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Abstract—Echo Planar Imaging (EPI) is the stan-
dard pulse sequence used in fast diffusion-weighted
magnetic resonance imaging (MRI), but is sensitive
to susceptibility-induced inhomogeneities in the main
B0 magnetic field. In diffusion MRI of the human
head, this leads to geometric distortion of the brain
in reconstructed diffusion images and a resulting lack
of correspondence with the high-resolution MRI scans
that are used to define the subject anatomy. In this
study, we propose and test an approach to estimate and
correct this distortion using a non-linear registration
framework based on mutual-information. We use an
anatomical image as the registration-template and con-
strain the registration using spatial regularization and
physics-based information about the characteristics of
the distortion, without requiring any additional data
collection. Results are shown for simulated and exper-
imental data. The proposed method aligns diffusion
images to the anatomical image with an error of 1-3
mm in most brain regions.

I. Introduction

Diffusion MRI is a non-invasive technique which helps
quantify the microstructural characteristics of tissue by
in-vivo mapping of diffusion processes [1]. It can provide
information about white matter fiber structure in the hu-
man brain and can be used to study the brain’s anatomical
connections [2]. Clinically, diffusion MRI is used for the
study and diagnosis of neurological disorders such as stroke
[3].
Most diffusion MRI scans use an EPI pulse sequence

for data collection. EPI is a popular fast imaging tech-
nique, but EPI images are well-known to have localized
geometric distortions caused by inhomogeneities in the
main magnetic field (B0) [4], [5], [6]. This distortion is
most significant near the boundaries separating air, bone,
and soft tissues, where there are large differences in mag-
netic susceptibility [6], [7]. Geometric image distortion is
problematic because anatomical information is frequently
used to guide the analysis of diffusion images, and this
information is obtained by mapping the diffusion images
to anatomical T1-weighted images. However, since the
anatomical images do not use EPI and do not contain
geometric distortions, the distortions in the diffusion data
can lead to misalignment with the anatomical images by
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several millimeters, which can limit the accuracy of image
analysis in the affected regions[6], [8], [9]. In addition,
uncorrected distortion can also lead to unreliable tractog-
raphy [8].
Most approaches to distortion correction rely on ac-

quiring additional data to provide an accurate model of
the distortion. This additional data may include direct
mapping of the B0 field inhomogeneity (also known as a
field map) [10], [5], measuring the point spread function
[11], or collecting two or more EPI images each with a
different phase-encode direction [12], [13]. These methods
can be effective, but all require additional acquisitions that
are not acquired in a large fraction of imaging studies.
Another class of methods uses the information in undis-

torted anatomical images to estimate the distortion in EPI
images. In these methods, the EPI images are warped to
match the anatomical structural images within a non-rigid
registration framework [7], [14], [15], [16], [17], [18], [19].
Diffusion images, however, have very different contrast
than the standard anatomical scans to which they are reg-
istered. This necessitates the use of either a preprocessing
step to ensure that the images are similar enough to be
registered using pixel-wise differences [14], [15], [16], [17],
or optimization metrics such as mutual information (MI)
that are insensitive to differences in image contrast [7],
[18], [19].
In this work, we propose and evaluate a technique to cor-

rect the distortion in diffusion-weighted images using con-
strained non-rigid registration and MI. This approach only
requires the diffusion images and an undistorted anatomi-
cal image, without the need for any additional acquisition.
Due to the nature of susceptibility-induced distortion [4],
we constrain the deformation in two ways. First, we allow
deformations only along the phase-encoding direction of
the diffusion images. Second, we constrain the deformation
to be smooth by adding spatial regularization. During
registration, we also account for the localized accumulation
and dispersion of the MR signals resulting from distortion
by modifying the intensity of the diffusion images. Within
the registration framework, the anatomical T1-weighted
image is the template while the diffusion images are
warped to match the template.

Similar techniques have been used previously to correct
EPI distortion. Studholme et al. [7] used MI with physics-



based constraints (but no spatial regularization) to correct
functional MR images. Others [18], [19] have used spa-
tial regularization (but no physics-constraints) to correct
EPI diffusion images. Our approach combines these two
constraints to obtain superior results to using either one
individually.
This paper is organized as follows. Section II describes

the characteristics of geometric distortion in EPI images.
Section III describes our proposed registration framework
for correcting this distortion. Section IV presents results
on simulated and experimental data. Finally, discussion
and conclusions are presented in Section V.

