+(ρ̂a
jk −1)× 1

(1−ψ̂)
. (9)

The estimates of CNA ρ̂jk in the above equation have taken into account
the different read depths, genome sizes and contamination. This makes the
estimates comparable between different pairs of samples, which is important
when statistical tests are performed to infer the pattern of genome-wide CNA.

2.9 Simulation study
We performed a simulation study to test our working model where some
complications were included in the simulated data. We produced a female
highly aneuploid genome (largely tetraploid) with a series of large and small
deletions and duplications using the human reference genome assembly
hg19. From the aneuploid (test) genome t and the normal genome c of size

Nt and Nc, respectively, we simulated 100 datasets each with 3000000 reads.
For each dataset i, we simulated Sti and Sci reads so that⎧⎨

⎩
Sti
Nt

: Sci
Nc

= (1−ψi) :ψi

Sti +Sci =3000000

with Nt =11515563746 and Nc =6175502642 nt (note: the normal
genome is diploid) and 0.15<ψi<0.80 is the contamination level. We
simulated a mixture of tumour and normal cells in ratio (1−ψi) :ψi and then
produced three million reads coming from the genomes of such a mixture
of cells. Clearly, since the tumour genome is larger than the normal one, a
tumour content of (1−ψi) will produce more than (1−ψi) of the reads. To
simulate the reads, we used wgsim 2.6 (default parameters), a tool part of
the bwa suite (Li and Durbin, 2009). Similarly, we produced three million
reads for the control genome.

We performed analysis on 100 simulated datasets using CNAnorm and
FREEC v3.93 (Boeva et al., 2011) using a window size of 50 kb, and
no GC correction (being simulated data). We use the default parameters
for both programs, with an exception in FREEC where we included the
option to correct for contamination. We then compared the results from both
methods. FREEC can adjust for contamination with normal cells as long as
the most frequent ploidy is provided. To compare the two tools in equivalent
situations, we set CNAnorm to normalize the simulated data so that the most
abundant copy number was set to four. However, we also report the estimates
CNAnorm would produce when the most common ploidy is estimated. Since
FREEC forces the copy number to be an integer, we rounded the segmented
value of CNAnorm output in this comparison. To assess the two programs,
for each window j, we calculate a score

�= 1

n

∑
j

|ρ̂j −ρj| (10)

where n is the number of windows in the simulated genome, ρ̂j is the
estimated copy number for window j and ρj is the expected copy number
for the same window. In Equation (10), a high score � suggests that the
estimates of CNA ρ̂j is far from the true values, and vice versa.

3 RESULTS

3.1 Simulation study
First, we present the results of one of the 100 simulated datasets
(a single realization) with 30% contamination (ψ=0.30). The
results on all simulated datasets are presented subsequently below.
Figure 1 shows the histogram of the ratio and smoothed ratio
(see Supplementary Fig. S6 for more details on ratios across
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Fig. 1. Histogram of ratio (A) and smoothed ratio (B) across the genome
in a simulated data (single realization) with ψ=0.30 (30% contamination).
In (B), the dotted vertical lines mark the estimates of means when we fit a
mixture distribution on the smoothed ratios. More details on the ratios across
genome are presented in the Supplementary Figure S6.
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Fig. 2. The ratio in Chromosome 2 of simulated data with ψ=0.3 (30%
contamination) before (A) and after (B) normalization and scaling. The solid
line is the estimate of CNA ρ̂jk as a smoothed signal. The horizontal dashed
lines are the different expected ratios if there is no contamination in the
samples. Note that the ‘normal’ copy number is four, so that the expected
ratios are in G∗ ={0/4,1/4,2/4,...}. The patterns of genomic CNA are
shown in Supplementary Figures S6 and S7.

the genome). From the figure, we now can see the underlying
distribution of CNAs in the simulated data. The vertical dotted
lines in the Figure 1B are the estimates of mean when we fit the
mixture model (4) onto the smoothed ratios. These estimates are
{μ̂m}={0.18,0.40,0.62,0.84,1.05,1.27,1.50,1.71}, corresponding
to copy numbers P∗ ={0,1,...,7}.

