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CORRECTING THE ERRORS: VOLATILITY FORECAST
EVALUATION USING HIGH-FREQUENCY DATA

AND REALIZED VOLATILITIES

BY TORBEN G. ANDERSEN, TIM BOLLERSLEV, AND NOUR MEDDAHI1

We develop general model-free adjustment procedures for the calculation of un-
biased volatility loss functions based on practically feasible realized volatility bench-
marks. The procedures, which exploit recent nonparametric asymptotic distributional
results, are both easy-to-implement and highly accurate in empirically realistic situa-
tions. We also illustrate that properly accounting for the measurement errors in the
volatility forecast evaluations reported in the existing literature can result in markedly
higher estimates for the true degree of return volatility predictability.

KEYWORDS: Continuous-time models, integrated volatility, realized volatility, high-
frequency data, time series forecasting, Mincer–Zarnowitz regressions.

1. INTRODUCTION

THE BURGEONING LITERATURE on time-varying financial market volatility is
abound with empirical studies in which competing models are evaluated and
compared on the basis of their forecast performance. Contrary to the typi-
cal setting for economic forecast evaluation, the variable of interest in that
context—the volatility—is not directly observable, but rather inherently latent.
Consequently, any ex post assessment of forecast precision must contend with
a fundamental errors-in-variable problem associated with the measurement of
the realization of the forecasted variable. Growing recognition of the impor-
tance of this issue has led a number of recent studies to advocate the use of
so-called realized volatilities, constructed from the summation of finely sam-
pled squared high-frequency returns, as a practical method for improving the
ex post volatility measures.

The use of realized volatility as the practical benchmark may be justified by
standard continuous-time arguments. Assuming that the sampling frequency of
the squared returns utilized in the realized volatility computations approaches
zero, the realized volatility then consistently estimates the true (latent) inte-
grated volatility under quite general conditions, where importantly, the lat-
ter concept corresponds to the realization of the (cumulative) instantaneous

1This work was supported by a grant from the National Science Foundation to the NBER
(Andersen and Bollerslev), and from FQRSC, IFM2, MITACS, NSERC, SSHRC, and Jean-
Marie Dufour’s Econometrics Chair of Canada (Meddahi). Some of this material was circulated
earlier as part of the paper “Analytical Evaluation of Volatility Forecasts.” Detailed comments
by Neil Shephard, Tom McCurdy, two anonymous referees, and the editor have importantly
improved the paper. We would also like to thank Bryan Campbell and Francis X. Diebold for
many discussions on closely related ideas, as well as seminar participants at the 2002 NBER/NSF
Time Series Conference and the 2003 CIRANO-CIREQ Financial Econometrics Conference.
The third author thanks the Bendheim Center for Finance at Princeton University for its hospi-
tality during his visit where part of the research was done.
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variance process over the relevant horizon (see, e.g., Andersen and Bollerslev
(1998), Andersen, Bollerslev, Diebold, and Labys (2001), Barndorff-Nielsen
and Shephard (2001, 2002a, 2002b, 2004a), Comte and Renault (1998), along
with the recent survey by Andersen, Bollerslev, and Diebold (2003)). Unfor-
tunately, market microstructure frictions distort the measurement of returns
at the highest frequencies so that, e.g., tick-by-tick return processes blatantly
violate the theoretical semi-martingale restrictions implied by the no-arbitrage
assumptions in continuous-time asset pricing models. These same features also
bias empirical realized volatility measures constructed directly from the ultra
high-frequency returns, so in practice the measures are instead typically con-
structed from intraday returns sampled at an intermediate frequency.2 As such,
the integrated volatility is invariably measured with error (see, e.g., the numer-
ical calculations in Andreou and Ghysels (2002) and Bai, Russell, and Tiao
(2000)). The exact form of the measurement error will, of course, depend on
the assumed model structure (see, e.g., Meddahi (2002) and Barndorff-Nielsen
and Shephard (2002a)), but it will generally result in a downward bias in the
estimated degree of predictability obtained through any forecast evaluation
criterion that simply uses the realized volatility in place of the true (latent) in-
tegrated volatility. Although this bias may be large (Andersen and Bollerslev
(1998)), it is almost always ignored in empirical applications.

We address that issue by developing general model-free adjustment proce-
dures that allow for the calculation of simple unbiased loss functions in real-
istic forecast situations. Moreover, the adjustments are simple to implement
in practice. The derivation exploits the asymptotic (for increasing sampling
frequency) distributional results in Barndorff-Nielsen and Shephard (2002a).
While these results explicitly rule out so-called leverage effects, building on
the recent insights in Barndorff-Nielsen and Shephard (2002b), we show that
the same approximate adjustment procedures apply in the context of the gen-
eral eigenfunction stochastic volatility class of models pioneered by Meddahi
(2001), explicitly allowing for nonzero contemporaneous correlations between
the separate shocks in the return and volatility processes. Following Andersen
and Bollerslev (1998) and ABDL (2003), we focus our forecast comparisons
on the value of the coefficient of multiple correlation, or R2, in the Mincer–
Zarnowitz style regressions of the ex post realized volatility on the correspond-
ing model forecasts,3 but our procedures are general and could be applied
in the adjustment of other loss functions used in the evaluation of any ar-

2For instance, the daily realized volatilities in Andersen, Bollerslev, Diebold, and Labys (2003)
(henceforth ABDL (2003)) discussed further below are based on the summation of squared half-
hourly foreign exchange rate returns, but either 5-minute or 15-minute returns are other common
choices in the literature.

