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ABSTRACT
While many algorithm-based fault tolerance (ABFT) schemes have

been proposed to detect so� errors o�ine in the fast Fourier trans-

form (FFT) a�er computation �nishes, none of the existing ABFT

schemes detect so� errors online before the computation �nishes.

�is paper presents an online ABFT scheme for FFT so that so�

errors can be detected online and the corrupted computation can

be terminated in a much more timely manner. We also extend our

scheme to tolerate both arithmetic errors and memory errors, de-

velop strategies to reduce its fault tolerance overhead and improve

its numerical stability and fault coverage, and �nally incorporate

it into the widely used FFTW library - one of the today’s fastest

FFT so�ware implementations. Experimental results demonstrate

that: (1) the proposed online ABFT scheme introduces much lower

overhead than the existing o�ine ABFT schemes; (2) it detects

errors in a much more timely manner; and (3) it also has higher

numerical stability and be�er fault coverage.
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1 INTRODUCTION
As the size of transistors continues to reduce and the number of

components continues to increase, so� errors in supercomputers

become more and more common [18]. In fault tolerance literature,

many techniques have been proposed to detect and/or correct so�

errors. �e best-known general technique to detect so� errors is the

double modular redundancy (DMR) approach. �is approach either

uses two di�erent hardware units to perform the same computation

at the same time or performs the same computation on the same

hardware twice, then compares the two results to detect whether

errors occur or not. �e most well-known general technique to

correct single so� errors is the triple modular redundancy (TMR)

approach. TMR either performs the same computation on three

di�erent hardware units or uses the same hardware to perform the

same computation for three times, then compares and votes the

majority results as the correct result. While DMR and TMR are very

general, their overhead is high - at least 100% overhead to detect

errors and 200% overhead to correct errors.

To protect memory corruption, ECC (Error Correcting Codes)

memory has been widely used by many computer vendors. Al-

though today’s ECC memory can detect and correct bit �ips in

memory, it brings signi�cant overhead in space, time, and energy.

Furthermore, ECC memory is not able to handle computational (i.e.

arithmetic) errors that are caused by faults in logic units.

In order to signi�cantly reduce fault tolerance overhead, algorith-

mic characteristics have been leveraged to design highly e�cient

fault tolerance schemes since 1984 [20]. Over the past thirty years,

many algorithm-based fault tolerance (ABFT) schemes have been
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proposed in literature. In [20], Huang and Abraham proposed the

�rst ABFT scheme to detect miscalculations in matrix operations

on systolic arrays. In [3], Banerjee et al. proposed an ABFT scheme

that works for hypercube multiprocessor. In [29, 30], Shantharam

et al. analyzed the impact of so� errors on iterative linear algebra

methods and proposed a fault tolerant scheme for preconditioned

Conjugate Gradient methods for sparse linear systems. In [31],

Sloan et al. propsoed an algorithmic approach to detect errors

in sparse linear algebra. In [28], Sao and Vuduc explored a self-

stabilizing fault tolerance approach for iterative methods. In [14],

Ellio� et al. analyzed the impact of so� errors on GMRES algorithm.

In [24], Li et al. designed an ABFT scheme with a cooperative

so�ware-hardware approach. In [37, 39], Wu et al. proposed an

ABFT scheme to correct errors in matrix operation online. In [12],

Davies proposed an online scheme to correct so� errors in LU fac-

torization. In [13], Di and Cappello carefully characterized 18 real-

world HPC applications and proposed an adaptive impact-driven

approach to detect errors in these applications. In [9], Chien et al.

proposed a new programming approach GVR that allows applica-

tions to describe error detection (checking) and recovery routines

and inject them into the GVR stack for e�cient implementation.

In [4], Bridges et al. proposed a fault-tolerant linear solvers via

selective reliability. In [32], Stoyanov and Webster showed some

numerical analysis of �xed point algorithms for silent hardware

faults. Besides those, some more work is carried out on linear al-

gebra methods [5, 7, 8, 38, 40] , iterative solvers [21, 34], and error

propagations [2, 6].

For fast Fourier transform (FFT), Antola et al. proposed a time-

redundant scheme in [1]. In [10], Choi and Malek introduced a fault

tolerance scheme for FFT that is based on recomputing through

an alternate path. In [22], Jou and Abraham proposed an ABFT

scheme for the FFT networks that can achieve 100% fault coverage

and throughput at a cost of O ( 2

log
2
N ) hardware overhead. Later,

in [33], Tao and Hartmann came up with a novel encoding scheme

for FFT networks which has higher fault coverage by adding 5%

hardware. A�er that, in [35], Wang and Jha presented a new concur-

rent error detection (CED) scheme that achieves be�er result with

less hardware redundancy. �en, in [26], Oh showed a similar CED

scheme using a di�erent checksum with increased fault coverage.

Additionally, some progress has also been made on parallel system

and GPUs. Banerjee [3] proposed a fault tolerant design on hyper-

cube multiprocessors. Pilla [27] presented speci�c so�ware-based

hardening strategies to reduce the failure rate. Fu and Yang [17]

also implemented a fault tolerant parallel FFT using MPI.

While many o�ine ABFT schemes have been proposed for FFT

over the past thirty years, a careful review of the existing ABFT

literature indicates that no previous ABFT schemes can detect and

correct so� errors online before an FFT computation �nishes. �is

paper proposes an online ABFT scheme for FFT so that errors in

an FFT computation can be e�ciently corrected in the middle of

the computing in a timely manner before the computation �nishes.

Because the FFT of a large vector is o�en computed via computing

the FFTs of many smaller sub-vectors, a natural idea to correct

errors online is to use the existing o�ine ABFT approaches to each

small FFT computations. However, in this paper, we �nd that simply

applying o�ine ABFT to each decomposed small FFTs introduces

too much overhead due to the following facts. Firstly, the input of

the decomposed FFTs is non-contiguous. Multiple non-contiguous

reads or writes cause much longer memory access time because

of heavy cache misses. Secondly, separated function calls to the

fault tolerant version small FFTs would not reuse the computed

input checksum vector, making the online version at least twice

slower than the o�ine version. �irdly, there will be at least three

memory checksum generations and veri�cations since each divided

FFT needs to be protected and there is a rearrangement of data a�er

the �rst part, leading to large overhead when memory errors are

taken into consideration.

FFT is widely used to compute the discrete Fourier transform

(DFT). DFT plays a very important role in engineering, science, and

mathematics. �erefore, reliable and fast computing of DFT will

bene�t not only a large number of people but also a wide range of

�elds. �e main contributions of this paper include:

• �e�rst onlineABFT scheme for FFT: Existing ABFT schemes

for FFT [1, 10, 22, 25, 26, 33, 35] detect so� errors o�ine a�er

the FFT computation �nishes. Even if an error occurs at the

beginning of the FFT, existing ABFT schemes can not detect it

in a timely manner, hence, have to allow the corrupted compu-

tation to continue until it �nishes, then verify the correctness.

