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CONSISTENCY AND ASYMPTOTIC NORMALITY OF THE
MAXIMUM LIKELTHOOD ESTIMATOR IN GENERALIZED
LINEAR MODELS

By LupwiG FAHRMEIR AND HEINZ KAUFMANN

University of Regensburg

Generalized linear models are used for regression analysis in a number
of cases, including categorical responses, where the classical assumptions are
violated. The statistical analysis of such models is based on the asymptotic
properties of the maximum likelihood estimator. We present mild general
conditions which, respectively, assure weak or strong consistency or asymp-
totic normality. Most of the previous work has been concerned with natural
link functions. In this case our normality condition, though obtained by a
different approach, is closely related to a condition of Haberman (1977a).
Examples show how the general conditions reduce to weak requirements for
special exponential families. Further, for regressors with a compact range,
sufficient conditions are given which do not involve the unknown parameter,
and are therefore easy to check in practice. Responses with a bounded range,
e.g. categorical responses, and stochastic regressors also are treated.

1. Introduction. Generalized linear models (Nelder and Wedderburn,
1972) are regression models for a number of cases where the classical assumptions
are not met. Let the data consist of a sequence {(y., Z,)}, where y,, the responses,
are independent g-dimensional random variables, and Z,, the regressors, are
p X g-matrices of known constants. The distribution of the response y,, is assumed
to belong to a natural exponential family (univariate examples are the normal,
binomial, Poisson, exponential and gamma distribution, multivariate examples
the multinormal and the multinomial distribution). The mean of the response y,
is related to a linear combination Z /8 of the regressors by a one-to-one mapping,
the link function. Depending on the special exponential family, there is one
“natural” link function. Multinomial (categorical, quantal) response models are
an important example. Here with the natural link function the logit model is
obtained.

Usually the p-vector 8 of coefficients of the linear combinations {Z;8} has to
be estimated from a finite sample of n observations, e.g. by the maximum
likelihood (ML) method. The methods for the analysis of a generalized linear
model (e.g. McCullagh and Nelder, 1983; Fahrmeir and Kredler, 1984) heavily
rely on the asymptotic properties of the maximum likelihood estimator (MLE)
as n — o,

Conditions to assure weak consistency and asymptotic normality of the MLE
for natural link functions have previously been given by Haberman (1977a,
admitting p — o, too), Andersen (1980, without proof), Nordberg (1980) and
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especially for the logit model by Haberman (1974), McFadden (1974), Gourieroux
and Monfort (1981, weak and strong consistency). For nonnatural link functions,
much less work has been done. McCullagh (1983) states asymptotic results,
without giving rigorous proofs or exact assumptions, and Mathieu (1981) requires
rather strong conditions.

All authors assume the Fisher information of the first n observations, F,(8)

say, to be divergent:
(11) AminFn(B) — 0,

(here and in the sequel Apin (Amax) denotes the smallest (largest) eigenvalue of a
symmetric matrix). In the classical linear regression model with i.i.d. errors, a
necessary and sufficient condition for weak (Drygas, 1976) and strong (Lai,
Robbins and Wei, 1979) consistency of the least squares estimator is

(1.2) Amin D=1 Zil{ —

which is closely related to (1.1). For nonnormally distributed errors, only a weak
negligibility condition has to be added to obtain asymptotic normality (Eicker,
1963). Therefore, it is natural to look for mild additional conditions which,
together with (1.1), assure consistency and asymptotic normality of the MLE in
generalized linear models. ‘

Natural link functions are treated in Section 3. Weak consistency is shown
under (1.1) together with an additional condition (C), requiring only that, in a
neighborhood of the true parameter, information does not decrease too rapidly.
Strong consistency is shown under (1.1) and a condition (S;) which bounds the
eigenvalue ratio of the successive information matrices. Asymptotic normality is
established under (1.1) and a continuity condition (N) on the sequence of
information matrices. It should be noted that we show the (multivariate) asymp-
totic normality of the MLE normalised by a square root of the information
matrix, i.e. FT2(8, ~ o) —a N(O, I), whereas some authors (Haberman, 1977a;
Friedman, 1982) consider (univariate) asymptotic normality of any normed linear
functional of the MLE. Although both formulations of asymptotic normality turn
out to be equivalent (see Remark (ii) of Subsection 3.1), we found matrix
normalisation to be more convenient in establishing asymptotic efficiency or the
asymptotic x 2-distribution of various test statistics.

Using fixed point theorems, Haberman (1977a, Condition 2) adds a mild
requirement to (1.1) to obtain weak consistency and asymptotic normality. In
Subsection 3.1 we present Haberman’s normality condition in a form that allows

~a comparison with our normality condition. Though we use a different approach
(see Sweeting, 1980; Hall and Heyde, 1980, page 162 ff.; Basawa and Scott, 1983,
for related work) leading to simpler proofs, we arrive at conditions which have a
strong relationship to Haberman’s Condition 2. It can be seen that, under (1.1),
his Condition 2 implies our normality condition (N). Although our assumption
is simpler to interpret and to check, it seems only slightly weaker (see Remark
(ii) in Subsection 3.1). Haberman (1977a) presents no separate condition for
weak consistency comparable to our condition (C), which is weaker than (N),
and strong consistency is not considered.
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The conditions assumed by the other authors are all relatively strong and
imply ours. They require a compact admissible set for the regressors, furthermore
the smallest and the largest eigenvalue of the information matrix are demanded
to grow at the same rate (Gourieroux and Monfort, 1981; implicitly in Nordberg,
1980), or, even stronger, it is assumed that F,.(8)/n — V(8) positive definite
(McFadden, 1974; Andersen, 1980).

In Subsection 3.3 verification of the conditions is discussed. Examples (i), (ii),
(iii) deal with specific exponential families and point out how the general
conditions can be utilized in special cases. For the Poisson model, they reduce to
(1.1) and a negligibility condition of the Feller-type, for gamma distributed
responses consistency and asymptotic normality is achieved under minimal
conditions. Example (iii) shows that the consistency condition (C) is weaker than
the normality condition (N). .

