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Abstract: There are different missing flight data due to various reasons in the process of acquisition
and storage, especially in general aviation, which cause inconvenience for flight data analysis. Effec-
tively explaining the relationship between flight data parameters and selecting a simple and effective
method for fitting and correcting flight data suitable for engineering applications are the main points
of the paper. Herein, a convenient and applicable approach of missing data correction and fitting
based on the least squares polynomial method is introduced in this work. Firstly, the polynomial
fitting model based on the least squares method is used to establish multi-order polynomial by
existing flight data since the order of the least squares polynomial has a direct impact on the fitting
effect. The order is too high or too small, over-fitting or deviation will occur, resulting in improper
data. Therefore, the optimization and selection of the model order are significant for flight data
correction and fitting. Because the flight data of the aircraft engine exhaust gas temperature (EGT) are
often lost because of the immature detection technology, a series of the multi-order polynomial are
established by the relationship of aircraft engine exhaust gas temperature and Revolutions Per Minute
(RPM). Case study results confirm the optimal model order is four for the fitting and correction of
aircraft engine exhaust temperature, and the least squares polynomial method is applicable and
effective for EGT flight data correction and fitting based on RPM data.

Keywords: flight data; exhaust gas temperature (EGT); revolutions per minute (RPM); polynomial
least squares

1. Introduction

Flight data is playing an increasingly important role in data-driven civil aviation safety
management, especially in the application of flight operation quality assurance (FOQA) [1],
aircraft fault diagnosis [2], runway safety analysis [3], airline safety management [4], flight
performance analysis [5], which strongly promotes the construction of smart civil aviation,
the big data applications play an increasingly important role [6–9]. During the flight,
the aircraft QAR (quick access recorder) and FDR (flight data recorder) record all the
performance and status parameters of various equipment and related components, such as
operating parameters, flight real-time communication data, and other data. QAR database
system is a comprehensive monitoring system that records and processes the operating
state parameters of aircraft, engines, and electronic and electrical equipment. Therefore,
flight data provides an applicable and convenient way to obtain flight information and
has become the main approach of capturing flight safety information for pilot crew and
aircraft health monitor. In the process of collecting and recording flight data, some data
are lost at a certain point due to various reasons, which will result in a breakpoint in
the data curve. This lost flight number is named the missing data; mechanical failures
and random disturbances often result in some missing flight data, which always occur in
general aviation. Especially, airplane vibration or shock severely often leads to the data
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logging sensor failing in general aviation. There are many other unclear reasons leading to
the loss of flight data, which will make the analysis of aircraft operating performance and
accident diagnosis more difficult. Therefore, it is necessary and meaningful to conclude an
effective and practical method for correction and fitting of the missing flight data.

Many scholars have carried out a series of studies on flight data analysis and applied
research. Puranik and colleagues [10] had applied machine learning technology and other
technologies to flight data analysis in general aviation, applied flight data to identify and
isolate abnormal operations, implemented an important driving force for aviation safety
based on data-driven. Yildirim and Kurt [11] used neural networks and other methods in
engine fault diagnosis and aircraft health management, and excellent results have been
achieved. Francisco and colleagues [12] had applied a data mining technique for the
generation of an information system’s data model, which helps regulate the flight time and
pilot scheduling. Reynolds and colleagues [13] had made the effective management for air
traffic control and pilots via flight data analysis. Kumar [14] provided a novel approach
for non-linear aerodynamic modeling by GPR-based flight data. Combined with high
altitude QAR flight data, the pilot’s maneuvering behavior was analyzed [15]. Lu [16]
offered fault-tolerant control (FTC) systems for aircraft safety in case there are malfunctions
in the IMU sensors monitoring flight data. Sartor [17] used the Bayesian network for
flight landing data analysis. Simon [18] presents an algorithm that automatically identifies
and extracts steady-state engine operating points from engine flight data. It calculates
the mean and standard deviation of select parameters contained in the incoming flight
data stream. Shenghan Zhou [19] make the four landing states divided by three flight
parameter variables, including a touchdown, vertical acceleration, and distance to go, and
establish pattern recognition based on a BP neural network is used to establish the landing
state prediction model and used the genetic algorithm to initialize the model parameter.
Revised the Markov chain to improve the model for higher prediction precision establish
the landing safety prediction model by integrating pattern recognition and Markov chain
with flight data. Massimo and colleagues [20] present new perspectives on the application
of Artificial Intelligence (AI) solutions to process Spacecraft (S/C) flight data in order
to augment currently used operational S/C health monitoring and diagnostics systems.
Yao Li [21] used the Cessna172 flight simulator for flight data extraction to obtain an
aerodynamic model, based on the idea of machine learning, a recurrent neural network
was used to process multi-dimensional non-linear flight test data, and a real-time recursive
learning algorithm was proved to be suitable for dynamic training, and some scholars have
conducted combining multiple classifiers for the quantitative rank of abnormalities in-flight
data, and applied in-flight data monitoring, flight control behavior analysis [22–24]. In
terms of flight data analysis and application research, make the outlier detections with
uncertain data from flight data for pilot performance and maintenance assessment [25,26].