3This particular loss function is directly inspired by the work of Mincer and Zarnowitz (1969),
and we will refer to the corresponding regressions as such; see also the discussion in Chong and
Hendry (1986).
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bitrary set of volatility forecasts. On applying the procedures in the context
of ABDL (2003), we obtain markedly higher estimates for the true degree
of return-volatility predictability, with the adjusted R2’s exceeding their un-
adjusted counterparts by up to forty percent.

We proceed as follows. Section 2.1 introduces the notions of integrated and
realized volatility, along with the (feasible) asymptotic distribution theory due
to Barndorff-Nielsen and Shephard (2002a). The development of the prac-
tical and easy-to-implement adjustment procedures based on this theory is
then presented in Section 2.2, followed by our theoretical extensions explic-
itly allowing for leverage effects. Utilizing these results, the last section pro-
vides a reassessment of the empirical evidence in ABDL (2003) related to the
fit of the Mincer–Zarnowitz style volatility regressions. The accuracy of the
asymptotic approximations—which form the basis for our approach—is con-
firmed through Monte Carlo simulations for models calibrated to reflect em-
pirically relevant and challenging specifications. The details of the simulations
and some of the technical proofs are deferred to two appendixes.

2. THEORY

We focus on a single asset traded in a liquid financial market. Assuming
that the sample path of the logarithmic price process, {log(St)�0 ≤ t}, is con-
tinuous, the class of continuous-time stochastic volatility models employed in
the finance literature is then conveniently expressed in terms of the following
generic stochastic differential equation (sde),

d log(St)= µt dt + σt dWt�(1)

where Wt denotes a standard Brownian motion given an increasing filtration
{Ft � t ≥ 0}, the drift term µt is (locally) predictable and of finite variation, and
σt is a càdlàg process such that

∫ t

0 σ
2
u du <∞ a.s. for any t > 0. We also assume

that the process (µt�σt�Wt) is adapted to the filtration {Ft}. Consequently,∫ t

0 σu dWu is a local martingale and log(St) a semi-martingale (see, for instance,
Protter (2004)).

2.1. Integrated and Realized Volatility

Although the sde in equation (1) is very convenient from a theoretical
arbitrage-free pricing perspective, practical return calculations and volatility
measurements are invariably restricted to discrete time intervals. In particular,
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focusing on the unit time interval, the one-period continuously compounded
return for the price process in equation (1) is formally given by4

rt ≡ log(St)− log(St−1)=
∫ t

t−1
µu du+

∫ t

t−1
σu dWu�(2)

with the corresponding integrated volatility,

IV t ≡
∫ t

t−1
σ 2

u du�(3)

affording a natural measure of the inherent, or notional, return variability (see,
e.g., Andersen, Bollerslev, and Diebold (2003), for further discussion of the
integrated and notional volatility concepts).5

Of course, the integrated volatility is not directly observable. However, by
the theory of quadratic variation (see, e.g., Protter (2004) for a general discus-
sion), the corresponding realized volatility defined by the summation of the 1/h
intra-period squared returns, r(h)t ≡ log(St)− log(St−h),

RV t(h)≡
1/h∑
i=1

r(h)2t−1+ih�(4)

where 1/h is assumed to be an integer, converges uniformly in probability
to IV t as h→ 0.

The consistency of the realized volatility relies on the (conceptual) idea of
an ever increasing number of finer sampled high-frequency returns, or h → 0.
However, as previously noted, the requisite semi-martingale property of re-
turns invariably breaks down at ultra-high frequencies, so that in actual appli-
cations market microstructure frictions in effect put a limit on the number of
return observations per unit time interval that may be used productively in the
computation of the realized volatility measures. As such, the realized volatility
will necessarily be subject to a finite-sample (nonzero h) measurement error
vis-a-vis the true (latent) integrated volatility, say

Ut(h)≡ RV t(h)− IV t �(5)

This observation was the original motivation for the development of the
Barndorff-Nielsen and Shephard (2002a) asymptotic theory, which gives us a
tool with which to study the errors for finite h.

4For notational simplicity, we focus our discussion on one-period return and volatility mea-
sures, but the general results and associated measurement error adjustment extend in a straight-
forward manner to the multiperiod case.

5The integrated volatility also plays a crucial role in the pricing of options; see, e.g., Garcia,
Ghysels, and Renault (2003).
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Specifically, assuming that the mean, {µu�u ≥ 0}, and volatility, {σu�u ≥ 0},
processes are jointly independent of {Wu�u ≥ 0}, it follows from Barndorff-
Nielsen and Shephard (2002a, 2004a) that,6

zt ≡
√
h−1

Ut(h)√
2IQt

law→N (0�1)�(6)

where the integrated quarticity, IQt , is defined by

IQt ≡
∫ t

t−1
σ 4

u du�(7)

Moreover, under these same assumptions the integrated quarticity may be con-
sistently estimated by the (standardized) realized quarticity

RQt(h) ≡ 1
h

1
3

1/h∑
i=1

r(h)4t−1+ih�(8)

These asymptotic results allow for general model-free approximations to the
distribution of the realized volatility error. In particular no parametric or finite
moment assumptions are made on the {µu�u ≥ 0} and {σu�u ≥ 0} processes to
derive this result.