Thereafter, some corollaries present results of general interest. Corollary 1
states that the assumption of a compact admissible set for the regressors and
Condition (1.2) alone assure weak consistency and asymptotic normality of the
MLE. These conditions do not involve the parameter 8 and therefore may be
checked easily in applications. Corollary 2 treats the case of responses with a
bounded range, e.g. the logit model. As for the Poisson model, (C) and (N) are
implied by (1.1) and a negligibility condition of the Feller-type. In Corollary 3,
stochastic regressors are considered, where the matrices Z,, n =1, 2, ..., are
observations of random matrices. This situation is frequently met in practice.
Specifically, we shall assume that the pairs (y,, Z,),n=1,2, - - - , are independent
and identically distributed. Lack of further knowledge about the common distri-
bution of (y,, Z,) leads to the conditional approach: the parameter 8 is estimated
by maximizing the conditional likelihood, given Z,, - - - , Z,. Weak assumptions
- on the marginal distribution of Z,, in particular not requiring a compact range
for the regressors, are demonstrated to be sufficient for consistency and asymp-
totic normality of the (conditional) MLE. Although concerned with a more
general case and using a different approach, a paper of Haberman (1984) is also
of relevance in connection with conditional ML estimation.

Nonnatural link functions are treated in Section 4. We first discuss how the
general consistency and normality conditions of Section 3 can be extended to
cover this more general situation. Thereupon, we study the same three cases of
general interest as for natural link functions. Again, for regressors with a compact
range, Condition (1.2) alone assures weak consistency and asymptotic normality,
if the link function is twice continuously differentiable. For responses with a
bounded range and stochastic regressors, further mild assumptions are added to
the requirements for natural link functions. All these conditions are far weaker
and easier to check than those of Mathieu (1981), who requires a convergence
condition, analogous to F,(8)/n — V(8) as above, a Liapounov condition for the
score function, and, tacitly, a compact admissible set for the regressors.

Finally, in an example, we treat the binomial model. It is demonstrated that
weak consistency and asymptotic normality hold under the same negligibility
condition of Section 3 as for the logit model, if additional weak assumptions on
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the derivatives of the link function are met. Such assumptions hold e.g. for the
probit model.

2. Generalized linear models.

2.1 Definition and some properties. A family of distributions Py of a
g-dimensional random variable y, 8 € ® C R?, which have densities

f(y]0) = c(y)exp(6’y — b(0)), c = 0 measurable,

with respect to a o-finite measure v is called a natural exponential family with
natural parameter . We assume 0 to be the natural parameter space, i.e. the set
of all 8 satisfying 0 < [ c(y)exp(’y) dv < . Then 0 is convex, and in the interior
0° of O, all derivatives of b(0) and all moments of y exist (we assume @° # @). In
particular we have E;y = db(0)/30 = u(8) and covey = 32b(8)/00 96’ = =(9), say.
The covariance matrix Z(8) is supposed to be positive definite in the interior ©°
of O, implying that the restriction of u to ©° is injective. Let M denote the image
u(0°% of 0°,
Generalized linear models are characterized by the following structure:

(i) The {y.} are independent with densities
(2.1) f(¥al0:) = c(yn)exp(0,y. — b(6,)), n=12, ...,
of the natural exponential type, 6, € 0°.

(ii) The matrix Z, influences y, in form of a linear combination v, = Z;8,
where 8 is a p-dimensional parameter.

(iii) The linear combination is related to the mean u(8,) of y, by the injective
link function g: M — RY, v, = g(u(6,)).

REMARKS. (i) As in the original definition of Nelder and Wedderburn (1972),
an additional nuisance parameter may be introduced in (2.1). The MLE of 8
remains the same, but the information matrix has to be multiplied by an unknown
scale factor, which can be estimated consistently. Thus, without loss of generality,
we confine ourselves to the simpler form (2.1).

(ii) In this paper the link function g is defined as in the program GLIM or in
McCullagh and'Nelder (1983). For theoretical purposes it is more convenient to
relate v, = Z.B8 to the natural parameter 8, by the injective function u =
(g ° p)7%, ie. 0, =u(Z,B), as in the original definition.

(iii) Of special importance are natural link functions g = p~*, u = id. Then we
obtain a linear model 9, = Z/,8 for the natural parameter.

(iv) In the above definition the elements of the matrices {Z,} are known
constants. For stochastic regressors we assume the pairs {(y., Z,)} to be ii.d.
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Then the definition is to be understood conditionally, i.e. (2.1) is the conditional
density of y, given Z,, and the {y,} are conditionally independent.

ExaMPLES. We mention a few distributions and models.

(i) Univariate (g = 1) models. For the normal distribution and the natural link
function g(u) = u we obtain the classical linear regression model. Nonnatural
link functions are e.g. ¢, In .

In the binomial case P(y, = 1) = 7,, P(y, = 0) = 1 — 7, the natural link
function is g(w,,) = logit(z,) = In 7, — In(1 — =,,), inducing the binary logit model
logit(w,) = z,8 or, equivalently, =, = exp(z,8)/(1 + exp(z/8)). Choice of g(x,)
= ¢ Yn,), where ¢ is the standard normal distribution function, leads to the
binary probit model 7, = ¢(2z;8). The linear binary model =, = z,8 is obtained
from setting g(w,) = m,. All these binary models may be used for regression
analysis with binary dependent variables.

Poisson distributed responses y, with mean A, are used, for example, in the
analysis of multidimensional contingency tables. The natural link function g(\,)
= In A, provides the log linear Poisson model In A, = 2,8, the function g(\,) =
M- leads to the linear Poisson model A,, = z..8.

Regression models with gamma distributed responses y, are used in the
analysis of lifetimes depending on exogenous variables. The natural link function
is g(u) = —r/u, where r is the shape parameter.

(ii) The most interesting multivariate (¢ > 1) examples are multinomial
models, including the logit model.