A�er an error is detected, the whole FFT computation has to

be restarted. �is paper designs an online ABFT scheme that is

able to detect errors online soon a�er the error occurs so that

the corrupted computation can be terminated in a timely man-

ner. A�er the corrupted computation is terminated, instead of

repeating the whole computation from the beginning, the pro-

posed online ABFT scheme only need to repeat a small fraction

the computation. �erefore the computation e�ciency will be

greatly improved when errors occur.

• �e�rst so�-error-resilient FFT so�ware implementation
- FT-FFTW: Existing FFT ABFT schemes are either designed for

hard errors or designed under the context of hardware imple-

mentation. �is paper develops so�-error-resilient FFT so�ware

for the �rst time. We develop FT-FFTW, incorporate both the

existing o�ine ABFT and the newly proposed online ABFT into

one of the today’s fastest FFT so�ware libraries - FFTW, and

validate the implementations on TIANHE-2 supercomputer. Ex-

perimental results demonstrate that the proposed online ABFT

is able to detect so� errors in a timely manner before the com-

putation �nishes and improve the computation e�ciency by a

factor of two when errors occur.

• Innovative optimizations for online ABFT FFT: It is very

challenging to add fault tolerance capability to the highly op-

timized FFTW library without introducing signi�cant perfor-

mance penalty. Simply applying existing ABFT to each small

FFTs within a large FFT introduces too much overhead. �is

paper develops several optimization strategies to reduce the over-

head. �e optimized online ABFT FFT introduces lower overhead

than the existing o�ine scheme even if no error occurs.

• �e �rst online ABFT scheme for parallel in-place FFT:
Di�erent from the out-of-place sequential FFT, the parallel FFT

tends to use in-place FFT with no auxiliary space. We develop an

online ABFT scheme for in-place FFT and extend our FFT ABFT

scheme from sequential to parallel.
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• Parallel optimization strategy to minimize the overhead:
We develop a communication-computation overlap strategy to

hide half of the fault tolerance cost for our parallel FT-FFTW.

With the re-designed plan, the parallel FT-FFTW is able to achieve

comparable performance to the original FFTW library.

• Signi�cant improvement in numerical stability and fault
coverage: Round-o� errors for �oating point calculations a�ect

the numerical stability and fault coverage. �is paper analyzes

the impact of round-o� errors for our online ABFT scheme in

detail and shows that our online ABFT scheme has higher numer-

ical stability and be�er fault coverage than the existing schemes.

Whendeveloping fault tolerance schemes, there is a trade-
o� between generality and e�ciency. In order to leverage the

algorithmic characteristics to optimize e�ciency, this paper trades

generality for be�er e�ciency. While automating the proposed

ABFT scheme to gain generality will loss the e�ciency obtained,

part of the idea in this paper can still be generalized to other divide-

and-conquer applications if an o�ine fault tolerance scheme can

be designed for each individual sub-problem.

2 BACKGROUND
2.1 DFT and FFT
�e DFT for a complex sequence can be calculated as follows:

X j =

N−1∑
n=0

xnω
jn
N , j = 0,1, . . . ,N − 1 (1)

where ωN = exp
−i 2π

N and i =
√
−1 is the unit imaginary root.

Correspondingly, the inverse discrete Fourier transform (IDFT) can

be calculated as:

X j =
1

N

N−1∑
n=0

xnω
−jn
N , j = 0,1, . . . ,N − 1

If DFT or IDFT is calculated directly, it is obvious that O (N 2) oper-

ations are needed as each element costs O (N ) operations. To save

more time, the fast Fourier transform (FFT) has been proposed to

reduce the number of operations to O (N logN ). �e most popular

Cooley-Tukey algorithm for FFT can be derived as follows. If the

size N can be factorized into two smaller integers as N = N1N2, (1)

can be rewri�en by le�ing j = j1N2 + j2 and n = n2N1 + n1:

X j1N2+j2 =

N1−1∑
n1=0

(

N2−1∑
n2=0

(xn2N1+n1
ω
n2 j2
N2

)ω
n1 j2
N )ω

n1 j1
N1

(2)

∑N2−1

n2=0
xn2N1+n1

ω
n2 j2
N2

is an N2-point DFT and

∑N1−1

n1=0
(. . . )ω

n1 j1
N1

is

an N1-point DFT. �us the original N -point DFT is decomposed to

N1 inner DFTs of size N2 and N2 outer DFTs of size N1. �ese N1-

point DFTs and N2-point DFTs can also be decomposed into DFTs

of smaller sizes recursively. By this means, the total operations of

DFT is reduced to O (N logN ).

2.2 Previous Fault Tolerant Work for FFT
Many ABFT schemes have been designed to detect and correct

so� errors in FFT. �ese schemes typically use concurrent error

detection scheme with encoding and decoding system. To illustrate

how these ABFT schemes work, we take Wang’s approach in [35]

Algorithm 1 O�ine ABFT FFT Algorithm

1: procedure Offline-ABFT-FFT
2: Set the calculation �ag calcFlaд = true
3: Calculate input checksum vector c = rA
4: while calcFlaд do
5: Calculate the FFT: X = Ax
6: calcFlaд = ( |rX − cx | > η)
7: end while
8: end procedure

as an example. As a special case of matrix-vector multiplication, a

DFT can be wri�en into matrix form according to equation (1):



X (0)
X (1)
...

X (N − 1)



=



ω0

N ω0

N . . . ω0

N
ω0

N ω1

N . . . ωn−1

N
ω0

N ω2

N . . . ω
2(n−1)
N

...
...

. . .
...

ω0

N ωn−1

N . . . ω
(n−1)2

N





x (0)
x (1)
...

x (N − 1)



Let A denote the coe�cient matrix where Ai j = ω
i j
N , X denotes the

output vector, x denotes the input vector, the matrix form can be

simply wri�en as X = Ax . �e equation maintains by multiplying

X and Ax with a selected checksum vector r :[
X
rX

]
=

[
Ax
rAx

]

r is called the weighted checksum for this matrix operation. �e

last row of the matrix can be expanded as:

N−1∑
j=0

r jX j =

N−1∑
j=0

(rA)jx j

�en by comparing the results of the two checksums, any compu-

tational error can be detected.

However, not all checksum schemes are suitable for ABFT FFT. It

has been proved in [35] that the following checksum scheme works

well for ABFT FFT:

r = (ω0

3
,ω1

3
, . . . ,ωN−1

3
)

where ω3 = −
1

2
+
√

3

2
i is the �rst cube root of 1.

As for error correction, time redundancy methods are preferred

in almost all the approaches. Re-calculation is necessary to produce

the correct result.

All of these ABFT schemes mentioned above are proposed for

hardware implementation. �ey assume that the size of input is

�xed for a speci�c FFT implementation. In the hardware implemen-

tation, they detect errors by comparing the di�erence of rX and rAx ,

and they assume input checksum vector rA can be pre-calculated

when output checksum vector r is given. However, so�ware FFT

implementations usually accept varying sizes of input, and thus ex-

tra overhead will be introduced to calculate rA. �e so�ware-level

implementation of this approach is shown in Algorithm 1.