2.2. Practical Measurement Error Adjustments

The results discussed in the previous section imply that the time t + 1 real-
ized volatility error is (approximately) serially uncorrelated and orthogonal to
any variables (volatility forecasts) in the time t information set.7 This justifies
the common use of realized volatility as a convenient simple and unbiased, al-
beit potentially noisy, benchmark in ex post volatility forecast evaluations and
model comparisons.

Specifically, consider the Mincer–Zarnowitz style regressions of the realized
volatility on a set of predetermined regressors (volatility forecasts) employed

6Importantly, the same asymptotic distributional results have recently been shown by
Barndorff-Nielsen and Shephard (2004b) to hold in the case of leverage, or dependence between
the {σu�u≥ 0} and {Wu�u≥ 0} processes, under the assumption that

∫ t

0 µ
2
u du < ∞. However, the

measurement error adjustment procedures developed here involve an additional covariance term
in the leverage case that is not covered by this theory. Hence, we continue under the maintained
assumption of no leverage effects, returning to the general leverage case in Section 2.3.

7In the case of zero drift, equations (9) and (11) in Meddahi (2002) imply that Ut+1(h) =
2
∑1/h

i=1

∫ t+ih

t+(i−1)h(
∫ u

t+(i−1)h σs dWs)σu dWu, and as a result E[Ut+1(h)|Ft ] = 0 for all h > 0. With a
nonzero drift, this same orthogonality condition holds approximately for small values of h.
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in ABDL (2003) among others.8 Assuming that the underlying continuous time
process satisfies a weak uniform integrability condition so that the consistency
of RQt (h) for IQt also guarantees convergence in mean (see, e.g., Billingsley
(1995, p. 338) and Hoffmann-Jørgensen (1994, Section 5.13, p. 376)), it follows
directly from the definition in equation (5) that,

var[RV t(h)] = var[IV t] + var[Ut(h)] + 2 cov(Ut(h)� IV t)�

Meanwhile, equations (6)–(8) readily imply that var[Ut(h)] = 2hE[RQt(h)] +
o(h). Moreover, it follows from Meddahi (2002) that if {µu�u ≥ 0}, {σu�u ≥ 0},
and {Wu�u ≥ 0} are jointly independent, the covariance term vanishes. Obvi-
ously, the condition that the mean and volatility processes are independent
is unduly strict in general. However, the covariance between the conditional
mean and variance will invariably be small (negligible) over short horizons
(daily or weekly) for small values of h. Formally, the resulting covariance be-
tween the realized volatility error and the integrated volatility will be of order
less than h, as argued at length in Section 4.2 of Andersen, Bollerslev, and
Diebold (2003). Combining these results, we therefore have

var[IV t] = var[RV t(h)] − 2hE[RQt(h)] + o(h)�(9)

Hence, any MSE type forecast evaluation criteria based on a comparison of the
volatility forecasts with the ex post RV t(h) in place of IV t will on average over-
state the true variability of the forecast errors by 2hE[RQt(h)]. In particular,
ignoring the o(h) term, it follows that the (feasible) R2 from the commonly em-
ployed Mincer–Zarnowitz regression will underestimate the true predictability
as measured by the (infeasible) R2 from the regression of the future (latent) in-
tegrated volatility on the same set of predetermined regressors (volatility fore-
casts) by the multiplicative factor: var[RV t(h)]/{var[RV t (h)]−2hE[RQt(h)]}.9

Meanwhile, the predictive regressions and related loss functions reported
in the extant volatility literature are often formulated in terms of the re-
alized standard deviation, RV t(h)

1/2, or the logarithmic standard deviation,
log RV t(h)

1/2. To properly gauge the true predictability in those situations, the
sample variances of the transformed realized volatilities may be similarly re-
placed by (feasible) expressions for the true (latent) variances, var[IV 1/2

t ] and

8Although this is not required for the Barndorff-Nielsen and Shephard (2002a, 2004a, 2004b)
asymptotic theory discussed in the previous section, the Mincer–Zarnowitz regression implicitly
assumes that the variable of interest, i.e., the integrated and realized volatility processes, have
finite second-order moments. This in turn requires that the fourth moment of σt is finite. This
holds for any affine and log-normal diffusion, and is also satisfied for the GARCH diffusions
considered in the Monte Carlo experiment discussed in the Appendix.

9As previously noticed by Meddahi (2002), the approximation in (9) also allows for the
construction of more efficient (in the sense of MSE) model-free integrated volatility esti-
mates, by downweighting the realized volatility by the multiplicative factor {var[RV t (h)] −
2hE[RQt (h)]}/ var[RV t (h)] and adding the constant {E[RV t (h)]2hE[RQt (h)]}/ var[RV t (h)].
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var[log IV 1/2
t ], respectively.10 To this end, it follows from equation (6) and a

second-order Taylor series expansion of the square-root function of RV t(h)
around IV t , that conditional on the sample-path realization of the (latent)
point-in-time volatility process (see the Appendix),

RV t(h)
1/2 ≈ IV 1/2

t + 2−1/2h1/2IV −1/2
t IQ1/2

t zt − h

4
IV −3/2

t IQtz
2
t �(10)