2.2 Regularity assumptions and the log likelihood function. In the sequel 8,
denotes the true but unknown parameter which is to be estimated by the method
of maximum likelihood, and 8 is any parameter in an admissible set B C R”.
From now on we shall presume the following

REGULARITY ASSUMPTIONS. (i) B is open in R” and, additionally, convex for
natural link functions,

(ii) Z,p€gM),n=1,2, ... ,forall B € B,
(iii) g resp. u is twice continuously differentiable, det(du/dv) # 0,
(v) Y, ZZ; has full rank for n = ny, say.

Condition (ii) is necessary to have a generalized linear model for all 8. For natural
link functions, the convexity of B guarantees uniqueness of the maximum
likelihood estimator if it exists; see the discussion after (2.3). The differentiability
assumption on g is needed to guarantee that the second derivatives of the log
likelihood are continuous. Condition (iv) and det(du/dvy) # 0 will ensure that the
information matrix F,(8) is positive definite for all 8 € B, n = n,.

If there is an admissible set & for the regressors, i.e. Z, € Z for all n, then
(ii) follows from u(Z’G) € 8° for all 8 € B and Z € Z. Then we obtain a largest
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admissible set B* for 8 as the interior of {8: u(Z’g) € 0° for all Z € Z}. Since
B* is convex for natural link functions, the convexity assumption in (i) is a
natural one.

The log likelihood of a sample y,, -- - , ¥y, is given by

ln(ﬂ) = ?=1 (ot,yl - b(ol)) - C’ 0i = u(Z,’ﬂ), I = ]-7 A (1

where C does not depend on 8.

Setting u.(8) = u(w(Z:8)), Z.(8) = Z(u(Z;6)), U.(8) = [du(Z;8)/dv]" and
differentiating I,(8), we find the score function s,(8) and the information matrix
F.(8) to be

8.(8) = 8l.(8)/38 = Ti1 ZU:(B)y: — (),
Fo.(8) = covgs,(8) = Xi ZU:(B)Z:(B)U! (B)Z!.
Further differentiation yields
H,(8) = —3%,(8)/3838" = F.(8) — R.(8),
say. The matrix R,(8) is given by
(2.2) R.(8) = Tiu1 X1 ZWi(B)Z{ (yir — pir(B)),

where W;.(8) = 0%u,(Z!8)/9vdy’, and u,(v), yir, uir(8) are the components of
u(v), yi, :(8). It is easy to see that Egs,(8) = 0, EgH,(8) = F.(8).
For natural link functions, these expressions simplify considerably:

(2.3)  8,(8) = Ti1 Zi(y: — m(B), Fo(B) = X ZZ:(B)Z!, H.(B) = F.(8).

The last equality is of great advantage: Since F,(B8) is positive definite, the
likelihood function is concave so that the convexity of B ensures uniqueness of
the maximum if it exists. Moreover, consistency and normality conditions on
H.(8), which arise from Taylor expansions, shrink to relatively mild conditions
on F,(B8). For this reason, we treat the case of natural link functions separately
in Section 3.

The MLE B, based on a finite sample y;, ---, ¥, does, in general, not exist
for each possible sample, but only for a subset of the sample space. However, the
MLE B, can be extended to a random variable on the whole sample space, using
techniques as in Witting and Noelle (1970, page 77); KauAfmann (1983, page 37f.),
e.g. For convenience we assume that the sequences {8,} are already random
variables, i.e.'measurable functions, defined on the whole sample space.

For notational simplicity, we shall mostly drop the argument 8 in s,(80),
F.(80), Es,, Pg, etc. and write s,, F,,, E, P etc.

3. Natural link functions.

3.1 Theorems on consistency and asymptotic normality. In the sequel we need
square roots of positive definite matrices. Let A2(A”/?) be a left (the correspond-
ing right) square root of the positive definite matrix A, i.e. AY2A72 = A, In
addition, set A2 = (AY2)7}, A=T/2 = (AT/%)"%, Note that left (right) square roots
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are unique up to an orthogonal transformation from the right (from the left).
Unique continuous “versions” of the square root are the Cholesky square root
(e.g. Stoer, 1976, page 146) and the symmetric positive definite square root (e.g.
Gourieroux and Monfort, 1981). The left Cholesky square root is defined as the
(unique) lower triangular matrix with positive diagonal elements and can be
computed without solving any eigenvalue problems.

Beyond the regularity assumptions of Subsection 2.2 we need some further
assumptions to ensure consistency or asymptotic normality. Usually the following
conditions on the sequence of information matrices have to be checked for all
Bo € B; the constants involved may depend on 8,.

Define the sequence N,(8), é > 0, of neighborhoods of 8, as

(31) Nn(a) = {B " FIZ‘/Z(B - ﬂO) " = 6}’ n‘= ]-a 2’ crt .

(D) Divergence: A\yinF,, — oo.
(C) Boundedness from below: for all & > 0,
F.(8) — cF, positive semidefinite, 8 € N,(5), n = n,,
with some constants n, = n,(8), ¢ > 0 independent of 5.
(N) Convergence and continuity: for all § > 0,
maxgen,e | Vo (8) — I|| — 0,
where V,.(8) = F;*°F,,(8)F; " is the normed information matrix.

(S;) Boundedness of the eigenvalue ratio: there is a neighborhood N C B of 8,
such that

>\min:Fn(ﬂ) = C(Amaan)l/Z.Hs, ﬂ S N, n==n,

with some constants ¢ > 0, é > 0, n;.

Condition (C) is equivalent to the assertion that for any & > 0 there is a n;
such that

(3.2) NE. (BN = cNF,A, forall N\€R?’, BE N,(6), n=n,.

In other words, the information grows in the neighborhood N, (8) at least as fast
as in B, uniformly in all directions and for all n = n,. Conditions (S,2) and (D)
imply (C): Under (D) the neighborhoods N, (5) shrink to 8. Estimating the left
side of (3.2) from below by AninF,(8) and the right side from above by ¢ Apa,Fo,
we see that (S;/;) implies (C). Condition (S,.) is much stronger since it mixes
different directions. Condition (N) is equivalent to the assertion that for
any 6 > 0 and ¢ > 0 there is a n; such that

(3.3) INF.(BX—NF,A| <=eXNF,\ forall AERP, BE N,(6), n=n.