3 ONLINE ABFT FFT SCHEMES
To correct errors in a more timely manner, two online schemes

are proposed in this section. As faults are categorized into two
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Algorithm 2 Online ABFT FFT Algorithm

1: procedure online-ABFT-FFT
2: Get initial radix k and correspondingm = N

k
3: Calculate input checksum vector cm = rmAm with DMR

4: for i from 0 to k − 1 do
5: Set the calculation �ag calcFlaд = true
6: while calcFlaд do
7: Calculate the i-th FFT: X ′i = Amxi
8: calcFlaд = ( |rmX ′i − cmxi | > η1)
9: end while

10: end for
11: Calculate input checksum vector ck = rkAk with DMR

12: for i from 0 tom − 1 do
13: Multiply twiddle factor: X ′′i = twiddlei .∗X

′
i with DMR

14: Set the calculation �ag calcFlaд = true
15: while calcFlaд do
16: Calculate the i-th FFT: Xi = AkX

′′
i

17: calcFlaд = ( |rkX
′′
i − ckXi | > η2)

18: end while
19: end for
20: end procedure

types in this work, Section 3.1 introduces an online scheme aim-

ing at computational faults while Section 3.2 proposes an online

scheme that can deal with both computational faults and memory

faults. �e computational fault tolerant scheme in Section 3.1 is

also complementary to ECC memory. It can detect and correct

computational errors that ECC may not be able to handle.

3.1 Computational Fault Tolerance
Inspired by the divide-and-conquer nature of FFT algorithm, we

leverage this algorithmic characteristic and o�ine ABFT FFT scheme

to propose an online ABFT scheme for FFT. Taking the tradeo� of

fault tolerant ability and overhead into consideration, we propose

a two-layer ABFT approach that leverages the highest level of de-

composition of a Cooley-Tukey FFT to protect the �rst part and

second part by two separate ABFT schemes.

From the view of the highest level of decomposition, an N -point

FFT is calculated by computing k m-point FFTs, twiddle multipli-

cations andm k-point FFTs when N =m ∗ k . �e k m-point FFTs

can be protected separately by the ABFT approach. So can the

m k-point FFTs. Also, twiddle multiplication can be protected by

DMR with low overhead because it is memory-intensive. �us,

the structure of online ABFT scheme can be shown in Fig. 1. �e

colored parts are protected by their own FFTs while the red parts,

including the twiddle multiplication and input checksum vector

generation, are protected by DMR.

According to Fig. 1, the input checksum cm = rmAm should be

calculated at �rst. �en the m-point FFTs are executed and veri�ed

one by one. If there is error in the i-th FFT, it can be detected

by comparing the checksum cmxi and rmXi . It will be corrected

by an immediate re-execution of this FFT. Also, the output of the

re-calculation would be veri�ed. A�er that, each element in the

intermediate output will multiply itself with the corresponding

twiddle factor (ω
n1 j2
N ) to generate the input for the la�er k-point

FFTs. �en the k-point FFTs are executed and veri�ed one by

one. �ey can be protected by the same mechanism with input

checksum ck = rkAk . If an error occurs during the execution

of any k-point FFT, it can be detected and corrected as the �rst

part. However, if an error strikes the twiddle multiplication, the

ABFT scheme cannot detect the error since the input has already

been corrupted. �erefore, online DMR is equipped for the twiddle

multiplication. Each multiplication is executed twice and veri�ed

immediately to ensure correctness. If an error is detected here,

a third execution is performed and the �nal result would be the

majority of the three executions. Since computation would only

happen in one of the three parts or in the checksum calculation,

any single computational error can be revealed. Besides these parts,

the other parts are protected by one and only one ABFT FFT so

that no computation is wasted. �is ensures no masked error and

no repeated protection on the same data.

�e algorithm of this approach is shown in Algorithm 2. Com-

pared with the o�ine scheme, the two-layer online scheme only

needs to compute two input checksum vectors of sizem and k while

the o�ine one needs to compute one input checksum vector of size

N . As this computation is one of major overhead, the online scheme

should have be�er performance. Furthermore, since each small FFT

is equipped with separate protection, the online scheme is expected

to achieve timely recovery when an error occurs.

3.2 Memory Fault Tolerance
Besides the logic units, faults may also strike memory to cause mem-

ory errors. �is may be even more common than computational

errors. If memory fault strikes some intermediate result during

computation in some decomposed FFT, this error would behave

like a computational error and can be detected and recovered by

the ABFT schemes above. However, if it strikes the input before

the calculation or the output a�er the calculation, the error cannot

be detected by this scheme alone. �us, more strict mechanisms

are needed to tolerate memory faults.

As usual, two checksums r1 = (1,1, . . . ,1) and r2 = (1,2, . . . ,n)
are used to detect and recover from a memory error. If any error

occurs and changes the input x j into x ′j , the di�erence will be:

r1x − r1x
′ = x j − x

′
j

r2x − r2x
′ = j (x j − x

′
j )

�en the error can be located by (r2x − r2x
′)/(r1x − r1x

′) and re-

covered by adding r1x − r1x
′

to the corrupted element.

In our fault model for the memory faults, we assume that memory

faults would not occur when the checksums are being generated,

otherwise, the error cannot be detected by ABFT approaches. �is is

reasonable because the checksum generation would only take very

li�le time (the time complexity is O (N ) and its coe�cient is very

small). Our basic idea to detect memory error is to verify data before

use. Denote CCG as computational checksum generation, MCG as

memory checksum generation, CCV as computational checksum

veri�cation, MCV as memory checksum veri�cation, TM as twiddle

multiplication, s as the number of FFTs to be computed together,

then the hierarchy of memory protection is shown in Fig. 2. Bold

italic operations are original operations in FFTW. To ensure the

correctness of the input, memory checksums of each m-point FFT
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Figure 1: �e Two-Layer ABFT FFT Scheme (When N =m ∗ k)
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Figure 2: Hierarchy of Memory Protection

are generated before any of the m-point FFT calculations. �en the

k m-point FFT calculations would start one by one and veri�cations

are invoked at the beginning of these calculations. If an error

occurs, the corrupted input will be located and recovered by the 2

checksums and a restart will be performed immediately. Otherwise,

the computation is thought as fault-free and memory checksums

for the intermediate output are generated. �ese checksums will

be used for veri�cation before the twiddle multiplication to make

sure there is no memory error in the output between the end of

thism-point FFT and the end of all the k m-point FFTs.

A similar technique can be applied to the second part. Each

k-point FFT needs memory checksum veri�cation before compu-

tation, computational checksum veri�cation, and output memory

checksum generation a�er computation. At last, the �nal output is

veri�ed to ensure correctness of the result.

Besides the protection of the input, output and intermediate

result, the input checksum vector rA for the m-point FFT and k-

point FFT should also be checked. �ese veri�cations can be done in

time intervals related to the error rate, which is quite feasible across

the whole computation. As there is only O (
√
n) time consumed in

each veri�cation, it would introduce very li�le overhead.

�is mechanism helps a lot in correcting the memory errors. All

the memory errors can be detected and recovered as long as two

memory errors do not strike the same FFT at the same time.