Thus, subject to the necessary uniform integrability conditions on the under-
lying continuous-time process ensuring convergence in mean of the relevant
quantities (see also Barndorff-Nielsen and Shephard (2004a)),

E[IV 1/2
t ] =E[RV t(h)

1/2] + h

4
E[RV t(h)

−3/2RQt (h)] + o(h)�

so that, in particular,

var[IV 1/2
t ](11)

= var[RV t (h)
1/2] − h

2E[RV t(h)
1/2]E[RV t(h)

−3/2RQt(h)] + o(h)�

The variance of the square-root of the realized volatility, as used in a num-
ber of previous empirical studies, obviously exceeds the expression in (11) by
the absence of the second (positive) term on the right-hand side of the equa-
tion. This in turn will result in a downward bias in the R2’s from the (feasible)
Mincer–Zarnowitz predictive regressions formulated in terms of RV t(h)

1/2 in
place of IV 1/2

t .
By similar arguments (see the Appendix),11

log RV t(h) ≈ log IV t + 21/2h1/2IV −1
t IQ1/2

t zt − hIV −2
t IQtz

2
t(12)

and

[logRVt(h)]2 ≈ [log IVt]2 + 23/2h1/2IV −1
t [log IVt]IQ1/2

t zt(13)

− 2hIV −2
t (1 − log IVt)IQtz

2
t �

10Any transformed unbiased forecast for IV t+1 will generally not be unbiased for IV 1/2
t+1

or log IV 1/2
t+1. However, allowing for a nonzero intercept and a slope coefficient different from

unity in the Mincer–Zarnowitz regression of the future transformed realized volatilities on the
transformed forecasts explicitly corrects this (unconditional) bias in the forecasts; see also the
discussion in Andersen, Bollerslev, and Meddahi (2004).

11Interestingly, the Monte Carlo evidence in Barndorff-Nielsen and Shephard (2003) also
suggests that the asymptotic approximation obtained by equating z2

t to one in (12), i.e.,
[log RV t (h) − log IV t + hIV−2

t IQt ]/[21/2h1/2IV −1
t IQ1/2

t ], is closer to a standard normal distribu-
tion than the approximation obtained by applying the delta rule directly to (6), i.e., [log RV t (h)−
log IV t]/[21/2h1/2IV−1

t IQ1/2
t ]�
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so that again, subject to the necessary integrability conditions,

var[log IV t] = var[log RV t (h)](14)

− 2hE
[
RV t(h)

−2(1 − log RV t(h))RQt (h)
]

− 2hE[logRV t(h)]E[RV t(h)
−2RQt(h)] + o(h)�

The accuracy of the distributional assumption and second-order Taylor se-
ries expansions underlying the (feasible) expressions for the latent variances
in equations (9), (11), and (14) are underscored by the simulation results for
the baseline models reported in Table II of the Appendix.12 It is evident that
the simulated medians and ninety-percent confidence intervals for the asymp-
totic approximations to var[IV t], var[IV 1/2

t ], and var[log(IV 1/2
t )] are extremely

close to the simulated sampling distributions for the true variances (labelled
h= 1/∞) as long as the frequency of the returns used in the calculation of the
realized volatility and quarticity measures, RV t (h) and RQt(h), respectively,
exceeds half-an-hour, or h≤ 1/48.13

Similar arguments could, of course, be applied with any other twice con-
tinuously differentiable function of integrated volatility in order to obtain an
approximate value for var[f (IV t)]. This in turn would allow for simple model-
free approximations to the true (infeasible) R2’s that would obtain in the hy-
pothetical regressions of f (IV t ) on any forecasts by scaling the (feasible) R2’s
from the corresponding regressions based on f (RV t(h)) by the multiplicative
adjustment factor, var[f (RV t(h))]/{var[f (IV t (h))]}.

2.3. Leverage Effects

The assumptions underlying the adjustment procedures discussed in the pre-
vious section formally rule out leverage effects. This is especially problematic
for equity index returns, which are often found to be negatively correlated
with future volatility (e.g., Black (1976) and Nelson (1991)). Meanwhile, as
noted above, Barndorff-Nielsen and Shephard (2004b) have recently shown
that the same approximate Central Limit Theorem in equation (6) remains
valid in this situation, so that in particular var[Ut(h)] = 2hE[RQt(h)] + o(h).
Of course, the calculation of var[IV t] from equation (5) still requires the

12The accuracy of (6) and the corresponding CLT for RV t (h)
1/2 and log(RV t (h)) based on the

∆ method has also previously been investigated by Barndorff-Nielsen and Shephard (2003).
13To highlight the practical importance of the asymptotic adjustments developed above, we

also calculated the simple naive estimators for var[IV t], var[IV 1/2
t ], and var[log(IV 1/2

t )] ignor-
ing the h terms in equations (9), (11), and (14), given by var[RV t (h)], var[RV t (h)

1/2], and
var[log(RV t (h)

1/2)], respectively. For the two-factor affine diffusion model in the second panel
of Table II and h = 1/48 these variances overstate the true variability of the integrated volatility
measures by 44.9, 40.9, and 41.3 percent, respectively; see also the related analytical calculations
in Andersen, Bollerslev, and Meddahi (2004).
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cov(Ut(h)� IV t) term, which is complicated by the possible dependence be-
tween the {σu�u ≥ 0} and {Wu�u ≥ 0} processes. However, building on the
powerful eigenfunction stochastic volatility (ESV) class of models introduced
by Meddahi (2001),14 it is possible to show that the covariance term generally
takes the form 2hE[rt] cov[rt�RV t(h)] + o(h).15 Consequently,

var[IV t] = var[RV t(h)] − var[Ut(h)] − 2 cov[Ut(h)� IV t](15)

= var[RV t(h)] − 2hE[RQt(h)]
− 4hE[rt] cov[rt�RV t(h)] + o(h)�

Hence, relative to equation (9) in the previous section, the leverage effect in-
troduces the additional 4hE[rt] cov[rt�RV t(h)] term in the (feasible) asymp-
totic approximation to var[IV t].