In other words, the relative difference in information is arbitrarily small within
the neighborhoods N, () of 8,, uniformly in all directions and for all n = n,.
Note that (N) does not depend on the version of the square root. From (3.3) and
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(3.2) it is easy to see that (N) implies (C). Example (iii) in Subsection 3.4 shows
that (C) is strictly weaker than (N).
Now we state the asymptotic results.

THEOREM 1. Under (D) and (C), there is a sequence {8,} of random variables
with
(@) P (s.(8,) = 0) = 1 (asymptotic existence),
(ii) 8. —p Bo (weak consistency).

THEOREM 2. Under (D) and (S;) with a & > 0, there is a sequence {8,} of
random variables and a random number ne with
(i) P(s.(8,)=0 foralln = ny) =1 (asymptotic existence),
(ii) B, —ssBo (strong consistency).

LEMMA 1. Under (D) and (N), the normed score function is asymptotically
normal:

F,%s, —4 N(0, I).

THEOREM 3. Under (D) and (N), the normed MLE is asymptotically normal:
Fr{‘/z(ﬁn - ﬂO) —>d N(O’ I)

REMARKS. (i) The conclusions of Lemma 1 and Theorem 3 are valid for any
version of the square root. This follows from a general invariance property of
sequences {X,} of asymptotically normal variables: for any sequence {P,} of
nonstochastic, orthogonal matrices

(3.4) X, —q¢ N(0, I) implies P,x, —; N(O, I).

Proor. If x, —4 N(O, I), then the characteristic function @(x,; \) of x,
converges to exp(—| A ]| %/2), uniformly on any compact set. Let N\, = P,\ for
arbitrary, but fixed A. From the uniformity of convergence on |A.] = |[A],
we have @(P,X,; \) = #(x,; P,\) — exp(—| A]%/2), which in turn implies
P.x,— N(0, ).

(ii) Haberman (1977a) proves weak consistency and asymptotic normality of
the MLE by a. different approach, using fixed point theorems. It can be shown
that his Condition 2 and, in his notation, d.f2 — 0 are equivalent to condition
(D) together with the following condition:

(N’) for all 6 > 0,
| V.(8) — I

w LA\ LA SN )
PBeN,(5),6%60 | FI2(8 — Bo) |

Compared to (N), the expression under sup(.) is additionally divided by
| FI/2(8 — Bo) ||. Since || FZ/2(8 — 8,) || < 6, condition (N’) implies condition (N).
However, the difference between the two conditions seems to be small, in that it
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seems difficult to construct examples of practical relevance where condition (N)
is fulfilled but condition (N’) is not. To understand this, consider the one-
dimensional case p = 1. Here (N) resp. (N’) reduce to the requirement that, for
any 6 > 0,

| Fn(B) — Ful | Fn(8) — Fal
maxgen, o) F -0 Tresp. SUPgen,,(5),6%8, P32 |ﬂ _ 6(), — 0.

Under many circumstances, for instance if the function F,(8) is convex or
concave in the interval N,(§), the supremum is, for both expressions, achieved
at one of the boundary points. Up to the constant é > 0, the same sequence is
required to converge to zero, and (N) and (N’) are equivalent. Nevertheless,
condition (N) seems easier to be interpreted and to be checked.

Instead of norming by a square root of the information matrix, Haberman
(19777a) states the asymptotic normality of any nontrivial linear functional, i.e.
he states that for any A # 0

N (B, — Bo)
()\’F;I)\) 1/2

However, both assertions are equivalent: If FZ/2(8, — 8,) —q N(0, 1), it follows
from (3.4) that N,F2’2(8, — Bo) —a N(0, I) for any sequence {\,} with A\, = 1.
The choice A, = F,Y2A/(N'F]N) Y2, n=1, 2 --. yields (3.5). Conversely, define,
for an arbitrary A with A’\ = 1, the sequence {\,} in the same manner. Choose
an orthogonal transformation P, with A, = P\, n =1, 2, ... . From (3.5), it
follows that \JF2%(B, — 8o) = NP FI2(8, — 8y) —a N(0, 1). This implies
P.FT2(8, — B,) —4 N(0, I), and (3.4) gives the conclusion.

We found that matrix norming is useful in deducing asymptotic efficiency of
the MLE in Fisher’s or Wolfowitz’ sense via the LAN condition (e.g. Basawa
and Scott, 1983, page 23) and may lead directly to x2-distributions in tests of
linear hypotheses.

(3.5) —q N(O, 1).

(ili) In applications it is necessary to replace the norming matrix F7’* by
FI72(8,). Using (3.8) as in the proof of Theorem 3, it can be seen that this is
possible if instead of (N) the following stronger condition holds:

Q for all >0, supgen, @ || Fo/2FY2(8) — I| — 0.

It is easy to'see that (Q) implies (N). If A — AY? is the Cholesky square root,
(N) conversely implies (Q): if F¥2, FY?(8) are lower triangular matrices with
positive diagonal entries, the matrix F,?FY?(8) shares the same properties.
Hence this matrix is the Cholesky square root of F,Y?F,(8)F,7?, and the
assertion follows from the continuity of the Cholesky square root. Note that we
cannot argue in this way, if A2 is the symmetric positive definite square root,
since a product of symmetric matrices is generally not symmetric. Thus, use of
the Cholesky square root is advantageous not only from the computational but
from the theoretical viewpoint, too.

For an arbitrary continuous square root, condition (N) implies condition (Q)
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if with a constant ¢
(36) }\maan/}\minFn =c< ©, n = no.

This can be demonstrated with similar arguments to those of Gourieroux and

Monfort (1981, page 85).
Remarks (i), (iii) apply to all our results on asymptotic normality and will not

be mentioned in the sequel.