4 SEQUENTIAL OPTIMIZATIONS
�e implementation of FFTW is tricky. It is not easy to add fault

tolerance while keeping the same performance. �is section intro-

duces some optimizations that we apply to minimize overhead.

4.1 Memory Checksum Modi�cation
�ough the traditional memory checksums r1 = (1,1, . . . ,1) and

r2 = (1,2, . . . ,n) work well for correcting memory error, they may

involve redundant computation because they do not make use of the

computational checksum r = (ω0

3
,ω1

3
, . . . ,ωN−1

3
). Since rAx will be

calculated under any circumstance to detect computational error,

r1 can be replaced by r ′
1
= r directly to save the computation time

of r1x . Correspondingly the j-th element in the second checksum

r2 can be replaced by (r ′
2
)j = j ∗ (rA)j . Similar to the original

checksum r1 and r2, the di�erence the new checksums would be:

r ′
1
x − r ′

1
x ′ = (rA)j (x j − x

′
j )

r ′
2
x − r ′

2
x ′ = j ∗ (rA)j (x j − x

′
j )

�en the error can be located by (r ′
2
x − r ′

2
x ′)/(r ′

1
x − r ′

1
x ′). A�er

that correction can be done by adding (r ′
1
x − r ′

1
x ′)/(rA)j to the

corrupted element. As the generation time for r ′
1

and r ′
2

is O (
√
N ),

the extra overhead on input checksum vector generation would be

negligible. On the other hand, it saves the checksum generation

time since it only costs 10N operations (8N for r ′
1
x , 2N for r ′

2
x)

while the original one costs 14N (8N for rx , 2N for r1x , 4N for r2x ).

4.2 Veri�cation & Correction Postponing
According to Fig. 2, there is input memory checksum generation

when FFT starts, followed immediately by memory checksum veri-

�cation and m-point FFTs. Inspired by the fact that the errors, both

computational errors and memory errors, would propagate to the

end of each decomposed FFT, MCVs before eachm-point FFT can

be postponed to the CCVs a�er this m-point FFT. Since CCV can

detect the error, the postponed MCV is eliminated.

Similarly, the MCVs a�er k-point FFTs can be postponed to the

�nal MCV and these MCVs as well as the MCGs a�er k-point FFTs

can be eliminated for lower overhead. Unfortunately, this cannot be

done directly since the second part is always done in-place where

the input will be overwri�en by the output. If the output veri�cation

is postponed, the error can still be detected since the checksums

will not match. However, it cannot be corrected since the input

is overwri�en. �us, another copy of the intermediate output is
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Figure 3: Optimized Hierarchy of Memory Protection

needed. It can be copied to the original input array for no extra

memory. �ough the copy operation also involves N elements, it

would be much faster than the original redundant MCVs and MCGs.

Besides, the correction operations r ′
2
x can be postponed to the

time when an error is detected. However, it will result in slower

recovery. When the error rate is low, the optimization can be

adopted for lower overhead in error-free runs. When the error rate

is high, the correction operations should not be postponed.

4.3 Incremental Checksum Generation
From Section 3.2, the MCG before twiddle multiplication is nec-

essary because there is a rearrangement of data between the two

ABFT parts. However, the veri�cation mechanism still seems ine�-

cient since each element is veri�ed twice. Instead of regeneration,

this optimization uses incremental generation for the checksums

to reorganize the memory checksums.

A�er the input checksums are generated at the very beginning,

extra space is allocated to store the information of the output. Un-

like the previous approach, these output checksums directly store

the checksums for the k-point FFTs in the second part. At �rst,

these checksums are initialized to 0. At the end of each m-point

FFT, the k outputs increase their corresponding slots by their own

value, i. e. the �rst element X ′
0

would increase the �rst slot in the

checksum by X ′
0

while the second element X ′
1

would increase the

second slot by X ′
1
. By this means, the j-th slot in the checksum

would happen to be the checksum for elements in the j-th k-point

FFT. �us only one veri�cation is needed before the second part.

4.4 Non-contiguous Memory Access
When a big FFT is broken down into smaller ones, the inputs of

each smaller FFT would be non-contiguous as the �rst k m-point

FFTs in Fig. 2. �e stride (distance between adjacent inputs) of each

m-point FFT would be 2k . It is usuallyO (
√
N ) and will result in low

spatial locality in the cache. Besides basic use in FFT to compute the

result, the inputs are also needed in CCGs and MCVs. Another read

would be relatively expensive since there would be cache misses all

the time, which leads to large overhead. �is happens to MCG in

the �rst part. To resolve this, the corresponding MCGs are brought

forward to the beginning of all them-point FFTs and the new MCGs

are computed via the incremental checksum generation approach

above. It actually accesses each element twice. But each access has

li�le low overhead due to cache reuse.

Denote CMCG as the modi�ed checksum generation and CMCV

as the modi�ed checksum veri�cation in Section 4.1, the hierarchy

of memory protection can be simpli�ed to Fig. 3 with all the opti-

mizations above. Compared to the original hierarchy in Fig. 2, the

optimized one is much simpler and faster.

5 ONLINE ABFT FFT ON PARALLEL SYSTEMS
FFT of large sizes becomes very common nowadays [11]. �erefore,

FFT may need to be performed in parallel to avoid the limited

memory and low computational e�ciency on single processor when

FFT size becomes large. Although the idea of sequential ABFT FFT

can be borrowed, challenge comes that parallel FFTs are always

done in-place for be�er utilization of memory. In-place and out-

of-place are property of an algorithm. In-place means that the

algorithm will be done without auxiliary data structure. To make

it simple for FFT, the in-place algorithm will store the output in

the original input memory and does not bother to allocate a new

memory space of size N . �e out-of-place algorithm will allocate

the memory space to store output in the beginning of the algorithm.

To compute parallel FFT, FFTW tends to choose a plan which

computes
N
p p-point FFTs at �rst and then p N

p -point FFTs. Un-

fortunately, the data needed for each FFT is not always on the

same processor. �us communication among processors is needed

during the computation. Assume FFT size is N and the number of

processors is p. Data on each processor is divided into p blocks of

size
N
p2

. �en a six-step algorithm that involves 3 transpositions is

adopted for 1D parallel FFTs. A transposition is a communication

that exchanges the i-th block of data in processor i with the j-th
block of data in processor j for all i and j from 0 to p − 1. Denote

the
N
p2

p-point FFTs on a processor as FFT 1 and the la�er
N
p -point

FFT as FFT 2. �e �rst transposition is performed at �rst to deliver

data needed for FFT 1 to the same processor. �en FFT 1 is done

on each processor in parallel. A�er that, the second transposition

occurs to exchange data for FFT 2. FFT 2 is performed as the next

step. When FFT 2 is done, the third transposition is executed to

deliver data to its belonging processor. At last, there is some local

adjustment to place the �nal output in a correct order.

Because original input will be overwri�en by output, the restart

would not work for in-place FFTs. Fig. 4 shows the �owchart of

adding fault tolerance to in-place FFTs. Compared to the out-of-

place protection in the sequential scheme, input in each in-place

FFT should have a backup in case an error occurs. Also, checksum

veri�cations should be done immediately a�er the output is gen-

erated. When a memory error is detected, it should be corrected

right away. A�er that, the input will be recovered by the backup

and a restart will be performed.