In actual empirical applications 2E[rt] and cov[rt�RV t(h)] will both gen-
erally be orders of magnitude smaller than E[RQt(h)] so that, invariably,
the magnitude of the new adjustment term will be negligible relative to
the 2hE[RQt(h)] term. To illustrate, consider the five-minute high-frequency
S&P500 and U.S. T-Bond futures returns spanning the period from January,
1990 through December, 2002.16 The relative importance of the leverage ad-
justment term, as measured by the daily 2E[rt] cov[rt�RV t (h)]/E[RQt(h)] ra-
tios, equals −7�85 × 10−5 and −6�94 × 10−4 for each of the two markets. Also,
for the DM/$, Yen/$, and Yen/DM half-hour returns underlying the empiri-
cal results in ABDL (2003) discussed below, these same daily ratios for the
full December, 1986 through June, 1999 sample period equal 1�01 × 10−4,
−7�87 × 10−5, and 3�54 × 10−4, respectively, clearly an inconsequential addi-
tion to the approximation for var[IV t] in (9).

These empirical observations are further corroborated by the Monte Carlo
simulation results for the leverage models with constant as well as time-varying
drifts reported in Tables III and IV. The medians in the asymptotic approxima-
tions to var[IV t], var[IV 1/2

t ], and var[log(IV 1/2
t )] in equations (9), (11), and (14),

respectively, derived under the assumption of no leverage, are all right on the
true medians (labelled h= 1/∞). Moreover, as long as the frequency of the re-
turns used in the calculation of the realized volatility and quarticity measures

14The use of eigenfunctions in modelling Markovian time series was pioneered by Chen,
Hansen, and Scheinkman (2000). The ESV class of models is very general, encompassing all of
the continuous-time volatility models most commonly employed in the literature, including the
GARCH diffusion model of Nelson (1990), the log-normal diffusion model popularized by Hull
and White (1987) and Wiggins (1987), and the square-root diffusion model of Heston (1993),
along with multifactor extensions of all these models.

15For a formal proof, see the earlier Andersen, Bollerslev, and Meddahi (2003) working paper
version of this note.

16These data have previously been analyzed in Andersen, Bollerslev, Diebold, and Vega (2003)
from a very different perspective. We refer the reader to that study for a more detailed description
of the data source and return construction.
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exceeds half an hour, or h ≤ 1/48, the simulated distributions for the lever-
age models are indistinguishable from the corresponding distributions for the
same models without leverage reported in Table II.

In short, the realized volatility measurement error adjustment procedures
developed in the preceding section remain highly accurate in empirically re-
alistic situations, allowing for both leverage and time-varying drift. We next
turn to a reinterpretation of the empirical evidence related to the Mincer–
Zarnowitz volatility regressions reported in ABDL (2003) based on an appli-
cation of these procedures.

3. ABDL (2003) REVISITED

The forecast comparisons in ABDL (2003) are based on daily realized
volatilities constructed from high-frequency half-hourly, or h = 1/48, spot ex-
change rates for the U.S. dollar, the Deutschemark, and the Japanese yen,
spanning twelve-and-a-half years.17 Separate forecast evaluation regressions
are reported for the “in-sample” period comprised of the 2,449 “regular”
trading days from December 1, 1986 through December 1, 1996, and the
shorter “out-of-sample” forecast period consisting of the 596 days from De-
cember 2, 1996 through June 30, 1999. Separate results are also reported for
one-day-ahead and ten-days-ahead forecasts. However, for all series and both
sample periods and forecast horizons, a simple AR(5) model estimated di-
rectly from the realized volatilities generally performs as well or better than
any of the many alternative models considered, including several GARCH
type models estimated directly from the high-frequency data (both with and
without corrections for the pronounced intradaily seasonal pattern in volatil-
ity). The representative R2’s for the DM/$, Yen/$, and Yen/DM forecast re-
gressions for RV t+1(1/48), RV t+1(1/48)1/2, log RV t+1(1/48)1/2, RV t+10�10(1/48),
RV t+10�10(1/48)1/2, and log RV t+10�10(1/48)1/2, where RV t+10�10(1/48) ≡
RV t+1(1/48)+ RV t+2(1/48)+ · · ·+ RV t+10(1/48), as reported in ABDL (2003)
and the accompanying Appendix, are given in square brackets in Table I.18

By failing to account for the measurement errors in the future realized
volatilities, these R2’s understate the true degree of predictability in the
(latent) integrated volatilities. This problem is rectified by the main entries
in Table I, which report the adjusted R2’s obtained by applying the (feasible)
asymptotic approximations in equations (9), (11), and (14), along with the rel-

17The high-frequency data were generously provided by Olsen & Associates in Zürich, Switzer-
land; see Dacorogna, Gencay, Müller, Olsen, and Pictet (2001) for further discussion of the data
capture, filtering, and return construction.