II. Distortion in Echo Planar Imaging

EPI is a multi-slice method, in which a 3D image is
generated by compositing a series of consecutive 2D images
of different imaging planes (slices). Standard MRI encodes
each of these 2D slices by manipulating magnetic gradient
fields to create a linear correspondence between spatial
position in the image and the Fourier-domain frequency
of the measured data. B0 field inhomogeneity disrupts this
linear correspondence, such that each slice ρe in a standard
EPI image is approximately related to its ideal, undis-
torted version ρ according to the following relationship [7]:

ρ(x, y) = |J(x, y)| ρe(xe, ye) (1)

where the EPI coordinate (xe, ye) is related to the undis-
torted coordinate (x, y) by

xe = x+
∆B0(x, y)

Gx

(2)

ye = y +
∆B0(x, y)

Gy

Tes

τ
(3)

and |J(x, y)| is the Jacobian of the coordinate transfor-
mation from undistorted space to distorted EPI space,
computed at the undistorted coordinates. This Jacobian
term reflects intensity changes in the EPI images that
result from the distortion. In this description, we have
assumed that x and y are the EPI readout and phase-
encoding directions respectively. Here, ∆B0(x, y) is the
field inhomogeneity, Gx and Gy are the amplitudes of the
readout and phase-encode gradients respectively, Tes is the
echo spacing and τ is the duration of the phase-encode
gradient.
Equations (2) and (3) show that the distortion is

present in both the readout and phase-encode direction.
The term Tes

τ
in (3) scales the distortion in the phase-

encode direction, typically by an order of magnitude more
than distortion in the readout direction. In real scenarios,
the distortion in the readout direction is generally sub-
millimeter, while the distortion could reach 10-15 millime-
ters in affected areas along the phase-encoding direction.
Hence, similar to much of the existing literature on EPI
distortion correction (e.g. [7], [19]), we neglect the distor-
tion along the readout direction by assuming that xe = x

and that

|J(x, y)| ≈
∂ye
∂y

. (4)

III. Proposed Framework

The correction of a distorted EPI image Fe using
the anatomical image Fa involves (a) estimation of the
deformation and (b) correction of intensities using the
estimated deformation. The deformation is represented by
a transformation φ : Xa 7→ Xe that maps EPI coordinates
Xe to anatomical image coordinates Xa = [xa, ya, za].
Using (1) and (4) we can express the corrected EPI image
Fc in the anatomical image coordinates as

Fc(Xa) ≈ Fe(φ(Xa))
∂ Xe,y

∂ya

≈ Fe(φ(Xa))
∂ φy(Xa)

∂ya
(5)

where Xe,y and φy(Xa) represent the y-coordinate of the
EPI image, and transformation respectively.

Our proposed method seeks to correct image distortion
by optimizing the following cost function

φ = argmin
φ

(

− I(Fa;Fc) + αR(φ)
)

(6)

where φ is the spatial warping operator, I(Fa;Fc) is an
energy term that encourages correspondence between the
warped image Fc and the target image Fa, R(φ) is a regu-
larization term explained later, and α is an experimentally-
tuned regularization parameter.

In our implementation, we choose I(Fa;Fc) to be the
normalized mutual information (NMI) between Fa and
Fc. We use normalized mutual information (NMI) as the
measure of image alignment. Mutual information (MI)
is a measure of information shared between two random
variables (images in our case). Since the diffusion and
structural images both originate from the same subject,
it is expected that the images will have the maximum
shared information when they are correctly aligned, even if
the images have very different contrast [20], [21]. However,
Studholme et al. [22] showed that MI is sensitive to
the overlap between the two images, which can result
in less accurate registration. They proposed NMI as a
‘normalized’ measure which is less sensitive to changes in
overlap. The NMI of Fa and Fc is given by

I(Fa;Fc) =
H(Fa) +H(Fc)

H(Fa, Fc)
=

−B(φ)

−A(φ)
(7)

where H(Fa) and H(Fc) are the marginal entropies of the
images and H(Fa, Fc) is the joint entropy. These entropies
are computed from the joint probability density p(m,n) of



the images as:

H(Fa, Fc) = −
∑

m∈Fa

∑

n∈Fc

p(m,n) log (p(m,n)) (8)

H(Fa) = −
∑

m∈Fa

pFa
(m) log (pFa

(m)) (9)

H(Fc) = −
∑

n∈Fc

pFc
(n) log (pFc

(n)) (10)

where the marginal probabilities of Fa and Fc, respectively,
and are computed by integration of the joint density.