FFT1 can be protected by the mechanism above because each

p-point FFT only asks for 2p space. However, FFT2 cannot be

protected in this way because space will be doubled. Fortunately,

the idea of the online sequential ABFT scheme can be applied

here for timely detection, faster recovery and less space overhead

because FFT 2 will be decomposed to smaller FFTs. Nevertheless,

the sequential ABFT scheme cannot be leveraged directly because

in-place FFTs tend to select a di�erent execution plan from out-of-

place FFTs for e�ciency. For example, if
N
p is a square number,

FFTW may choose a plan similar to the out-of-place one to employ

a two-layer decomposition; if it is not, i. e.
N
p = r ∗ k2

, FFTW

would prefer a more complicated plan. It may perform r ∗k k-point

FFTs at �rst, then do twiddle multiplications and k2 r -point FFTs,

�nally another twiddle multiplications and r ∗ k k-point FFTs. In

this situation, the original two-layer online ABFT can no longer
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part. At this time, the procedure has to fail since original
input is overwritten. Twiddle multiplication is omitted.

work as shown in Fig. 5. Because the FFT is done in-place, the

initial input is overwri�en a�er the k ∗r k-point FFTs so any restart

a�er the r ∗ k k-point FFTs cannot be performed. A checkpoint for

input would de�nitely work here. However, it will have 100% space

overhead and longer correction time.

�e solution to this kind of plan is to add one �exible veri�cation

layer between the original two layers. �e added layer would be

protected by DMR since r is usually small (2 or 8 for
N
p is a power

of 2), making the k m-point FFTs an ABFT-DMR scheme. As the

execution time of the DMR part is very small (the same magnitude of

the time for checksum generation and veri�cation), we can assume

there is no memory error in this part. �en the input veri�cation

can be brought forward to all the DMR computations and the output

checksum generation can be postponed to end of this part.

Besides the modi�cations on fault-tolerant mechanisms, there

are some modi�cations on communication as well. In order to

detect and correct errors that occur in communication, checksums

for communicated data should be generated and sent. As there

are only 2 checksums for each block of communicated data, the

communication overhead would be negligible.

�is scheme can be optimized by some of the optimizations

mentioned in previous part. A�er these optimizations, it is good

from the sequential point of view because there are no redundant

checksum generations and veri�cations.

6 PARALLEL OPTIMIZATIONS
Besides sequential optimizations that mentioned in previous part,

we also adopt several optimizations speci�cally for parallel FFTs.

Some of the optimizations can also be used in fault-free FFTs for

be�er performance. �ese optimizations are incorporated into our

implementation to reduce overhead.

6.1 Computation-Communication Overlap
In FFTW, blocking communication is used for transpositions. It is

good because the following step usually needs data from all proces-

sors so the non-blocking method would have li�le bene�t. However,

the checksum generation and veri�cation in the ABFT FFT scheme

Algorithm 3 Communication-Computation Overlap

1: procedure Non-blocking Transpose

2: sched[0 to p-1]: schedule for communication

3: alloc send bu�ers sb1, sb2 and receive bu�ers rb1, rb2

4: generate data for processor sched[0] in sb1

5: Isend(sb1) to and Irecv(rb1) from processor sched[0]

6: generate data for processor sched[1] in sb2

7: Iwait() for processor sched[0]

8: for i from 1 to p-3 do
9: Isend(sb2) to and Irecv(rb2) from processor sched[i]

10: verify and process data from processor sched[i-1] in rb1

11: generate data for processor sched[i+1] in sb1

12: Iwait() for processor sched[i]

13: Isend(sb1) to and Irecv(rb1) from processor sched[i+1]

14: verify and process data from processor sched[i] in rb2

15: generate data for processor sched[i+2] in sb2

16: Iwait() for processor sched[i+1]

17: increase i by 2

18: end for
19: Isend(sb2) to and Irecv(rb2) from processor sched[p-1]

20: verify and process data from processor sched[p-2] in rb1

21: Iwait() for processor sched[p-1]

22: verify and process data from processor sched[p-1] in rb2

23: end procedure

are totally uncorrelated with FFT computation, showing great po-

tential for computation-communication overlap.

Our idea for communication-computation overlap is very similar

to the idea of pipeline. It doubles the number of send bu�er and

receive bu�er. When Isend () is used to send data in send bu�er

sb1 and Irecv () is used to receive data in receive bu�er rb1, data

received in another receive bu�er rb2 can be processed and data to

be sent in another send bu�er sb2 can be generated. When these

operations are done, Iwait () can be used to wait for communication.

A�er that, data in rb1 can be processed and data to be sent to next

processor can be generated in sb1 while sending data in sb2 and

receiving data in rb2. �e algorithm is shown in Algorithm 3.

With this technique, MCV and CCG before the p-point FFTs

can be overlapped with transpose
1
. MCV, TM and CMCG before

the k-point FFTs can be overlapped with transpose
2
. Besides, the

send bu�er initialization and receive bu�er data transfer in each

communication can also be overlapped.

�e online ABFT scheme for parallel in-place FFT a�er overlap

is shown in Fig. 6. Bold italic operations are original operations

in FFTW. �is overlap is optimal since all the other operations are

either in the critical path or dependent on the communication. Also,

this optimization can be applied to FFTW to overlap the twiddle

multiplication in FFT 2.1 with communication.

6.2 Re-design Plan in FFT 1

Since the input and output are both non-contiguous with a large

stride in FFT 1, there is high latency in accessing these elements

due to cache misses. Fault-free FFTs do not su�er much from this

because the input and output are read and wri�en once during the

whole computation. However, with the fault tolerant operations,
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Figure 6: Online ABFT Scheme for Parallel In-Place FFT A�er Communication-Computation Overlap.

the input and output are at least accessed twice, which may lead to

high overhead. Inspired by the implementation of sequential FFT,

we use a similar idea to adjust the execution plan of FFT 1.

In order to mitigate the overhead in multiple accesses, one bu�er

is allocated to store the input contiguously. �e input is read into

the bu�er and computed in the bu�er. �e result is then veri�ed in

the bu�er and copied to the output location when the computation

is correct. To maximum reuse for data in the cache, the bu�er can

be made c times the size of data in the p-point FFT, where c is the

number of data in the cache line. Each time one element is read

into the bu�er, the la�er c elements are also read and stored in the

bu�er as well. In this way, cache can be be�er utilized.

�is change may have more operations because there are data

assignments between input, output and the bu�er. However, it may

perform quite well when the p-point FFT barely �ts in the cache. In

this case, the original implementation would su�er a lot since there

is no reuse of cached data. On the other hand, this optimization

can make use of cache because data are moved into the bu�er. It

would be more scalable compared to the original plan.

7 OVERHEAD ANALYSIS
�is section analyzes the theoretical overhead for the various schemes

above. In the following subsections, c1,c2,r1,r2 will be used to de-

note one operation of complex number multiplication, complex

number addition, real number multiplication, real number addition.