It is estimated by AIC that we have eight components in the
mixture model, and this can be clearly seen from the figure.
The most common mixture component in the simulated data is
the fifth component which corresponds to four copy number in
the tumour sample. The estimates of the proportions π̂m are
(in percentages) {4.4,2.4,15.9,15.1,34.2,13.6,9.0,5.3}. From this
result, we align the fifth component to the ratio one with δ̂=0.943.
The contamination is estimated at ψ̂=29.54%, which is close to the
true value of 30%.

To see the results of the normalization in a chromosome, Figure 2
presents the estimates of CNA in Chromosome 2 before and after
the normalization and scaling for contamination. Since the most
common component is tetraploid, we find that the expected ratio is
in the increment of 0.25 as shown in the figure as horizontal dashed
lines. The figure indicates the estimates of CNA are now properly
centered.

Next, we compare the results of the 100 simulations obtained
using CNAnorm with those obtained using FREEC (Boeva et al.,
2011) as presented in Figure 3. The figure indicates that the
performance is getting worse as the contamination level increases
using all methods. When the information on ploidy is provided,
CNAnorm (solid black line) performs better than FREEC (dash-
dotted line) 95% of the time. When ploidy is not provided,
CNAnorm still performs better than FREEC 72% of the time.
Understandably, all three methods perform better at low rather
than high contamination levels. Remarkably, CNAnorm has very
good and consistent performance (� is very close to zero) for
contamination up to 40% even when the information on ploidy is
not provided.

A closer inspection on the above results indicates that, while
the performance of FREEC steadily deteriorates with increased
contamination, CNAnorm performs consistently well unless it fails
to correctly detect some mixture components. When this happens,
there are mainly three consequences. First, the mixture components
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Fig. 3. The scores� from 100 simulated data as a function of normal genome
contamination level (percent). A low value of � indicates that the estimate
of CNA is close to the true value. The score for FREEC is shown in the dash-
dotted line and for CNAnorm is shown in solid line. The plus (+) grey points
are the scores for CNAnorm when the information on the most frequent
ploidy is not provided.

are correctly detected but the copy number is ‘shifted’. The estimates
of CNA are off by a discrete number of ploidies. This is easily
rectified if the most abundant ploidy is provided. Experiments with
average distance of 1, but low � when ploidy is available (Fig. 3)
fall in this category. Secondly, if a limited number of mixture
components are missed or wrongly estimated, but the most abundant
one is correctly identified, the ratio is correctly shifted but over- or
under-scaled. Thirdly, several mixture components could be missed
or wrongly assigned. In this case, the normalization is severely
affected. Providing the ploidy of the most abundant mixture may
or may not improve the normalization.

3.2 Normalization of patients’ sample data
We present the results of analysis on LS041 dataset here, while the
results on LS010 dataset are presented mainly in the Supplementary
Material. Figure 4 shows the effect of smoothing on the distribution
of copy number ratio (see Supplementary Fig. S8 for more details
on the ratios rjk and smoothed ratios r̃jk).

From Figure 4A, we are not able to see clearly the multi-modality
in the distribution of the ratio rjk in the genome. The smoothing
process accentuates the multi-modality as shown Figure 4B . The
fitting of the mixture model (4) is performed on the distribution of
r̃jk , which is shown in the figure. Based on AIC, for LS041, we came
to a result that the optimal number of mixture components is M =7.
Given M =7, the estimates of the means are μ̂m = (0.47, 0.65, 0.92,
1.15, 1.35, 1.53, 2.43), and they are marked as vertical dotted lines
in Figure 4B.