18The out-of-sample period contains a “once-in-a-generation” move in the Japanese yen on
October 8, 1998. Somewhat higher R2’s, but qualitatively similar results, were obtained by ex-
cluding this and the neighboring two days; see ABDL (2003) and the accompanying Appendix
for further discussion and sensitivity analysis along these lines.
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evant multiplicative adjustment factors.19 The results are quite striking. For
some of the forecast horizons and rates, the “true” R2’s exceed the standard
predictive R2’s, as reported in ABDL (2003), by up to forty percent. For in-
stance, the in-sample, one-day-ahead R2 for the DM/$ series given in the very
first entry in the table equals .219, whereas the true (albeit estimated) R2 is sub-
stantially higher at .314. As such, the results clearly highlight the importance
of appropriately adjusting for measurement error when assessing the quality of
volatility forecasts in practical empirical applications.

Interestingly, the numerical values for the adjusted R2’s for the DM–dollar
series in Table I are quite close to the exact theoretical R2’s implied by
the specific two-factor affine diffusion discussed in Andersen, Bollerslev, and
Meddahi (2004). This is especially noteworthy insofar as the parameter val-
ues for this model are based on the identical DM–dollar sample underlying
the results reported in Table I. This suggests that the simple AR(5) models
for the realized volatilities estimated in ABDL (2003)—when adjusted for the
measurement error problem—capture a degree of predictability that is consis-

TABLE I
ABDL (2003) ADJUSTED PREDICTIVE R2’S

IV IV1/2 log IV1/2

In-sample, one-day-ahead
DM/$ .314 [.219] .399 [.351] .482 [.431]
Yen/$ .315 [.229] .412 [.374] .476 [.433]
Yen/DM .450 [.361] .559 [.499] .630 [.567]

Out-of-sample, one-day-ahead
DM/$ .200 [.158] .296 [.246] .350 [.285]
Yen/$ .230 [.197] .366 [.338] .419 [.373]
Yen/DM .215 [.189] .378 [.344] .483 [.424]

In-sample, ten-days-ahead
DM/$ .411 [.374] .463 [.436] .499 [.473]
Yen/$ .386 [.355] .414 [.396] .424 [.407]
Yen/DM .536 [.513] .606 [.589] .653 [.637]

Out-of-sample, ten-days-ahead
DM/$ .182 [.168] .209 [.195] .228 [.213]
Yen/$ .197 [.187] .287 [.279] .347 [.336]
Yen/DM .186 [.178] .301 [.293] .401 [.390]

Note: The table reports the adjusted predictive R2’s from the Mincer–Zarnowitz re-
gressions of the realized volatilities on the AR(5) volatility forecasts in ABDL (2003),
along with the corresponding unadjusted R2’s (in square brackets). The realized volatil-
ity measures are constructed from high-frequency half-hour returns. The “in-sample”
period covers December 1, 1986 through December 1, 1996, while the “out-sample” pe-
riod spans December 2, 1996 through June 30, 1999.

19The adjustments are constructed separately for each series and for the in-sample and out-of-
sample periods using the corresponding realized volatility and quarticity series.
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tent with that implied by a conventional two-factor affine model. This type of
benchmarking of the true predictive power of such reduced-form forecast pro-
cedures relative to that of a specific continuous-time volatility model would, of
course, be impossible without the type of measurement error correction devel-
oped here.

4. CONCLUDING REMARKS

Building on the recent theoretical results of Barndorff-Nielsen and Shephard
(2002a, 2004a, 2004b), this note develops a set of simple and practically feasible
expressions for calculating true measures of return volatility predictability rel-
ative to that of the corresponding underlying (latent) integrated volatility. The
procedures are general and could be applied in the evaluation of any volatil-
ity forecasts. The analytical results for the eigenfunction stochastic volatility
class of models and accompanying simulation based evidence confirm that the
procedures work equally well in situations with pronounced leverage effects.
On specifically applying the procedures to the ex post forecast evaluation re-
gressions reported in ABDL (2003), we document sizeable downward biases in
terms of the previously reported predictive powers. More generally, the prac-
tical techniques developed here hold the promise for further development of
new and improved easy-to-implement volatility forecasting procedures guided
by proper benchmark comparisons. The techniques should also prove useful
in more effectively calibrating the type of continuous-time models routinely
employed in modern asset pricing theories.
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APPENDIX A: MONTE CARLO SIMULATIONS

In order to assess the accuracy of the distributional assumptions and second-order Taylor se-
ries expansions underlying the asymptotic approximations in (9), (11), and (14) in empirically
relevant specifications and sample sizes compatible with those of ABDL (2003), Tables II–IV re-
port the simulated medians and ninety-percent confidence intervals (in square brackets) across
1,000 replications, each consisting of 2,500 “days.” We report the results for a total of nine dif-
ferent continuous-time models along with 1/h = 288�96�48, and 1, corresponding to the use of
“5-minute,” “15-minute,” “half-hourly,” and “daily” returns.