3.2 Proofs. PROOF OF THEOREM 1. Due to the positive definiteness of F,(8)
and the convexity of B, there is at most one zero of the score function. This zero
gives a (local and global) maximum of the likelihood if it exists. Define the MLE
(. as the only zero of the score function if it exists, and as an arbitrary constant

in B otherwise.
For any n, § > 0 the event

[,(8) — 1.(8o) <0 for all 8 € 3dN,(3),

implies that there is a local maximum inside of N,(3). From the uniqueness
properties discussed above, this maximum must be located at 8,. It is shown
below that for any 5 > 0 there exist 6 > 0 and n, such that

(3.7 P(l,(8) — 1.(8,) <0 forall BEAIN,L()=1—n1,

for all n = n,, inducing (i) and, in view of (D), (ii) of Theorem 1. Moreover, (3.7)
implies that for any 4 > 0 there exist 6 > 0 and n, such that

(3.8) P(IFT2B, — B)| <8)=1—n forall n=n,.

This result will be used in the proof of Theorem 3.
Now, with A = FI2(8 — 8,)/5, the Taylor expansion of the log likelihood

becomes
ln(ﬁ) - ln(ﬁo) = ax/F;I/an - 62)"Vn(§))‘/2; A= 1’

where £ lies between 8 and 8. Using max N F;%s, = || F;%s, || for A\ = 1, we
recognize that it suffices to show for any » > 0

(3.9) P(| F7V%,)1* < 8°\ainVa(8)/4) 2 1 — 9

for some 6 > 0 and sufficiently large n. From (C) and the Markov inequality—
note that E | F,"/%s,||2 = p—we get

P(| F7'%s,)|12 < (8¢)?/4) = 1 — 4p/(6c)®* =1 — ¢
for 62 = 4p/(c%y) and sufficiently large n, implying (3.9), (3.7) and (3.8).
PROOF OF THEOREM 2. Theorem 2 is proved in a similar way as Theorem 1.

Given an arbitrary ¢ > 0 with K,(8) = {8: |8 — Bo|| < ¢} contained in the
neighborhood N of condition (S;), we now demonstrate that, with a random
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number n,, the event
(3.10) 6.(8) — l.(B) <0 forall Bwith |8 — Boll =¢, forall n = n,,

has probability one. This supplies the stronger form of asymptotic existence as
well as the strong consistency of the MLE.
Now, with X = (8 — B8o)/e, the Taylor expansion of the log likelihood becomes

L(B) — L.(Bo) = eN's, — eEN'FL(B)N/2,
where £ lies between 8 and 8,. Dividing by (AmaxF)2*%, we see that the event

\'s, e NF, 6\
O F ) = 2 (hnanFn) 7

is equivalent to the event (3.10). Each component of s, has a variance less than

AmaxF». A componentwise application of Kolmogorov’s strong law of large num-

bers (e.g. Wu, 1981, Lemma 2) shows that s,,/(AmaxF») 2% —,,. 0. By the Cauchy-

Schwarz inequality, the left side in (3.11) converges to zero a.s., uniformly for all

A with XM’ = 1. From condition (S;), the right side in (3.11) is bounded from

below by ce/2 if n = n,. Hence the event (3.11) resp. (3.10) has probability one.
It should be remarked that n; can be chosen measurable.

(3.11) AMA=1 n=n,

ProoF oF LEMMA 1. This lemma is proven by showing that the moment
generating function E exp(s\'F,%s,) of the linear combination \'F;Y/%s, with
A'A = 1 converges to the moment generating function of the standard normal
distribution.

Fix the scalar 6 and the vector A with A’A = 1. For the sequence 8, = 8; +
oF; T2\, n=1, 2, ---, we have 8, € N,(6). The Taylor expansion of the log
likelihood is

ln(ﬂn) = ln(ﬂo) + (ﬂn - BO)’sn - (Bn - BO)/Fn(ﬁn)(ﬂn - ﬂo)/z,
with 8, on the line segment between 8, and 8. Taking exponentials and
rearranging yields
exp(\' V,,(8,)N0%/2) L, (B,) = exp(6\'F,?s,) L, (Bo),

where L,(3) denotes the likelihood. The left side is integrable since
exp(A’V.(8)A6%/2) is a continuous function of 8, and therefore is bounded on the
compact line segment between 8, and 8,. Integrating both sides with respect to
the dominating measure, we obtain

(3.12) Eg exp(\' V., (8,)) 6%/2) = E exp(0M'F;Y%s,).

Condition (N), 8, € N, () and the continuity of the exponential function together
imply that, for any ¢ > 0, there exists a nonrandom number n; with

| exp(\'V,(8:)N 6%/2) — exp(6%/2) | < ¢, n = .

Integration of this inequality together with | [ - |< [ | . | shows that the left
side of equality (3.12), and therefore the right side converges to the moment
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generating function exp(6?/2) of the standard normal. From the continuity
theorem for moment generating functions, it follows that A’F;'/%s, is asymptot-
ically a standard normal variable. Since A is an arbitrary unit vector, Lemma 1
holds.

PROOF OF THEOREM 3. As usual, s, = s,(8,) is expanded about £,. From
the mean value theorem for vector valued functions (e.g. Heuser, 1981, page 278)
we obtain

- i
S, = J; F.(8o + t(8. — Bo)) dt|(B. — Bo)

where integration is to be read elementwise, and

.. .
(3~13) F;I/an = L Vn(BO + t(ﬂAn - BO)) dtJFrZ‘/Z(én - BO)
From (N)and || f - || = [ || - || we have, for any ¢ > 0,

1 1
{ j(; V. (8 + t(én—ﬂo))’dt—IH Sj; edt=c¢

if n is large enough and if, with some § > 0, B, is in N, (5). In view of (3.8), 6 can
be chosen so that the probability of this event is arbitrarily close to 1. Hence,

1
J(; Vn(ﬂo + t(én - BO)) dt —p I’

and with the continuity theorem applied to formula (3.13) the conclusion of
Theorem 3 follows from Lemma 1.

3.3 Verification of the conditions and some examples. First we treat some
examples to show how the conditions reduce for special exponential families.
Subsequently we give some corollaries of general interest. Proofs are deferred to
Subsection 3.4.