Many scholars have carried out a series of studies on linear and non-linear flight
data fitting and correction, and the provision of various flight data correction and fitting
methods shows important value, but he convenient and applicable methods are still worth
discussing, especially in the research of correlation and prediction analysis two types of key
flight data parameters between the engine exhaust temperature (EGT) and the revolutions
per minute (RPM). Effectively explaining the relationship between flight data EGT and RPM
also selecting a simple and effective method for fitting and correcting flight data suitable
for engineering applications are the main points of the paper. For the fitting and correction
of the missing flight data, the common and applicable methods include the extrapolation
method of the least squares method, polynomial regression model method, and differential
integrated moving average autoregressive method. The extrapolation method of the
least square method is the most common method, which applies in engineering fields.
Due to its convenience and practicability, the least square method has rich and mature
applications in the field of engineering data processing and has a very strong method
application universality. For the data of aircraft engine exhaust temperature is often lost or
numerical deviation because of the immature detection technology in the general aviation,
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the polynomial fitting method based on least squares method is used to fit and correct
the missing flight data for the relationship of aircraft engine exhaust temperature (EGT)
and aircraft engine revolutions per minute (RPM). Conclusively, the algorithm is fitted
and corrected with the example of aircraft engine speed data to fit and correct the missing
flight data and seek out the most suitable fitting polynomial order through the numerical
calculation of the fitting equation of the polynomial and the minimum deviation analysis.

2. Algorithm Principle

According to the given data point, the so-called fitting curve is set by the least square
method—the curve changes with the variation trend of the data point. In the process of
establishing multi-order polynomial fitting curves, the orders of functions are diverse;
different orders of the model polynomial will induce different fitting effects. When the
order of fitting for general aviation flight data is too low or too high, different general
aviation flight data noise will break into the model. The optimum order of fitting curves
for the EGT and RPM needs to be selected. If there is a more precise relationship between
variables such as y = a1 × x1 + a2 × x2 + a3 × x3+ a4 × x4 + a5 × x5 + . . . + an × xn, the
observed value yi of the variable is equal to the obtained regression value ŷi. Figure 1
shows the process of missing flight data fitting and correction.
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3. Polynomial Fitting Model Based on Least Squares Method

Make the actual detected value be y(z), by order polynomial of RPM variable:

y(t) = a1tn + a2tn−1 + · · ·+ ant + an+1 (1)

It is assumed that there are currently N + 1 detection data with equal time intervals,
which are yk, yk+1, · · · , yk+N , and the interval is T, assuming that the corresponding time



Appl. Sci. 2022, 12, 2545 4 of 10

point of the initial measurement point is tk = 0, then the corresponding time point of the
yk+l measurement points is tk+lT = lT, it can be derived from Equation (1).

y(t) = a1tn + a2tn−1 + · · ·+ ant + an+1 (2)

a′1 = a1Tn, a′2 = a2Tn−1, a′3 = a3Tn−2, · · · , a′n = anT (3)

We can attain:
yk

yk+1
...

yk+n

 =


0
1
...