The estimated proportion (in percentages) of the mixture
components are π̂m = (1.0, 26.7, 29.5, 28.7, 10.3, 1.0, 2.8), indicating
that the third mixture component is the most common one (v=3).
This suggests that the tumour genome is largely diploid. Next, we
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Fig. 4. Histogram of ratio (A) and smoothed ratio (B) across the genome.
In (B), the dotted vertical lines mark the estimates of means when we fit
a mixture distribution on the smoothed ratios. More details are shown in
Supplementary Figure S8.
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Fig. 5. Relationship between estimates of mean μ̂m from fitting mixture
models and copy number. The dotted line is the fitted linear regression
line, and the dashed line is the expected line with slope 0.5 if there is no
contamination in the tumour sample.

plot the estimates μ̂i against the copy number as shown in Figure 5.
The figure shows a linear relationship between the estimates μ̂im
with the copy number. For the last mixture component, we allow a
‘leap’ in the copy number so that we have a better fit of the linear
regression (dotted line). The fitted line has a lower slope estimate
than the expected line due to contamination.

In this step, we multiplicatively align the whole distribution of
rjk and r̃jk so that the mixture component which corresponds to
the normal copy number is centered to ratio one. We obtained the
estimates μ̂3 =0.92 and δ̂=0.904 as the multiplicative factor.

3.3 Contamination correction on patients’ sample data
The estimate of slope in Figure 5 is lower than the expected
(0.5) due to the contamination of tumour sample. We assume in
this study that the effect is proportional to the distance of r̃jk
to the ratio one (Supplementary Material). After scaling for the
diploid component to have ratio one, the scaled estimates μ̂c

m are
{0.52,0.72,1.01,1.27,1.50,1.70,2.69}. The value for the diploid
component is not exactly one, due to the use of fitted value in
Equation (6). This gives the estimate of contamination ψ̂=0.491,
or 49.1%. We correct the whole distribution of r̃jk (and applicable
to rjk) using a multiplication, centered on ratio one, so that the
mean estimates in Figure 5 are aligned to be close to the expected
distribution as presented in Figure 6A.
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Fig. 6. (A) Relationship between estimates of mean μ̂c
m (after correction

for contamination) and copy number. The dotted line is the fitted linear
regression line, and the dashed line is the expected line with slope 0.5
when there is no contamination in the tumour sample. (B) Histogram of
the segmented ratio across the genome after correction for contamination
(estimated at 49.1%). The vertical dashed line marks the mean for normal
copy number after alignment.
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Fig. 7. Chromosome 1, before (A) and after (B) the normalization. The solid
line is the estimate of CNA.

In Figure 6B, we can see that the distribution of r̃jk is expanded
from reference point one compared to Figure 4. The result of
this contamination correction across the genome is presented in
Supplementary Figures S8 and S9. The figures indicate that the
estimated CNA are now close to the expected copy number ratios
in G. To see the estimates in more detail in a chromosome,
Figure 7 shows the result of our proposed method on chromosome
1 for LS041 data. After the normalization step and correction for
contamination that we have performed, the estimates of CNA are
now correctly aligned to their expected values in G.

3.4 Analysis of cell line data: HCC1143 and COLO829
Although CNAnorm was developed to deal with low coverage data
from clinical samples, we tested the package by analysing two
publicly available datasets of higher coverage sequencing of cells
lines: HCC1143, obtained from a human breast cancer genome
(Chiang et al., 2009) and COLO829, obtained from a human
malignant melanoma (Pleasance et al., 2010). The results of analysis
on the COLO829 data are presented in the Supplementary Material.

For cell line HCC1143, we performed the default analysis and
CNAnorm found that the third component was the most abundant
and conservatively assigned it to P∗ =2. In doing so, it also
estimated a tumour content of 47.5%. Although, from a technical
point of view, this is a plausible solution, our knowledge about
the starting material informs us that a tumour content of 47.5% is
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suspiciously low for a cell line. We then shifted the estimates of P∗
and obtained P∗+1 and P∗+2 that would then predict a more likely
87% tumour content or an unrealistic 153.5%, respectively. We then
accepted P∗+1 and normalized the data. The results for whole
genome and a subset of chromosomes are shown in Supplementary
Figures S15 and S16. Here, we used external clues to perform the
most sensible normalization.