ExaMPLES. (i) The Poisson model. Let the independent counts {y,} have
densities
P(yn=7y) =exp(fy —e™/y!, ¥y=0,1,2,---,n=12, -,
where 8, = z,,8,. The information matrix for this model is
F.(8) = X1 z:z! exp(zB).

Assume the admissible set B to be R”.
Condition (D) allows no general reduction. However, it can be shown (Subsec-

tion 3.4) that, under (D), condition (N) is implied by
(3.14) z.F'z, — 0.

Since condition (C) is implied by condition (N), weak consistency and asymptotic
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normality of the MLE hold under (D) and (3.14). For fixed dimension p, these
conditions are equivalent to Condition 2 of Haberman (1977b, page 1154).

Concerning the growth of {z,}, the critical bound is {Iln n}, at least in the
simple case of a scalar sequence {z,}. If {z,} is bounded away from zero, and z, =
o(ln n), (D) and (3.14) hold (Subsection 3.4). Hence, sublogarithmic growth is
admissible. On the other hand, if z, = ¢ In n, n = n,, with some constants ¢ > 0,
n,, then condition (D) fails to hold for all 8, € R (Subsection 3.4). Hence,
logarithmic or superlogarithmic growth is not admissible.

(ii) Gamma distributed variates. Consider the family of gamma densities
f(y16,r) =T(r)7'(—60)"y" 'exp(@y), y =0,

for a fixed shape parameter r > 0. This is a natural exponential family in § with
natural parameter space © = (—x, 0) and b(8) = —r In(—6), b’ (@) = —r 7%, b"(8)
=r 672 Let the independent observations {y,} be gamma distributed with natural
parameter 8, = z,8, for the nth observation. The information matrix for this
model is F,(8) = r 37 z,2/(z/8) 4, n=1, 2, ---. Let the admissible set B be
some nonempty, open, convex subset of B, = {8:z,6<0,n=1,2, -..}.

The set B, must be nonempty. This requirement already restricts the possible
sequences of regressors: all vectors z, have to lie on the same side of some
hyperplane through the origin. Beyond that, condition (G,) below requires the
unit vectors z,/|| z,|| to be bounded away from this hyperplane. This forces B,
to contain interior points, see Subsection 3.4. There it will also be shown that
this sharpening is without loss of generality, since otherwise the dimension of 8
may be reduced. Hence, condition (G;) merely demands the regression problem
to be posed properly.

(G1) There exists a vector 8§ € R® and a constant v with z.8/|| z.| < v <0,
n=12....

Under (G,), the following condition (G,) is equivalent to condition (D) and
does even imply condition (C) and condition (N) (Subsection 3.4). Hence, weak
consistency and asymptotic normality hold under the minimal requirements (G,)
and (D) resp. (G;) and (G,). Note that (G,) does not involve the unknown
parameters.

(G2) Mmin i1 22! /|| 2|2 —> oo

Finally, under (G;), condition (G,) and the following condition (Gs ;) are equiv-
alent to (D) and (S;). Hence, strong consistency holds under (G,), (G.), and (Gs 5).

(Gs;) For some constants ¢ >0, § > 0, ny,
Amin ?=l zizi//" Z,‘” 2 = c(>\max Zln=1 zizi’/" Z; " 2)1/2+6, n=z=n,.
(iii) This example shows that (C) is weaker than (N). In the exponential
family density, we take c(y) as a mixture of normal densities,
c(y) = e(27) %exp(—y*/2) + (1 — &)(2mo®) V2exp(—y?*/(20%), o2 > 1.

This choice may be motivated as in robust statistics: for ¢ > 0 heavier tails than
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for the normal density can be achieved. From the norming condition

ff(ylﬂ) dy =1,
we obtain
b(8) = In[e exp(02/2) + (1 — ¢)exp(a26?%/2)],

with @ = (—, +) as the natural parameter space. Differentiation yields

p(0) =5'(0) = 6(1 + (1 — &)(o® — 1)a(d)),

o2(0) =b"(0) =1+ (1 — &)(6® — 1)a(d) + 6(1 — e)(a® — 1)a’(6),
with

a(f) = (e exp(—0%(c2 — 1)/2) + 1 — )7L,

It is easily seen that b’(6)/6 — o> and b”(8) — o as § — . For simplicity, we
consider scalar sequences {z,}. The parameter 8 may vary in R. Conditions (D)
and (C) are fulfilled for all 3, € R if

Yz} .
Condition (N) holds for all 8, € I if, additionally,
22/Tky 2 — 0.

However, if 37 272 — « but 22/37 2? = k > 0, then (N) is violated for 8, = 0,
whereas (C) remains true.

After these examples we consider three situations of practical importance.
Sometimes sufficient conditions are of interest which do not involve the param-
eter 8. Such assumptions are given by

(Re) (i) the sequence {Z,} lies in a compact set Z with Z’8 € @° for all
Ze€ Z,8€B,

(RC) (11) Amin 2:;1 ZIZ{ —> 00,

COROLLARY 1 (Regressors with a compact range). If (R.) holds, then the
conditions (D) and (N) are fulfilled. Hence, the MLE asymptotically exists, is
weakly consistent and asymptotically normal. If, in addition,

(3~15) >\min 2?=1 Zizl!/(kmax E?=1 ZiZi,)l/Z-hS =zc> 0’ nz=n,

with some constants ¢, 6 > 0, n,, then condition (S;) is satisfied and the MLE is
strongly consistent.

REMARK. The first part of the corollary could also be derived from Condition
(3b) of Haberman (1977a). As the proof of Corollary 1 shows, conditions in terms
of the higher derivatives can be stated, which are weaker than (R.) but still
sufficient for (N). Furthermore, conditions sufficient for (N), respectively (C),
may be given, which resemble (N) respectively (C) in terms of the variances of
the observations, see e.g. (3.18). Thus, (D) and (3.18) ensure asymptotic normality
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(a related but somewhat weaker result is provided by Condition (3¢) of Haber-
man). By the same reasoning, (D) and

NZ.(0N = NI A forall NERP, BE N,(G), n=ny,

with ¢, 4, n; as in (C), ensure weak consistency.