Nn

0
1
...

Nn−1

· · ·
· · ·
. . .
· · ·

0
1
...

N

1
1
...
1




a1
a2
...

an+1

 (4)

Let:

V =


0
1
...

Nn

0
1
...

Nn−1

· · ·
· · ·
. . .
· · ·

0
1
...

1
1
...

N

 (5)

Y = [yk, yk+1, · · · , yk+N ]
T (6)

X =
[
a′1, a′2, a′3 · · · , a′n+1

]
(7)

Substitute in Equation (4), so we attain:

Y = VK (8)

It can be seen that this is a contradiction equation and solved by the least squares method.

X̂ =
[
VTV

]−1[
VTY

]
(9)

And so that:
Ŷ =

[
VTV

]−1[
VTY

]
(10)

From the above equations, it can derive the equations for the N + 1 points, and the n
order polynomial roughly derives the data estimate ˆyk+l = (l = 0, 1, 2, · · · , N) at time l:

ˆyk+l =
[

1 l l2 · · · ln ]{[VTV
]−1[

VTY
]}

(11)

When l > N, Equation (11) is changed to estimate the fitted data without the detected
amount with the current value data. When l = N + 1, N + 2, N + 3, it is the first, second,
and third more successive estimation point. The data point at the point in time. Since the
predicted deviation gradually increases away from the current data segment, the estimated
deviation is gradually increased, so usually seeking out the most suitable fitting polynomial
order through the numerical calculation of the fitting equation of the polynomial and the
minimum deviation analysis.

4. Calculation Model and Order Selection

Different orders of model polynomials will produce different fitting effects, and we
also know that the order is too high and over-fitting will occur and bring data noise to
the model. Starting from the basis of statistical analysis, if the difference between the χ2

quantity and its degree of freedom under the estimation parameter is not large, the order
is considered to be moderate, that is, when the N + 1 dates detected of yk, yk+1, · · · , yk+N
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fitted by the order polynomial is completed, the obtained parameter estimation is put into
the following equation to derive the amount of χ2.

χ2 =
N

∑
i=1

yi −
(

a1xn
i + a2xn−1

i + · · ·+ anxi + an+1

)
∆yi

2

(12)

For a modest order, its χ2 quantity must have the degree of freedom (N − n) as the
expected value. Therefore, starting from n = 2, from small to large, the amount of χ2 each
order is derived. The distance between 1− p

(
χ2 < (N − n)

)
and 0.5 is determined. In the

process of realistic derivation, using the mean square error test, and the corresponding
formula is:

σ =

√
∑N

l=0(yk+l − ˆyk+l)
2

N
(13)

When the mean square error reaches a minimum, the value of n is the best order.

5. Case Study

Taking the trainer aircraft CESSNA172R of the Civil Aviation Flight University of China
as the research object, the engine of CESSNA172R is produced by the American Textron
Lycoming engine manufacturer. The engine model is I0-360-L2A, its health management
system is the GARMIN1000 system, and the data is obtained from the sensors on the aircraft.
Generated, and the GARMIN1000 system is responsible for collecting and summarizing.
The collection of engine data is mainly based on reading, saving, and backup by an on-
board download after the flight over. There are 12 parameters related to the engine, and the
meaning of each parameter is shown in Table 1. Random captures 20 partial raw flight data
engine revolutions per minute (RPM) data and exhaust gas temperature (EGT) of a general
aviation aircraft in cruise state shown in Table 2, the engine revolutions per minute (RPM)
data as the monitoring data without trend item shows the normal flight training. According
to those data, five fitting curves are drawn in Figures 2–5. Herein we set Y1, Y2, Y3, Y4
to represent the value of EGT1, EGT2, EGT3, EGT4, respectively, and X represents the
value of RPM, for increasing the conciseness of multi-order polynomial, Z was employed
here Z = (X − 1.1 × 103)/20. According to the Polynomial Least Squares Analysis fitting
method, the multi-order fitting equation relationship between EGT (Y) and RPM (X) was
established, respectively. In order to make the equation expression between Y and X more
concise, the parameter Z is introduced here, where Z = (X − 1.1 × 103)/20; in fact, Z still
represents RPM (X).