We model the transformation φ(Xa) as a sum of two
separate transformations – a rigid transformation φR(Xa)
due to physical movement and differences in image orien-
tation, and a non-rigid transformation φ∆B0

(Xa) due to
the B0 field inhomogeneities:

φ(Xa) = φR(Xa) + φ∆B0
(Xa) (11)

We model the non-rigid deformation as a 3D free-form
deformation (FFD) based on cubic B-splines [23], [24],
which ensures that the transformation is a smooth and
locally controlled transformation. We parametrize FFD by
the coefficient of set of uniformly spaced control points
on a 3D grid. The position of the (i, j, k)th control points
are expressed as Φijk. In particular, the deformation is
described by the outer product of 1D cubic B-splines:

φ∆B0
(Xa) = φ∆B0

(xa, ya, za) (12)

=
∑

i,j,k

Φijk B

(

xa

δ
− i

)

B

(

ya

δ
− j

)

B

(

za

δ
− k

)

where B is the cubic B-spline kernel [25] and δ is the
spacing between the control points in all the directions.
uniform spacing δ. We use a single layer of phantom
control-points around the boundary to make the deforma-
tion well-behaved by interpolating the end control-points
[25]. In order to constrain the deformations to only exist
along the phase-encode direction, the control points are
constrained to move only along the y-coordinate while
solving eq.(6). So, the only registration parameters are the
y-coordinates of the control points.
In contrast to Studholme et al. [7], we have also included

a regularization term R(φ) to help stabilize the registra-
tion, since we have observed that the registration is other-
wise sensitive and prone to over-fitting. Such sensitivity is
expected because MI-based similarity measures are based
on the joint intensity distribution of the images, but lack
spatial location information. This makes MI-based mea-
sures unreliable for common MR images with spatially-
smooth intensity variations, in which the intensities of
neighboring voxels are not independent [26], [27], [28]. Our
choice of regularization function is based on the fact that
the magnetic field inhomogeneity variations are governed
by Maxwell’s equations and will generally be smooth.
Hence, we used the 3D equivalent of the 2D bending
energy of a thin-metal plate for regularization as given

by [29]. This regularization ensures the smoothness and
invertibility of the transformation and does not penalize
any rigid transformations. The resulting regularization
term is:

R(φ) =

ˆ

x,y,z

(

∂2φ

∂x2

)2

+

(

∂2φ

∂y2

)2

+

(

∂2φ

∂z2

)2

(13)

+ 2

(

∂2φ

∂xy

)2

+ 2

(

∂2φ

∂yz

)2

+ 2

(

∂2φ

∂xz

)2

dx dy dz

To ensure that (6) is a continuous and differentiable
function of the registration, we estimate a continuous
joint image histogram using a separable Parzen window
approach [30]. The histogram takes the form

p(m,n) =
1

Card(V )

∑

Xa∈V

h(m− Fa(Xa))h(n− Fc(Xa)) (14)

where V is the region of overlap and h(t) is a Parzen-
window (chosen to be a cubic B-spline in our implementa-
tion). A continuous joint histogram allows us to compute
the derivative of our cost function analytically. Compared
to numerically-computed gradients, analytical gradients
are more accurate and thus can improve algorithm per-
formance.

Our choice of the cubic B-spline as the Parzen window
h(t) is motivated by its partition of unity property and
its local support property [25]. While local support helps
to reduce computation, the partition of unity plays an im-
portant role in simplifying the expressions for the marginal
density and the analytical gradient (15). Similar to [31],
[32], we computed the expression for the partial derivative
of the mutual information with respect to the registration
parameters (y-coordinate of the (i, j, k)th control point) in
our 1D non-rigid framework as

∂I(Fa;Fc)

∂ Φijk,y

= α
∑

m,n

(

log pFc
(n)

A(φ)
−

B(φ) log p(m,n)

A2(φ)

)

(15)





∑

Xa∈V

h(m− Fa(Xa))
dh(t)

dt

∣

∣

∣

∣
t=n−Fc(Xa)

−∂Fc(Xa)

∂ Φijk,y





where A(φ) and B(φ) are expressed in (7), α = 1/Card(V ),
and

∂Fc(Xa)

∂ Φijk,y

=Fe(φ(Xa))

(

B(u)B(w)

δ

∂B(v)

∂v

∣

∣

∣

∣

Xa,Φijk

)

(16)

+
∂φy(Xa)

∂y

∂Fe(φ(Xa))

∂y

(

B(u)B(v)B(w)

∣

∣

∣

∣

Xa,Φijk

)

where δ is the spacing of B-spline control points, and
u =

(

xa

δ
− i

)

, v =
(

ya

δ
− j

)

, w =
(

za
δ
− k

)

. Equation
(16) is derived by using (5) and (12). Detailed steps of the
derivation of (15) from (7) are given in [31].