The next corollary treats the case where the range of y is bounded, e.g. in the
logit model. We require

(Ry) (i) the range of y is bounded,
(11) >\minFn —> 0,

(iii) tr Z,F;'Z, — 0.

COROLLARY 2 (Responses with a bounded range). Under (Ry), condition
(N) is fulfilled. Hence, the MLE asymptotically exists, is weakly consistent and
asymptotically normal.

REMARK. (Ry) (iii) is a negligibility condition of the type of Feller’s condition
in the central limit theorem. The same condition already implied (N) in the
Poisson example. (Ry) (ii) and (Ry,) (iii) are equivalent to

max;<i<ptr Z!F;'Z; — 0.

This again can be shown to be equivalent to 52 — 0 in Haberman’s Condition 3,
implying (N’) and (N). Therefore, we omit a verification of our conditions via
(3.18).

If the regressors are random, let the pairs {(y., Z,)} be i.i.d. as the pair (y, Z),
say. Let F(8) = ZZZ’, with £ = 2(Z’g), denote the conditional information of
the single observation y given Z. We require the following mild conditions on
the marginal distribution of the matrix Z:

(Rs) (i) EF exists and is positive definite,
(ii) E maxgen|| F(B8) | exists for a compact neighborhood N of 8.

REMARKS. (i) If Z € Z is compact, (R,) reduces to the positive definiteness
of EZZ'. If the range of y is bounded, e.g. in the logit model, (R,) reduces to the
existence and positive definiteness of EZZ’.

(ii) Condition (R,) (ii) allows the application of the strong law of large numbers
for Banach space valued random variables (e.g. Padgett and Taylor, 1973) to
obtain uniform convergence of certain random functions. This is useful in the
proof of the following corollary.

COROLLARY 3 (Stochastic regressors). If (R.) holds, then the conditions (D),
(N) and (S,/;) are fulfilled a.s. Hence, the MLE asymptotically exists and is strongly
consistent. It is also asymptotically normal: FI2(8, — 8o) —4 N(0, I).
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REMARK. The corollary is first shown to be valid conditionally, given the
sequence {Z,}. Then it is demonstrated that the corollary is valid unconditionally
as well. Note that the norming matrix F/? is random. From the law of large
numbers and the continuity theorem, we can obtain an unconditional version
with nonrandom normalisation:

(3.16) n'2(B, — Bo) —a N(0, (EF)™").

3.4 Proofs. PROOFS TO EXAMPLE (i). At first, condition (N) is implied by
(D) and (3.14). By the Cauchy-Schwarz inequality, we have

| 27 (8 — Bo) |? = | zF"’F12(8 — Bo) |?
= z/F;'2,8% if B8 € N,(3).
From (3.14), it follows that )
maxgen, ) | €xp(z.(8 — Bo)) — 1] — 0,

for any 6 > 0. With ¢2(8) = exp(z.8) for the Poisson model, this is equivalent to
the statement that for any 6, ¢ > 0

| 62(B) — 02(Bo) | < eai(Bo), B € N.(3), n=n,.

For g = 1, this is formula (3.18) in the proof of Corollary 1, and condition (N)
follows with the same arguments.

Secondly, condition (D) and (3.14) hold, if {z,} is bounded away from zero and
2, = o(In n): The statement z, = o(Iln n) is equivalent to the assertion that, for
any 8 ER, v > 0 and n = n, = m(8, v), the inequality exp(z,8) = n~" holds.
Information may be estimated from below,

Tt zlexp(zB) = Tn 2Hi T = c Xn 17,

with some constant ¢ > 0. The last inequality holds since {z,} is bounded away
from zero. Condition (D) follows from the divergence of Y, i™ for v = 1. More
exactly, if v < 1, we have 35 i™ = n'"(c, + o(1)), with some constant ¢, > 0.
This implies that in 22/F, the denominator diverges at least at a polynomial rate,
whereas the numerator, if at all, diverges slower than (In n)% Hence, (3.14) holds.

Finally, if z,/In n = ¢ > 0, information may be estimated from above. For
8 < 0, with constants ¢y, n;, the inequalities

Bt 2fexp(zi8) < co + ¢ 3 (In 1)%% < ¢ + % Xn, i+

are valid (note that zzexp(zﬂ) is a monotone decreasing function of z, if § < 0
and z is large enough). The right side converges for 8 < —3/c. Hence (D) is not
fulfilled for all 8, € R.

PROOFS TO EXAMPLE (ii). Condition (G,) implies that B, contains interior
points: the vector 8 of (G;) is an element of B,. Moreover, since

z8=2.8-8 +zB=zl8-8I+7v) <0,
if | 8 — 8| < -+, B is an interior point of B,.
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If (G,) does not hold, the dimension of 8 may be reduced: first note that B, is
a convex cone in R®, ie. aB, C B,, a > 0, and B, convex. A convex cone in IR?
has empty interior if and only if it is contained in a subspace with dimension
less than p. If (G,) is violated, for any 8 € B, there exists a subsequence {z,;}
with Z,,I(j)ﬂ/" Zn(j) " — 0. For the sequence ﬁj =8 - Zy(j) (Z,’,(j)ﬂ)/" Zn(j) " 2,j = 1, 2,
.-+, we have z;;)8; = 0, which implies 8, & B,,j=1, 2, --- , and 8; — 8. Hence,
any 8 € B, must be a boundary point of B,. By an application of the theorem
mentioned above, the conclusion follows.

Condition (N) and, a fortiori, condition (C) are fulfilled under (G;) and (Gy):
first note that, if condition (G;) holds for 8 = By, it holds, with some other
constant, in a neighborhood of 8y, too. From this fact and

[ (B6v)? = (B'V)?| = [1Bo + Bl 1Bo — BIl I v1?
it follows that, for any ¢ > 0, there exists a neighborhood N, of 8, where for all 8
| (8'2:) 7% — (B4z:) 2| < e(Boz:) 2,

uniformly for all vectors z;, i = 1, 2, --- . Multiplying by (A\’z;)?2 and summing
up, we obtain, in the neighborhood N, of 8,,

INFA(BN — NFA| < eNFo\.