Table 1. Flight data engine data structure.

Saserial Number Parameter
Abbreviation Parameter Explanation

1 E1 FFlow fuel flow
2 E1 OilT lubricating oil temperature
3 E1 Oilp Oil pressure
4 E1 RPM Engine speed
5 E1 CHT1 No. 1 cylinder temperature
6 E1 CHT2 No. 2 cylinder temperature
7 E1 CHT3 No. 3 cylinder temperature
8 E1 CHT4 No. 4 cylinder temperature
9 E1 EGT1 No. 1 cylinder exhaust gas temperature
10 E1 EGT2 No. 2 cylinder exhaust gas temperature
11 E1 EGT3 No. 3 cylinder exhaust gas temperature
12 E1 EGT4 No.4 cylinder exhaust gas temperature
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Table 2. Partial raw flight data RPM and four different EGT.

Flight Data RPM EGT1 EGT2 EGT3 EGT4

1 1026.8 864.39 936.05 957.78 954.93
2 1039.2 868.36 936.71 957.77 955.47
3 1058.8 878.23 937.76 958.14 956.81
4 1049.2 885.51 941.7 960.2 959.41
5 1056.2 898.87 944.24 964.63 962.23
6 1069 906.1 945.41 967.03 964.14
7 1080 912.3 948.98 967.44 966.89
8 1082.3 923.17 952.29 967.77 970.15
9 1081 935.1 955.88 967.77 971.42
10 1081.8 945.63 960.01 969.55 973.29
11 1093.1 954.94 963.35 971.52 975.99
12 1090.2 963.98 965.81 975.16 978.94
13 1083.2 971.95 969.14 978.3 981.44
14 1087.7 978.44 972.41 979.23 981.44
15 1093 978.44 973.81 980.28 987.47
16 1088.6 990.26 975.82 981.49 990.65
17 1088.8 995.62 977.37 981.88 991.54
18 1093.7 999.37 980.16 983.5 993.24
19 1093.2 1002.45 981.44 986.47 995.57
20 1084.6 1003.41 984.02 988.37 997.35
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plots, and the fitting multi-order polynomial results are listed following:

Y1 = 13 × Z2 + 58 × Z + 9.3 × 102
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To verify those multi-order polynomial results and find the optimum order, we select
a real value (1069, 906.1), where Z = −3.66. According to the error results from Table 3, we
can find four-order polynomial is the best.

Table 3. The error of different multi-order polynomial for EGT1.

Order Real Value Predicted Value Error (%)

two 906.1 871.33 3.8
three 906.1 873.59 3.6
four 906.1 878.45 3.0
five 906.1 610.41 3.6
six 906.1 871.85 3.8
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We use the squares polynomial fitting method to fit these known numerical scatter
plots, and the fitting multi-order polynomial results are listed following:

Y2 = 5.2 × Z2 + 20 × Z + 9.6 × 102
Y2 = 0.53 × Z3 + 6.3 × Z2 + 20 × Z + 9.5 × 102

Y2 = −2.5 × Z4 − 6.2 × Z3 + 7.1 × Z2 + 26 × Z + 9.5 × 102
Y2 = −5.3 × Z5 − 22 × Z4 − 15 × Z3 + 29 × Z2 + 34 × Z + 9.5 × 102

Y2 = −1.2 × Z6 − 10 × Z5 − 25 × Z4 − 9.8 × Z3 + 32 × Z2 + 32 × Z + 9.5 × 102

To verify those multi-order polynomial results and find the optimum order, we select
a real value (1058.8, 937.76), where Z = −2.06. According to the error results from Table 4,
we can find four-order polynomial is the best.

Table 4. The error of different multi-order polynomial for EGT2.