The first three models reported in Table II fix the mean returns at zero, and assume that the
volatility and the Brownian motion driving the price process are independent, i.e., no leverage
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TABLE II

ASYMPTOTIC VARIANCE APPROXIMATIONS
BASELINE VOLATILITY MODELS

h var[IV t ] var[IV1/2
t ] var[log(IV1/2

t )]

GARCH(1�1) diffusion
1/∞ .170 .0647 .138

[.117, .265] [.0518, .0853] [.112, .168]
1/288 .170 .0647 .138

[.116, .266] [.0517, .0854] [.112, .168]
1/96 .171 .0648 .138

[.116, .266] [.0520, .0859] [.112, .168]
1/48 .170 .0650 .139

[.115, .268] [.0520, .0861] [.112, .169]
1 .167 .208 1.19

[.0923, .313] [.175, .248] [1.08, 1.30]
Two-factor affine
1/∞ .0259 .0126 .0261

[.0222, .0316] [.0111, .0145] [.0235, .0290]
1/288 .0260 .0126 .0261

[.0222, .0316] [.0111, .0145] [.0234, .0291]
1/96 .0260 .0126 .0263

[.0221, .0315] [.0111, .0146] [.0235, .0294]
1/48 .0259 .0127 .0267

[.0219, .0315] [.0112, .0148] [.0238, .0302]
1 .0245 .136 1.07

[.00617, .0462] [.125, .149] [.973, 1.16]
Log-normal diffusion
1/∞ .145 .0544 .109

[.0640, .333] [.0328, .0946] [.0764, .163]
1/288 .144 .0543 .109

[.0643, .338] [.0330, .0943] [.0762, .163]
1/96 .145 .0546 .109

[.0642, .337] [.0330, .0952] [.0766, .164]
1/48 .144 .0547 .109

[.0635, .341] [.0331, .0953] [.0769, .165]
1 .145 .177 1.15

[.0529, .390] [.127, .252] [1.05, 1.27]
Note: The table reports the simulated medians and ninety-percent confidence intervals

(in square brackets) for the asymptotic approximations in equations (9), (11), and (14)
across 1,000 replications, each consisting of 2,500 “days.”

effects. In the general equation

d log(St) = µdt +σt dWt

= µdt +σt

[
ρ1 dW1�t + ρ2 dW2�t +

√
1 − ρ2

1 − ρ2
2 dW3�t

]
�

one has µ= ρ1 = ρ2 = 0, which leads to

d log(St) = σt dW3�t �



292 T. ANDERSEN, T. BOLLERSLEV, AND N. MEDDAHI

TABLE III

ASYMPTOTIC VARIANCE APPROXIMATIONS
VOLATILITY MODELS WITH LEVERAGE AND CONSTANT DRIFT

h var[IV t ] var[IV1/2
t ] var[log(IV 1/2

t )]

GARCH(1�1) diffusion
1/∞ .170 .0647 .138

[.117, .265] [.0518, .0853] [.112, .168]
1/288 .170 .0647 .138

[.116, .262] [.0518, .0849] [.112, .168]
1/96 .170 .0647 .138

[.116, .265] [.0520, .0852] [.112, .168]
1/48 .170 .0650 .138

[.115, .268] [.0520, .0853] [.113, .168]
1 .165 .205 1.16

[.0964, .303] [.173, .247] [1.07, 1.27]
Two-factor affine
1/∞ .0259 .0126 .0261

[.0222, .0316] [.0111, .0145] [.0235, .0290]
1/288 .0260 .0126 .0261

[.0221, .0317] [.0111, .0145] [.0234, .0292]
1/96 .0261 .0127 .0263

[.0222, .0321] [.0112, .0145] [.0236, .0294]
1/48 .0262 .0129 .0267

[.0221, .0323] [.0112, .0150] [.0239, .0301]
1 .0370 .139 1.07

[.0155, .0654] [.128, .154] [.973, 1.16]
Log-normal diffusion
1/∞ .145 .0544 .109

[.0640, .333] [.0328, .0946] [.0764, .163]
1/288 .144 .0545 .109

[.0640, .336] [.0329, .0941] [.0763, .162]
1/96 .145 .0545 .109

[.0637, .337] [.0331, .0952] [.0763, .163]
1/48 .146 .0547 .110

[.0635, .340] [.0335, .0943] [.0766, .162]
1 .145 .177 1.15

[.0515, .375] [.127, .251] [1.04, 1.27]
Note: See Table II.

The numbers in the first panel refer to the GARCH(1�1) diffusion analyzed in Andersen and
Bollerslev (1998),

dσ2
t = �035(�636 − σ2

t ) dt + �144σ2
t dW1�t �

The second panel gives the results for the two-factor affine diffusion estimated by Bollerslev and
Zhou (2002), σ2

t = σ2
1�t + σ2

2�t � where

dσ2
1�t = �5708(�3257 − σ2

1�t ) dt + �2286σ1�t dW1�t �

dσ2
2�t = �0757(�1786 − σ2

2�t ) dt + �1096σ2�t dW2�t �
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TABLE IV

ASYMPTOTIC VARIANCE APPROXIMATIONS
VOLATILITY MODELS WITH LEVERAGE AND TIME-VARYING DRIFT

h var[IV t ] var[IV1/2
t ] var[log(IV 1/2

t )]