Assume one real number addition or one real number multiplication

is the unit of operation, c1 = 6, c2 = 2 and 8r1 + 3r2 = 11 for the

complex number division can be derived. �is part only discusses

the number of operations needed to add fault tolerance. �e true

overhead may di�er since it heavily depends on the implementation.

As a comparison, the total number of computational operations in

the original FFT would roughly be 5N log
2
N .

7.1 Overhead in the Sequential Scheme
7.1.1 Computational FT in the O�line Scheme. �e overhead in

the o�ine scheme comes from input checksum vector generation,

CCG and CCV. In the o�ine scheme, rA can be calculated according

to characteristics of arithmetic arrays to reduce overhead:

(rA) j = ω
0

3
ω

0j
n + ω

1

3
ω

1j
n + ... + ω

n−1

3
ω
(n−1)j
n =

1 − ωn
3

1 − ω1

3
ω
j
n

�en it can be optimized by replacing trigonometric functions with

2 complex number multiplications. �en the overhead would be:

TrAGen = (c1 + c1 + 2c2 + 8r1 + 3r2) ∗ N = 27N

CCG involves 1 complex number multiplication and 1 complex

number addition for each element. Its overhead would be:

TCCG = N ∗ c1 + N ∗ c2 = 8N

As for CCV, the total number of complex multiplications can be

reduced to 2 by merging elements of same factors. So the overhead

turns out to be:

TCCV = 2 ∗ c1 + N ∗ c2 ≈ 2N

�erefore, the total overhead for the o�ine scheme would be 37N .

If an error occurs, the correction would be another run of the

whole FFT and �nal veri�cation. So the correction time would be

39N + 5N log
2
N .

7.1.2 Computational FT in the Online ABFT Scheme. �e over-

head for the online scheme comes from checksum operations in the

two ABFT parts and DMR for input checksum vector generation

and twiddle multiplication. DMR for input checksum vector gener-

ation is negligible since the checksum sizes are O (
√
N ). DMR for

twiddle multiplication would cost 12N because it needs 2 complex

number multiplications.

Overhead for ABFT comes from CCG and CCV. �ey cost 8N
and 2N respectively. �e two ABFT parts have the same overhead.

�us the total overhead for the two-layer ABFT scheme would be:

TABFT = 12N + 2 ∗ (8N + 2N ) = 32N

If an error occurs in DMR, it will be detected and corrected in no

time. If an error strikes the ABFT parts, it will be detected by the

ABFT scheme and an FFT of size k or m will be performed. As k

andm are usually θ (
√
N ), the recalculation will always be an FFT

of size θ (
√
N ), which is negligible. �erefore, the overhead for the

online scheme would still be 32N even if an error occurs.

7.1.3 Total Overhead in the O�line Scheme. �e extra operations

in the o�ine scheme would be the computation of r ′
2
x when the

corresponding optimizations are applied. �is computation will

cost 4N operations. �erefore, the total overhead for the o�ine

scheme would be:

Tof f l inem = 37N + 4N = 41N



Correcting So� Errors Online in Fast Fourier Transform SC17, November 12–17, 2017, Denver, CO, USA

If there is error, whole computation a�er checksums generation will

be restarted, including the veri�cation operations. �e overhead

would be 5N log
2
N + 43N .

7.1.4 Total Overhead in the Online Scheme. In CMCG, there are

4N extra operations for the new checksum r ′
2

calculation. Besides,

there is one more MCG and MCV, which corresponds to 6N opera-

tions. Also, there is one more CMCV of 2N operations in the end.

�en the total overhead will be:

TABFTm = TABFT + 4N + 6N + 2N + 2N = 46N

As the recovery time for both computational error and memory

error is negligible, the overhead would still be 46N when an error

occurs during the execution.

7.2 Sequential Space Overhead
When FFT is calculated on single processor, the space overhead

only comes from the checksums of each small FFTs and protection

for the bu�ered intermediate output. As these sizes are at most 4k

or 4m, the whole scheme only requires O (
√
N ) extra space.

7.3 Overhead in the Parallel Scheme
7.3.1 Overhead Before Communication-Computation Overlap.

Before overlap, the fault tolerant operations for parallel online

scheme include MCG before transpose1, MCV, CMCG a�er transpose1,

CMCV and MCG before transpose2, MCV, and CMCG a�er transpose2,

CMCV and MCG in FFT 2.1, 2 MCVs, CCG, MCG in FFT 2.2 and

MCV a�er transpose3. So there are 2 CMCGs, 2 CMCVs, 4 MCGs,

4 MCVs, 1 CCG and 1 CCV when r = 1. �e overhead for this

situation would be:

TABFT p1
= 2 ∗ (12n + 2n + 8n + 2n) + 4 ∗ (6n + 2n) = 96n

When r , 1, there is 1 more MCV and 1 more MCV as well as DMR

for TM and r -point FFTs, thus the overhead in this situation is:

TABFT p2
= 96n + 6n + 2n + 12n + 5n log

2
r = 116n + 5n log

2
r

7.3.2 Overhead A�er Communication-ComputationOverlap. �e

overlapped communication includes 2 MCVs, 2 CMCGs and 1 TM,

thus the new overhead when r = 1 would be:

T ′ABFT p1

= 96n − (2 ∗ (12n + 2n) + 12n) = 56n

Similarly, the new overhead when r , 1 would be:

T ′ABFT p2

= 116n+5n log
2
r − (2∗ (12n+2n)+12n) = 76n+5n log

2
r

�e correction time for the parallel online scheme would also be

negligible since correction in each part would cost negligible time.

7.4 Parallel Space Overhead
Assume the size of used space is n = N

p on each processor, the

largest allocated extra memory would be the checksum arrays in

FFT1, which totally take up
2n
p space. Besides, there are bu�ers for

communication. Our communication-computation overlap opera-

tions allocate four bu�ers, each of which takes up
n
p space. �us

total space overhead would be
6n
p . �e other extra memory are

all O (m) or O (k ), which is θ (
√
n). Also, the operations in com-

munication can reuse the space freed from the send and receive

bu�ers in the communication, which requires no extra memory.

�erefore, the required extra space would be
6n
p , then the relative

space overhead would be
6

p .

7.5 Parallel Communication Overhead
�e communication overhead of the ABFT scheme comes from

the increased message size in the communication. During each

communication, the proposed scheme needs to send and receive

two checksums for each block of data, which corresponds to an

overhead of
2p2

N . As there is no extra overhead in the number of

messages, the communication overhead would be at most
2p2

N =
2p
n .

8 IMPACT OF ROUND-OFF ERRORS
Due to the �nite word length in �oating number arithmetic, round-

o� errors are unavoidable in so�ware level implementations. �ere-

fore, the two checksums in the ABFT scheme may not be equal even

though the whole FFT system is fault free. To avoid the situation

above to be diagnosed as faulty, a small di�erence η between the

result is allowed as in previous work. �e selection of η is essential

because it is a tradeo� between throughput (true negative, fault-free

while diagnosed as faulty) and fault coverage (false positive, faulty

while diagnosed as fault-free). �is section analyzes the estimation

of round-o� errors and how to choose suitable η.