Order Real Value Predicted Value Error (%)

two 937.76 940.87 0.3
three 937.76 930.90 0.7
four 937.76 935.75 0.2
five 937.76 934.58 0.3
six 937.76 812.39 13.3

We use the squares polynomial fitting method to fit these known numerical scatter
plots, and the fitting multi-order polynomial results are listed following:

Y3 = 2.6 × Z2 + 11 × Z + 9.7 × 102
Y3 = 0.074 × Z3 + 2.8 × Z2 + 11 × Z + 9.7 × 102

Y3 = −0.9 × Z4 − 2.4 × Z3 + 3.1 × Z2 + 13 × Z + 9.7 × 102
Y3 = −2.7 × Z5 − 11 × Z4 − 7 × Z3 + 14 × Z2 + 18 × Z + 9.7 × 102

Y3 = −1.7 × Z6 − 9.7 × Z5 − 15 × Z4 + 1.1 × Z3 + 19 × Z2 + 15 × Z + 9.7 × 102

To verify those multi-order polynomial results and find the optimum order, we select
a real value (1058.8, 958.14), where Z = −2.06. According to the error results from Table 5,
we can find a four-order polynomial that meets the forecast requirements well.

Table 5. The error of different multi-order polynomial for EGT3.

Order Real Value Predicted Value Error (%)

two 958.14 958.3734 2.2
three 958.14 958.5752 2.2
four 958.14 961.1482 2.4
five 958.14 955.5948 2.0
six 958.14 969.9161 3.4

We use the squares polynomial fitting method to fit these known numerical scatter
plots, and the fitting multi-order polynomial results are listed following:

Y4 = 2.6 × Z2 + 11 × Z +9.7 × 102
Y4 = 0.074 × Z3 + 2.8 × Z2 + 11 × Z + 9.7 × 102

Y4 = −0.9 × Z4 − 2.4 × Z3 + 3.1 × Z2 + 13 × Z + 9.7 × 102
Y4 = −2.7 × Z5 − 11 × Z4 − 7 × Z3 + 14 × Z2 + 18 × Z + 9.7 × 102

Y4 = −1.7 × Z6 − 9.7 × Z5 − 15 × Z4 +1.1 × Z3 +19 × Z2 + 15 × Z + 9.7 × 102

To verify those multi-order polynomial results and find the optimum order, we select
a real value (1058.8, 956.81), where Z = −2.06. According to the error results from Table 6,
we can find four-order polynomial is the best.
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Table 6. The error of different multi-order polynomial for EGT4.

Order Real Value Predicted Value Error (%)

two 956.81 953.6518 0.3
three 956.81 953.612 0.3
four 956.81 959.1251 0.2
five 956.81 954.4378 0.3
six 956.81 937.3811 2.0

6. Discussion

When comparing the error of different multi-order polynomial, it can be clearly seen
that the missing data has been fitted closely. It shows that the least squares polynomial
fitting method is simple and applicable, which can make up for the lack of data of the flying
reference data and improve the accuracy and reliability of the data.

The least squares method can be used to easily obtain unknown data, and the sum of
the squares of the errors between the obtained data and the actual data is minimized. It can
also be used for curve fitting, and the least squares method is simple and effective. The RPM
and EGT are used as examples to verify the feasibility of the least squares polynomial fitting
model. With the confirmation of the relationship between RPM and EGT, the four-order
polynomial is more suitable.

7. Conclusions

To prevent the affecting of missing flight data on flight information analysis, the
polynomial fitting model based on the least squares method was employed to fit and
correct the missing flight data. For the flight data of aircraft engine exhaust gas temperature
(EGT) is often lost because of the immature detection technology, a series of multi-order
polynomials are established by the relationship of aircraft engine exhaust gas temperature
(EGT) and revolutions per minute (RPM). By comparing the error of every polynomial,
the four-order polynomial has more obvious advantages for correction and fitting of flight
Data EGT based on RPM, and it is verified that the polynomial least squares analysis
method in correction and fitting civil aviation flight data EGT based on RPM is simpler and
more effective than the previous method, has universal practicability, and has engineering
application value in-flight data fitting and correction. Subsequent research will be applied
to aircraft operation reliability assessment and pilot flight quality monitoring on the basis
of filling and fitting data.
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