Implementation

The whole registration framework was implemented in a
multi-resolution pyramid to help avoid local minima [31].
The input images were initially blurred using a Gaussian



smoothing kernel and down-sampled to a coarse resolution.
The B-spline control points were initially separated by
30 mm to estimate larger global deformation. The rigid
part of the transformation φR in (11) was initially es-
timated using rigid registration with MI as described in
[22]. Then the non-rigid part of the transformation φ∆B0

was estimated as described above. After performing the
registration on a coarse resolution grid, the registration
grid was iteratively refined until the number of grid points
matched the initial resolution of the images. Each grid
refinement was associated with the addition of new B-
spline control points, which was performed using the Lane-
Riesenfeld Algorithm [33], between existing control points
to effectively reduce the spacing between them. This helps
to capture the detailed deformation at a finer resolution.
A total of four grid refinement steps were used. We used a
simple gradient-descent method with decreasing step size
to optimize our cost function.
Image interpolation is a necessary component of image

registration methods, and it’s been previously established
that the choice of interpolation method has important
consequences for the performance of MI-based registration
algorithms [34], [35]. A traditional approach is to use
trilinear interpolation, though it has been shown that this
biases the registration results due to the blurring effect
of the interpolation on the original image [34]. Another
alternative is to use nearest-neighbor (NN) interpolation
with random jitter to avoid the problems with trilinear
interpolation [35]. However, we found that NN interpo-
lation was ineffective for this problem context, since the
deformations in diffusion MRI are sub-voxel and thus not
captured by NN interpolation in many image regions.
After further experimentation, we chose to use trilinear
interpolation, but computed the joint histogram based on
an oversampled image grid, which substantially reduces
the bias in MI-based methods. In this work we sampled all
the images on a grid three times denser than the original
grid to reduce interpolation artifacts.

IV. Results

A. Simulation

For simulation, we acquired a standard anatomi-
cal MPRAGE brain image on a 3T Siemens Magne-
tom TrioTim scanner. The MPRAGE scan (TE=3.09ms,
TR=2530ms, 1x1x1 mm3 resolution) was used as the
registration template. We also acquired an undistorted T2-
weighted scan (TE=88ms, TR=10000ms) at a resolution
of 0.8x0.8x3.5 mm, which we used as a gold standard from
which we simulated a distorted T2-weighted EPI image.
The EPI distortion model used for the simulation was
generated from a real B0 field inhomogeneity map acquired
during the same scan session as the undistorted MPRAGE
and T2-weighted images. The field map was estimated
from two gradient echo images with different echo times
[36], TE=10.00ms and 12.46ms (TR=1300ms for both),
at a resolution of 2.0x2.0x2.0 mm3. Field map estimation

Fig. 1: Scatter plot of our displacement estimate vs the
field map displacement for simulated EPI image.

was performed using a simplified version of the regularized
estimation framework and graph-cut algorithm described
in [37]. All the scans were sampled on the sampling grid
of the field map for simulation. The T2-weighted scan was
then distorted using the estimated field map to model the
non-ideal Fourier-domain phase accumulation that leads
to geometric distortion in EPI images, as described in [4],
[7]. This distorted image was then used as the ‘simulated’
EPI image for the whole sequence. For the purposes of
simulation we set the parameters such that the effective
distortion was similar to the distortion we observe in real
diffusion images. The spatial coordinate transform derived
from the field map was also used as a gold standard for
the evaluation of our non-rigid registration approach.
We compared the displacement estimated by our

method to that computed by the field map in Figs. 1 and
2. If our estimated coordinate transform was estimated
perfectly, we would expect all of the data points to lie
along a 45-degree line in the scatter plot shown in Fig.
1. Our estimated displacement follows the 45-degree line
closely for most of the voxels, although there are some
deviations. Fig. 2 shows the comparison of the estimated
displacement using our method to the gold standard.
The absolute value of the gold standard displacement (in
mm) is shown in Fig. 2a, while the absolute error of our
displacement estimate is shown in Fig. 2b. From the plots
we can see that our displacement estimate is close to the
gold standard displacement, within 1-2 millimeters, except
in areas lying right next to the frontal sinuses (for which
substantial susceptibility changes lead to large variations
in the B0 field and large image distortions). The large
amount of distortion in this area makes the signal recovery
and distortion correction particularly challenging. Most of
the voxels whose estimates are off the 45-degree line in
Fig. 1 lie in this troublesome area.
Fig. 3 and Fig. 4 show two slices of the simulated EPI



(a) (b)

Fig. 2: Mosaic images showing comparison of the estimated displacements for simulated-EPI image at different slices.
(a) Absolute displacement computed using the field map, (b) Error in our displacement estimate (absolute difference
between our displacement estimate and field map displacement). The values are reported in millimeters.

images before and after correction using our registration
framework. The simulated EPI images are much better
aligned with the anatomical MPRAGE image after distor-
tion correction.