GARCH(1�1) diffusion
1/∞ .170 .0647 .138

[.117, .265] [.0518, .0853] [.112, .168]
1/288 .170 .0648 .138

[.116, .262] [.0518, .0850] [.112, .168]
1/96 .171 .0647 .138

[.116, .266] [.0521, .0853] [.112, .168]
1/48 .171 .0652 .138

[.116, .270] [.0521, .0855] [.113, .168]
1 .196 .225 1.17

[.116, .398] [.189, .272] [1.05, 1.27]
Two-factor affine
1/∞ .0259 .0126 .0261

[.0222, .0316] [.0111, .0145] [.0235, .0290]
1/288 .0261 .0126 .0262

[.0222, .0318] [.0111, .0146] [.0235, .0292]
1/96 .0264 .0128 .0265

[.0225, .0324] [.0113, .0147] [.0238, .0296]
1/48 .0268 .0131 .0272

[.0226, .0329] [.0115, .0152] [.0243, .0306]
1 .0661 .163 1.09

[.0362, .106] [.150, .180] [.998, 1.18]
Log-normal diffusion
1/∞ .145 .0544 .109

[.0640, .333] [.0328, .0946] [.0764, .163]
1/288 .145 .0545 .109

[.0641, .336] [.0329, .0942] [.0764, .163]
1/96 .145 .0546 .109

[.0639, .337] [.0332, .0954] [.0764, .163]
1/48 .146 .0548 .110

[.0636, .342] [.0336, .0948] [.0768, .163]
1 .164 .192 1.15

[.0608, .543] [.136, .281] [1.04, 1.27]
Note: See Table II.

These parameter values were obtained from estimation based on the identical DM–dollar sample
used in ABDL (2003). The third set of numbers refer to the log-normal diffusion reported in
Andersen, Benzoni, and Lund (2002) with volatility dynamics governed by

d log(σ2
t ) = −�0136[�8382 + log(σ2

t )]dt + �1148dW1�t �

All of the models in Table II satisfy the Barndorff-Nielsen and Shephard (2002a, 2004a) regularity
conditions discussed in Sections 2.1 and 2.2.
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The results reported in Table III are based on the same three volatility specifications, but
incorporate a positive drift and strong leverage effects. For the one-factor GARCH and log-
normal diffusions,

d log(St) = �0314dt + σt

[−�576dW1�t +
√

1 − �5762 dW3�t
]
�

where the values for the drift and leverage parameters are taken from Andersen, Benzoni, and
Lund (2002). For the two-factor affine model the instantaneous return dynamic is governed by

d log(St) = �0314dt + σt

[
�9dW1�t − �4dW2�t +

√
1 − �92 − �42 dW3�t

]
�

with the two leverage parameters adapted from the estimates reported in Chernov, Gallant,
Ghysels, and Tauchen (2003).

In addition to the contemporaneous correlation between the return and volatility for the lever-
age models in Table III, the last set of models in Table IV also include a volatility feedback, or
ARCH-in-mean, effect in the drift component. Specifically, for the two one-factor models,

d log(St) = (�0314 + �3σ2
t ) dt + σt

[−�576dW1�t +
√

1 − �5762 dW3�t
]
�

while for the two-factor model,

d log(St) = (�0314 + �3σ2
t ) dt + σt

[
�9dW1�t − �4dW2�t +

√
1 − �92 − �42 dW3�t

]
�

The value of the slope coefficient in the drift is taken from Chernov (2003).

APPENDIX B: TECHNICAL PROOFS

PROOF OF EQUATIONS (10), (11), (12), (13), AND (14): Let f (·) be a twice-differentiable func-
tion. By (6) and a second-order Taylor approximation of f (·) at the point RV t (h) around IV t , it
follows that

f (RV t (h)) ≈ f (IV t )+ f ′(IV t )
√

2hIQtzt + 1
2
f ′′(IV t )2hIQtz

2
t �(A.1)

Consequently,

E[f (RV t (h))] = E[f (IV t )] +E
[
f ′(IV t )

√
2hIQtzt

] + 1
2
E[f ′′(IV t )2hIQtz

2
t ] + o(h)

= E[f (IV t )] +E
[
f ′(IV t )

√
2hIQtE[zt |σu� t − 1 ≤ u≤ t]]

+ 1
2
E

[
f ′′(IV t )2hIQtE[z2

t |σu� t − 1 ≤ u≤ t]] + o(h)

= E[f (IV t )] + 1
2
E[f ′′(IV t )2hIQt] + o(h)�

so that,

E[f (RV t (h))] =E[f (IV t )] + 1
2
E

[
f ′′(RV t (h))2hRQt (h)

] + o(h)(A.2)

provided E[f ′′(RV t (h))RQt (h)] − E[f ′′(IV t )IQt] = o(1). Equations (10), (12), and (13) follow
by applying (A.1) to the functions f1(x) = x1/2 , f2(x) = log(x), and f3(x) = log(x)2, where
f ′

1(x) = 2−1x−1/2, f ′′
1 (x) = −2−2x−3/2, f ′

2(x) = x−1, f ′′
2 (x) = −x−2, f ′

3(x) = 2x−1 log(x), and
f ′′

3 (x) = 2x−2(1 − log(x)). Applying (A.2) to the function f1(·) results in (11). Similarly, applying
(A.2) to the functions f2(·) and f3(·) yields (14). Q.E.D.
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