
PPARa were determined by chemical-mediated fluorescence energy transfer assays using
the AlphaScreen Technology from Packard BioScience30. The experiments were conducted
with 5 nM PPARa LBD of biotinylated peptide containing individual motifs (Fig. 3a),
following the manufacturer’s instructions for the hexahistidine detection kit in a buffer
containing 50 mM MOPS, pH 7.4, 50 mM NaF, 0.05 mM CHAPS, 0.1 mg ml-1 bovine
serum albumin, and 10 mM dithiothreitol (DTT). The binding signals were detected with
the increasing concentrations of GW6471, and the results from four repeated experiments
were normalized as a percentage of the binding in the absence of GW6471.

The effects of GW6471 on the affinity of the SMRT or N-CoR peptides with purified
PPARa LBD were determined by fluorescence polarization in a buffer containing 10 mM
HEPES, pH 7.4, 0.15 M NaCl, 3 mM EDTA, 0.005% polysorbate-20, 5 mM DTT and 2.5%
DMSO. Varied concentration of PPARa LBD in the presence or absence of 40 mM GW6471
were incubated at room temperature with 10 nM of a fluorescein-labelled peptide of N-
CoR2 or SMRT2 (Fig. 3a). The fluorescence polarization values for each concentration of
receptor were determined using a BMG PolarStar Galaxy fluorescence reader with 485 nm
excitation and 520 nm emission filters. The apparent dissociation constant (Kd) values
were determined by the binding curves derived from a nonlinear least-squares-fit of the
data for a simple 1:1 interaction.

Mutational analysis of the SMRT co-repressor motif interaction with the PPARa and
TRb LBDs was also performed by fluorescence polarization. To determine the importance
of each amino acid in the SMRT motif for binding to nuclear receptors, SMRT peptides
with alanine substitution at each position were added to inhibit the binding of 1 mM TRb

LBD or 2 mM PPARa to the fluorescent N-CoR2 peptide. For the PPARa experiments we
added 10 mM GW6471. The inhibition curves were constructed and IC50 values were
determined by nonlinear least-squares-fit of the data to a simple 1:1 interaction.
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In this Letter, the middle infrared spectrum in Fig. 3b, correspond-
ing to an authentic sample of poly(DCPD) prepared with Grubbs’
catalyst and DCPD monomer, was a duplicate of the top spectrum
owing to a formatting error. The corrected spectra are shown
below. A
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