8.1 Round-o� Errors in Computational FT
In existing work, the hardware implementations always employ

the �xed-point round o� strategy, which is quite di�erent from

the �oating point arithmetic in the so�ware level. Fortunately, Liu

[23], Weinstein [36] and Gentleman [19] have already conducted

some research on this topic. Assuming the N real numbers and N
imaginary numbers in the input are mutually uncorrelated random

variables with zero means. According to [36], the noise-to-signal

ratio in an N -point FFT computation would be:

σ 2

E

σ 2

X
= 2σ 2

ϵ log
2
N

Whereσ 2

E is the variance of round-o� error, σ 2

X is the variance of the

output, σϵ is the error due to rounding �oating point multiplication

or addition. σϵ can be assumed uniformly distributed in (−2
−t ,2−t )

or experimentally measured as σϵ
2 = (0.21)2−2t

in [19], where t is

the number of bits in the mantissa part of a �oating point.

Assume the input x of an m-point FFT has zero means and vari-

anceσ0. Its outputX will have zero means and varianceσ1 =
√
mσ0.

According to equation (3), the variance of round-o� would be

σe =
√

2mσ 2

0
σ 2

ϵ log
2
m. A�er the summation, the variance of the

round o� error in the �nal sum would vary from log
2
m ∗ σe to

m ∗ σe . To improve fault coverage, we use the upper-bound m ∗ σe
for this estimation. As the input precision loss would be much

smaller than the output precision loss, the variance of the �nal

di�erence would be σroe = m ∗ σe = m
√

2mσ 2

0
σ 2

ϵ log
2
m. In the

k-point FFTs, the input has variance

√
mσ0 and output has variance

√
kmσ0. Similarly, we can derive σroe2 = k

√
2kmσ 2

0
σ 2

ϵ log
2
k .

A�er that, an approach similar to [35] can be employed to set

the coe�cient η. According to central limit theory, the throughput
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of an N-point FFT can be estimated as:

throuдhput (η,N ,σi ) =
1

1 + P ( |F |√
Nσ
>

η
√
Nσ

)
=

1

3 − 2Φ(
η
√
Nσ

)

When η = 3

√
Nσ , the theoretical throughput is 0.997. According

to this formula, di�erent η can be set to di�erent parts of the online

ABFT scheme. I.e., η1 = 3

√
mσroe , η2 = 3

√
kσroe2 can be chosen

respectively form-point FFTs and k-point FFTs in sequential FFT.

In parallel FFT, things are similar. �e only di�erence is that there

are three ηs to be set respectively for FFT 1, FFT 2.1 and FFT 2.2.

8.2 Round-o� Errors in Memory FT
Memory round-o� errors would be much smaller since it only

involves simple summation. According to the analysis above, the

summation of m elements in the array x will result in a variance

m ∗
√
var (x )σϵ in the precision loss in the result for data with high

precision. �en threshold can be set by the approach above.

9 EXPERIMENTAL EVALUATIONS
We implement the proposed ABFT scheme into the widely used

FFTW library [15, 16] - one of the fastest so�ware implementations

of FFT and reports the experimental results in this section.

9.1 Experiment Setup
We evaluated our implementation on TIANHE-2, the current 2nd
fastest supercomputer in the world. Each node of TIANHE-2 has 2

E5-2692 processors (with 24 cores in all) and 64GB memory.

9.2 Overhead in Sequential Scheme
�is section evaluates the sequential schemes for out-of-place FFT

on single processor. FFT sizes from 2
25

to 2
28

are tested. Each

experiment is run 9 times and the average number is recorded.

9.2.1 Experiments without Fault. Four schemes are evaluated

at this part and the results are shown in Fig. 7. Fig. 7(a) shows

the evaluations for computational FT schemes. �e �rst bar shows

the overhead of the naive o�ine scheme. �e second bar is the

evaluation of the optimized o�ine scheme. A naive online scheme is

displayed as the third bar and an optimized online scheme is shown

as the last bar. Fig. 7(b) shows the evaluations for computational

and memory FT schemes. �e only di�erence is that the third bar

displays the online scheme with computational FT optimizations.

From the �gure, we can see that the optimization techniques

play an important role in the FT-FFT schemes. �e optimized o�ine

scheme is much be�er than the naive o�ine scheme due to the num-

ber of calls to the trigonometric functions. �e optimized online

scheme outperforms the o�ine one a lot when only computational

errors are considered. Also, it has comparable performance to the

optimized o�ine scheme even when memory errors are considered.

9.2.2 Experiments with Faults. �is part shows the timely re-

covery of the online scheme. As the o�ine scheme only guarantees

to detect one error, only one memory fault is injected in the opti-

mized o�ine scheme. �ree fault injections are performed on the

online scheme: one computational fault (1c); one computational

fault and a memory fault (1m + 1c); two computational faults and

one memory fault (1m + 2c). (0) indicates fault-free executions as
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Figure 7: Overhead of ABFT-FFT Schemes on TIANHE-2
When �ere Is No Fault: (a) Computational FT (b) Compu-
tational & Memory FT
Table 1: Execution Time (Seconds) Comparison of FT-FFT
on TIANHE-2 When�ere Are Faults

Problem Size N = 2
25 N = 2

26 N = 2
27 N = 2

28

F FTW (0) 3.71 8.04 16.79 34.97

Opt −Of f line (0) 4.88 10.01 19.86 40.52

Opt −Of f line (1m) 9.63 20.21 42.89 87.65

Opt −Online (0) 4.64 9.83 19.94 40.64

Opt −Online (1c ) 4.78 9.92 20.17 40.92

Opt −Online (1m + 1c ) 4.83 9.98 20.44 41.28

Opt −Online (1m + 2c ) 4.86 10.17 20.77 41.68

comparison. Computational fault is simulated as adding some con-

stant to an element while memory fault is simulated by changing

one element to another constant. Table 1 shows the execution time

of the optimized schemes with di�erent number of errors.

According to the table, the online scheme does have strong fault

tolerant ability. �e o�ine scheme su�ers from the re-execution

when an error occurs thus it costs about twice the time the online

scheme does. On the other hand, because one error only leads

to a recalculation of am-point FFT or s k-point FFTs which costs

O (
√
N log

√
N ) time, the execution time of the online scheme can

almost maintain the same when the number of errors increases.

In fact, as long as no two errors strike the samem-point FFT or s
k-point FFTs at the same time, the online scheme is able to detect

and correct all of them quickly. �erefore, the online scheme is

able to perform well even when the error rate is relatively high,

showing great advantage over the o�ne scheme.

9.3 Performance in Parallel Scheme
�is section evaluates the parallel online scheme for in-place FFT

in large scale. Because of �uctuations, each experiment is run 20

times and the average number is recorded.

9.3.1 Experiments without Fault. �ree implementations together

with original FFTW are evaluated at this part. �e results of weak

scaling and strong scaling are shown in Fig. 8. �e �rst bar shows

the execution time of original FFTW . �e sequentially optimized

fault tolerant scheme FT − FFTW is displayed as the second bar.