HCC1143 is a very well-characterized cell line and SKY
karyotypes are available from http://www.path.cam.ac.uk
/∼pawefish/BreastCellLineDescriptions/HCC1143.html. We were
able to compare the estimation of CNAnorm against independently
observed evidence and confirm that the normalization is appropriate.
In particular, CNAnorm estimates that Chromosome 5 is largely
tetraploid, Chromosome 12 largely triploid and the acrocentric
Chromosome 13 largely diploid (Supplementary Fig. S16). These
estimations are easily confirmed by the karyotype. As HCC1143 is
extensively rearranged, other abnormalities are harder to validate,
but given that CNAnorm performs a genome-wide normalization,
there is no reason why the copy number estimation on other
chromosomes should not be correct, in particular within the 2–4
ploidy. Furthermore, CNAnorm estimates the median ploidy at 3.2
copies, that is compatible with the description of ‘near-tetraploid’
or ‘hypo-tetraploid’ as reported on the above Cancer Genomics
Program web page.

4 DISCUSSION
We have investigated a method to estimate CNA from patient tumour
samples using next-generation sequencing. We showed how the
method performs with a range of simulated data, on low coverage
data from patients’ samples and on higher coverage data from
cell lines. Compared with several segmentation tools available to
analyse high-throughput sequencing data, CNAnorm focuses on
correcting the data for contamination, different read depth and
different genomic size. We acknowledge that the problem could lead
to several equally valid solutions, but provide an easy way for the
user to correct the estimation from CNAnorm when independent
clues (such as tumour content, or strong and independent evidence
about ploidy of certain regions) are available. We believe that the
normalization step is often underestimated or, due to its intrinsic
difficulty and plurality of solution, left to a simplistic approach that
assumes that the overall size of a cancer genome is comparable with
that of a normal cell.

With the data from the two cell lines (HCC1143 and COLO829),
we have shown how information on tumour content, ploidy of
some chromosomes and overall ploidy could guide the experimenter
to perform a more meaningful normalization. At the same time,
CNAnorm could provide further insight on the cancer material
analysed. When no external information is available, e.g. in the case
of patients’tumours LS041 and LS010, CNAnorm performs the most
conservative normalization. In this regard, if regions of homozygous
deletions could be identified and confirmed, they would be a valuable
guide during the normalization process.

Despite being a powerful tool, CNAnorm is not a ‘silver bullet’
for CNA analysis. In particular, we would like to point out how
polyclonal tumours could produce misleading results. If several
tumour clones, each with its gains and loss, constitute the tumour
sample, it will not be possible to detect the underlying ploidy and
the mixture model approach would over-fit distributions within a

single ploidy range. CNAnorm is meant to be robust and clonal
variability in a few chromosomal regions would not be problematic.
However, in these cases, CNAnorm would tend to underestimate
tumour content. This is, in our opinion, what happens with cell lines
HCC1143 and COLO829. Although the cell line should be 100%
tumour, CNAnorm estimates only 87 and 90%, respectively. We
think this is due to some variability within cells. This variability can
be observed, for instance, in HCC1143 where the copy number of
the long arm of Chromosome 2, or Chromosome 6 are, unlike most
of the rest of the genome, not close to any integer copy number.
Since we are aware of possible polyclonal variability, we chose an
approach and a segmentation tool, DNAcopy, that does not force
every region of the genome to fit into an integer copy number. Clues
about polyclonal variation are, per se, potentially informative.

5 CONCLUSION
Next-generation sequencing data from clinical samples obtained
directly from patients presents a serious challenge. Analysis of
CNAs in tumour samples is not straightforward. This is because
the observed raw copy number ratios do not necessarily take the
expected values due to random error, different sequencing coverage
and contamination with normal cells. We deal with the random
error using smoothing methods. The other challenges are dealt
with by acknowledging the multi-modality in the distribution of
the segmented copy number ratios. This allows us to model the
locations of the distribution of ratios corresponding to the different
copy numbers and make the necessary correction. The simulation
study shows that the method works properly to estimate genomic
regions with gains and losses and that it works well in a range of
real datasets from patients’ samples and cell lines.