B. Imaging experiment

We also tested our approach on a real diffusion-weighted
EPI data set. A 64-direction diffusion (single-shot EPI)
scan (TE=88ms, TR=10000ms, b=1000s/mm2) was ac-
quired at a resolution of 2.0x2.0x2.0 mm3. A standard
MPRAGE image was also acquired to be used as the
registration template (using the same parameters as in
the simulation), and a B0 field map was also acquired as
described previously to provide a gold standard for the
geometric distortion.

The proposed algorithm was used to correct the dis-
torted diffusion data. Since all the diffusion weighted
images suffer from same static field inhomogeneity, we
used just one image, the T2-weighted b=0 image, to
estimate the distortion. Among all the diffusion images,
the b=0 has image structure that is the most similar to
the structure observed in MPRAGE images. Fig. 5 shows a
few slices of the b=0 image before and after the correction,
overlaid with an edge-map derived from the MPRAGE
image. As expected, the distortions in frontal lobe regions
are particularly large, due to the presence of the frontal

sinuses, but that our proposed correction framework aligns
these and other image regions more accurately.
We also compared our displacement estimates with

those derived from the field map in Fig. 6. It can been
seen that our approach estimates the displacements within
an error of 1-2 millimeters except in areas near the frontal
sinuses. The scatter plot in Fig. 7 shows that displacements
of most of the voxels in our estimate follow the 45-degree
line.
Furthermore, we studied the effect of distortion cor-

rection on diffusion measures like Fractional Anisotropy
(FA) which are widely used in many studies. We estimated
the deformation in the b=0 image using our proposed
method and corrected the remaining diffusion images using
the same deformation field. The corrected set of diffusion
images were then used to estimate the diffusion tensors at
each voxel. FA images were generated from the eigenvalues
and eigenvectors of the estimated tensors. Fig. 8 shows
FA images before and after the correction overlaid with
the edge-map of MPRAGE. It can be clearly seen that
the white matter regions are much better aligned after
correction, especially in frontal areas near the ventricles.

V. Discussion & Conclusion

In this paper, we addressed the common problem of
distortion in images acquired using EPI sequences. We
proposed a method which does not require extra data



Fig. 3: Overlay of an axial slice before and after correction
of the distortion in simulated EPI sequence. The top row
shows the images before distortion correction, while the
bottom row shows the images after correction. The left
column shows the MPRAGE overlaid with the edge-map
(in red) generated from the simulated EPI image, while
the right column shows the simulated EPI image overlaid
with an edge-map generated from the MPRAGE.

Fig. 4: Overlay of a sagittal slice before and after correction
of the distortion in simulated EPI sequence. Images are
ordered as described in Fig. 3.

acquisition. Instead, we used an undistorted anatomical
image, which is collected to accompany most diffusion
data sets, in a non-rigid MI-based registration framework
to estimate the distortion. We used regularization and
the physics of EPI distortion to constrain the registra-
tion process. We demonstrated that proposed approach
accurately aligns the diffusion images to the anatomical
image. Though we presented the results using a diffusion
experiment, the technique remains general and could also
be used with a range of other EPI-based acquisitions.
Despite having generally good performance, the pro-

posed technique also has some limitations. In particular,
the proposed method cannot recover the image structure
that is lost when substantial image distortions lead to the
superposition of image information from distinct spatial
locations. This limitation can be observed in severely
distorted regions like the lower frontal regions of the brain.
However, this limitation is also present in correction meth-
ods that directly acquire a B0 field map. Furthermore, in
some areas near air/tissue boundaries the main magnetic
field changes very rapidly resulting in severely distorted
images. These rapid changes cannot be modeled with a
small number of B-spline control points. One approach to
address this would be to increase the density of control
points in severely distorted areas.
In conclusion, the proposed technique shows an improve-

ment in the alignment of diffusion EPI images to the
anatomical images over traditional affine and rigid reg-
istration technique without need of field map acquisition.
This can be particularly useful for diffusion data which has
been already acquired without field maps. The results so
far indicates that the technique could be useful for many
studies in brain imaging.
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