�e third bar opt − FFTW is FFTW with parallel optimizations in

Section 6. �e last bar opt −FT −FFTW is the parallel fault tolerant

scheme with both sequential and parallel optimizations. According

to the �gure, the sequentially optimized ABFT scheme has some

overhead over the original FFTW . �e overhead comes from the

checksum operations. On the other hand, the online scheme with
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(a)	 (b)	Figure 8: Execution Time (Seconds) of Parallel FT-FFT
Schemes on TIANHE-2 When �ere Is No Fault: (a) Strong
Scaling: n = 2

26 (b) Weak Scaling: p = 256

Table 2: Execution Time (Seconds) Comparison of Strong
Scaling FT-FFTW on TIANHE-2 When�ere Are Faults

Number of Cores p = 128 p = 256 p = 512 p = 1024

Opt − FT − F FTW (0) 7.83 10.24 11.34 12.47

Opt − FT − F FTW (2m) 7.85 10.23 11.39 12.57

Opt − FT − F FTW (2c ) 7.85 10.28 11.33 12.59

Opt − FT − F FTW (2m + 2c ) 7.86 10.23 11.34 12.56

Table 3: Execution Time (Seconds) Comparison of Weak
Scaling FT-FFTW on TIANHE-2 When�ere Are Faults

Problem Size N = 2
31 N = 2

32 N = 2
33 N = 2

34

Opt − FT − F FTW (0) 5.45 10.35 22.45 45.63

Opt − FT − F FTW (2m) 5.42 10.35 22.55 45.31

Opt − FT − F FTW (2c ) 5.43 10.36 22.47 45.46

Opt − FT − F FTW (2m + 2c ) 5.45 10.31 22.55 45.47

parallel optimizations beats the original FFTW in error-free runs

because the parallel optimizations work very well. However, it still

has some overhead over opt − FFTW due to checksum operations.

9.3.2 Experiments with Faults. �is part shows the fault tolerant

ability of the parallel online scheme. Fault injection is similar to the

one in Section 9.2.2 except that faults are injected in each processor.

Experiments of no faults (0), 2 memory faults (2m), 2 computational

faults (2c), 2 memory faults and 2 computational faults (2m+2c) are

shown in Table 2 and Table 3.

According to the tables, this scheme does have strong fault tol-

erant ability. It only takes very li�le time to recover from multiple

faults because each fault only revokes a restart of one or several

p-point FFTs or

√
n
p -point FFTs. Note that sometimes the error free

run may have longer execution time. �is is caused by �uctuation.

9.4 Round-o� Errors
As parallel FFTs have similar round-o� error impact to sequential

scheme, only experiments on sequential schemes of 2
25

-point FFT

are tested. �ese results can be generalized to the parallel scheme.

9.4.1 Round-o� Error Approximation. In this part, the accuracy

of round-o� analysis in Section 8 is evaluated. Input from uniform

distribution U (−1,1) and normal distribution N (0,1) is tested re-

spectively. 1000 runs are performed thus there are 8192000m-point

FFTs and 1024000 s k-point FFTs. �e result is shown in Table 4.

In Table 4, the column Max1 shows the max round-o� error in

the m-point FFTs. Est1 shows the estimated η for this part. Thput
1

shows the throughput of the scheme. �e la�er three columns show

the same property of the k-point FFTs. �e selected η provides

Table 4: Approximation of Round-o� Error
Input Max 1 Est 1 Thput

1
Max 2 Est 2 Thput

2

U (−1, 1) 0.92 ∗ 10
−8

1.45 ∗ 10
−8

100% 0.61 ∗ 10
−6

3.86 ∗ 10
−6

100%

N (0, 1) 3.8 ∗ 10
−8

2.51 ∗ 10
−8

99.96% 1.11 ∗ 10
−6

6.69 ∗ 10
−6

100%

Table 5: Minimal Magnitude of Error �at Can Be Detected
Schemes e1 e2 e3

Of f line 10
−2

10
−2

10
−2

Online 10
−7

10
−6

10
−6

Table 6: Distribution of Relative Errors of FFT Output in
1000 RunsWhen One Random Fault Is Injected in Each Run
| |x ′−x | |∞
| |x | |∞

Uncorrected > 10
−6 > 10

−8 > 10
−10 > 10

−12

No Correct ion − 73.4% 82.4% 84.0% 84.2%

Of f line 4.4% 5.2% 20.8% 33.4% 35.7%

Online 2.5% 2.5% 2.5% 2.5% 3.9%

nearly 100% throughput while keeping close to the round-o� error

bound. It promises good coverage.

9.4.2 Detection Ability Comparison. �is section compares the

detection ability of the online scheme and the o�ine scheme. Same

fault is injected into the same position of the di�erent schemes.

�ree fault injection positions are tested in this part. e1 is injected

in the input a�er checksum veri�cation; e2 is injected in the input

of the second FFT; e3 is injected in the �nal output. In the fault

injection, the selected element will increase itself by the given

error magnitude. I. e., if the magnitude of error is 10
−3

, 10
−3

is

added to the selected element and whether the error is detected is

observed. η of the o�ine scheme is set as the round-o� error bound

of error-free runs to allow for 100% throughput.

From Table 5, the online scheme can detect a much smaller mag-

nitude of errors than the o�ine scheme. �us, when throughput is

similar, the online scheme should have much larger fault coverage.

9.4.3 Fault Coverage Tests. �is section shows the relative er-

rors of FFT output a�er an error occurs in a 2
25

-point sequential

FFT with input drawn from U (−1,1). As random computational

errors are hard to simulate and some of them can be simulated as

memory errors, only memory error of single bit �ip is tested here.

Some fault-free runs of 2
25

-point FFT are performed at �rst to get

a rough upper bound of the round-o� errors of the o�ine schemes.

A�er that, η is set as this rough upper-bound to allow for nearly

100% throughput and relative errors are evaluated a�er randomly

�ipping one higher bit (�ipping lower bit is usually masked) in the

input or output array. De�ne the relative error as
| |x ′−x | |∞
| |x | |∞

, where

x is the correct output, x ′ is the output with fault injection and

| | • | |∞ is the in�nity norm of vector. 1000 independent runs are

performed and the distribution of relative errors is shown in Table

6. �e �rst row shows the relative error of runs without correction.

It indicates the impact of errors on output as a comparison. �e

second column Uncorrected shows the percentage of uncorrected

errors due to wrong indexing caused by round-o� errors. It can

be improved by changing the indexing checksum r2. For these

situations, the relative error is set as in�nite.

According to the table, the online scheme outperforms the of-

�ine scheme a lot in fault coverage because the relative errors it

introduces are of much smaller magnitude. For example, if the error

bound is set as 10
−12

, the fault coverage in the online scheme would

be 96.1% compared to 64.3% in the o�ine scheme. It shows great

potential in practical use.
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10 CONCLUSION
�is paper presents an online ABFT scheme to correct so� errors

online in the widely used FFT computations. �e proposed scheme

only needs to repeat a small fraction of the computation a�er errors

occur. Experimental results demonstrate that the proposed scheme

improves the computing e�ciency by 2X over existing schemes

when errors occur.
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