ACKNOWLEDGEMENTS
A.G. would like to thank Terry Speed and Yuval Benjamini for
a helpful discussion. We thank the surgical team at St James’s
University Hospital (Leeds, UK).

Funding: Yorkshire Cancer Research (L341PA).

Conflict of Interest:none declared.

REFERENCES
Bignell,G. et al. (2004) High-resolution analysis of DNA copy number using

oligonucleotide microarrays. Genome Res., 14, 287–295.
Boeva,V. et al. (2011) Control-free calling of copy number alterations in deep-

sequencing data using GC-content normalization. Bioinformatics, 27, 268–269.
Castle,J. et al. (2010) DNA copy number, including telomeres and mitochondria,

assayed using next-generation sequencing. BMC Genomics, 11, 244.
Chen,H-I. et al. (2008) A probe-density-based analysis method for array CGH data:

simulation, normalization and centralization. Bioinformatics, 24, 1749–1756.
Chiang,D.Y. et al. (2009) High-resolution mapping of copy-number alterations with

massively parallel sequencing. Nat. Methods, 6, 99–103.
Greenman,C.D. et al. (2010) Picnic: an algorithm to predict absolute allelic copy number

variation with microarray cancer data. Biostatistics, 11, 164–175.
Hartwell,L.H. and Kastan,M.B. (1994) Cell cycle control and cancer. Science, 266,

1821–1828
Huang,J. et al. (2007) Robust smooth segmentation approach for array CGH data

analysis. Bioinformatics, 23, 2463–2469
Ivakhno,S. et al. (2010) CNAseg - a novel framework for identification of copy number

changes in cancer from second-generation sequencing data. Bioinformatics, 26,
3051–3058.

Kallioniemi,A. et al. (1992) Comparative genomic hybridization for molecular
cytogenetic analysis of solid tumors. Science, 258, 818–821.

46

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/28/1/40/218361 by guest on 20 August 2022



[16:28 8/12/2011 Bioinformatics-btr593.tex] Page: 47 40–47

Normalization of CNAs

Kim,T.M. et al. (2010) rSW-seq: algorithm for detection of copy number alterations in
deep sequencing data. BMC Bioinformatics, 11, 432.

Li,H. and Durbin,R. (2009) Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics, 25, 1754–1760.

McLachlan,G. and Krishnan,T. (1997) The EM Algorithm and Extensions. Wiley,
New York.

Olshen,A.B. et al. (2004) Circular binary segmentation for the analysis of array-based
DNA copy number data. Biostatistics, 5, 557–572 .

Pawitan,Y. (2001) In All Likelihood: Statistical Modelling and Inference Using
Likelihood. Oxford University Press, New York.

Pinkel,D. et al. (1998) High resolution analysis of DNA copy number variation
using comparative genomic hybridization to microarrays. Nat. Genet., 20,
207–211.

Pleasance,E.D. et al. (2010) A comprehensive catalogue of somatic mutations from a
human cancer genome. Nature, 463, 191–196.

Staaf,J. et al. (2007) Normalization of array-CGH data: influence of copy number
imbalances. BMC Genomics, 8, 382.

van Houte,B. et al. (2009) CGHnormaliter: an iterative strategy to enhance
normalization of array CGH data with imbalanced aberrations. BMC Genomic, 10,
401.

Wood,H. et al. (2010) Using next-generation sequencing for high resolution multiplex
analysis of copy number variation from nanogram quantities of DNA from formalin-
fixed paraffin-embedded specimens. Nucleic Acids Res., 38, e151.

Xie,C. and Tammi,M.T. (2009) CNV-seq, a new method to detect copy number variation
using high-throughput sequencing, BMC Bioinformatics, 10, 80.

Yau,C. et al. (2010) A statistical approach for detecting genomic aberrations in
heterogeneous tumor samples from single nucleotide polymorphism genotyping
data. Genome Biol., 11, R92.

Yoon,S. et al. (2009) Sensitive and accurate detection of copy number variants using
read depth of coverage. Genome Res., 19, 1586–1592.

47

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/28/1/40/218361 by guest on 20 August 2022