Since asymptotically, for any é > 0, the neighborhood N, (8) is contained in N,,
condition (N) follows in the form (3.3).

PRrROOFS TO EXAMPLE (iii). Since ¢2(#) is bounded from above and bounded
away from zero, uniformly for all 8, conditions (D) and (C) hold, if 37 2? — oo,
and 2%/F, — 0 follows from z2/3? 22 — 0. Furthermore, the derivative of ¢(f)
is bounded. Therefore | 62(8) — ¢2(80) | =< K| z,| | 8 — Bo|, with 8 € N,.(8). In
fact if 22/F, — 0, | 6(8) — a%(Bo) | will be arbitrarily small for sufficiently large
n, implying (3.18) and (N), by the same arguments as in the proof of Corollary
1. On the other side, if 22/37 27 = k> 0 and 8, = 0, it is easily seen that | ¢%(8,)
— 6%(Bo) | = ¢c;> 0, with 8, = Bo + 8/FY2, for any 6 > 0. With similar arguments
as in the proof of Corollary 1, we conclude that (N) is violated.

PrROOF OF COROLLARY 1. From the compactness assumption (R.) (i), we
have

(3.17) 0<C = ApinZn < Amax2n €<%, n=12 ...,
with constants c¢;, ¢;. From
NEA=YSEINZZZIN= ¢y X NZZIN
it is seen that (R.) (ii) implies (D). Using both inequalities in (3.17), it is similarly
demonstrated that, with appropriate constants, (3.15) implies (S;).
It remains to show that condition (N) holds. From compactness, it follows

that the derivatives of N'Z,(8)A\, n = 1, 2, ---, with respect to 8 are bounded,
uniformly in n and A with A’A = 1. By Taylor expansion we conclude that for
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any 6 > 0 and ¢ > 0 there is a n; such that
(3.18) [NZ. (BN —=NZA| =eNI N forall NeE®P, BE N,(G6), n=n,.

This condition resembles condition (N) in terms of the variances of the obser-
vations; see expression (3.3). Continuity of X,(8) and divergence and monotony

of F,, imply
(3.19) [INZ(BN = NZA| <=eNITA, (=1,2,---,n,

A, 8 and n as above. Since (3.19) holds uniformly for all A, we can substitute Z
for all \. Summation and the triangle inequality supply condition (N) in the form

(3.3).

ProOF OoF COROLLARY 3. As functions of 8, the matrices F,(8) are elements
of the Banach space of continuous mappings from N into the space of p X p-
matrices. Under condition (Rs) (ii), we obtain from the strong law of large
numbers for i.i.d. Banach space valued random variables that F,(8)/n converges
a.s. to EF(B), uniformly in 8 € N. Condition (D) follows immediately, a.s. The
mean EF(8) is a continuous function of ﬂ With the usual decomposition we
obtain that, for any ¢ > 0, a.s.,

I ¥ (8)/n — Fu/n] < | Fa(B)/n — EF@) |l
+ | EF(8) — EF || + | EF — Fo/n| s ¢,

if B is sufficiently near to 8y and n = n,, say. From this inequality, condition (N)
may// be inferred since, under convergenct, F, /2 and F;; 72 may be substituted by
n~2,

For symmetric matrices A, B it generally holds that |ApnA — AninB |,
| AmaxA — AmaxB | = ¢ || A — B || with a constant ¢ > 0 depending only on the used
norm. Hence, the eigenvalues AninF,(8)/1, AaxFr(8)/n converge a.s. to Ain EF(B8)
resp. A EF(8), uniformly in 8 € N, too. Thus, for any ¢ > 0, we have

(320) AminF‘n(ﬂ)/xmax:Fn = (AmmEF(ﬂ) - 8)/(AmaxEF + C)

for sufficiently large n, uniformly in 8 € N, a.s. From continuity, the eigenvalue
MAuinEF(B), 8 € N, is bounded away from zero. If ¢ > 0 is chosen small enough,
the right side of (3.20) is bounded away from zero, and (S,/.) follows a.s.

Since we estimate 8, from the conditional likelihood of yi, ---, y., the
conclusions of the corollary at first refer to the corresponding conditional
probability measure. However, they remain valid unconditionally too. For strong
consistency, this is seen by the law of total probability. The a.s. conditional
convergence of t, = F2/2 (B, — Bo) to a standard normal variate t is equivalent to
E(g(t,) |{Z,}) —.s E g(t) for any bounded continuous functional g. Integration
yields E g(t,) — E g(t), by dominated convergence. Hence, the convergence in
distribution holds unconditionally too. For weak consistency we could argue
similarly.
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4. Nonnatural link functions.

4.1 Discussion of additional problems. Nonnatural link functions enlarge the
class of generalized linear models, but they cause additional difficulties in
establishing consistency and asymptotic normality, arising mainly from the fact
that in general H,(8) # F,.(8). Consequently, the uniqueness of the MLE cannot
be guaranteed except in special cases (for a number of important examples see
Wedderburn, 1976), since the log likelihood is generally not concave in B.
Therefore, a local maximum in a neighborhood of the true 8, does not necessarily
define a global maximum, and we can only prove asymptotic existence and
consistency of a sequence {,8,,} of solutions of the maximum likelihood equations
s,(8) = 0. Yet we can still follow the line of arguments in Section 3 to prove
consistency and asymptotic normality, if we replace F,(8) by H,.(8) and formulate
appropriate modifications of the assumptions (K), (S;) and (N) (recall that F,(8)
= Y1 Z;U;(8)Z:(B)U/(B)Z! in the case of nonnatural link functions). Weak and
strong consistency conditions are:

(C*) forallé>0,
P(H,.(8) — cF, positive semideﬁnite for all B € N,,(6)) —> 1,
with some constant ¢ > 0, ¢ independent of 4.
(Sf) there is a neighborhood N C B of 8, such that a.s.
MinHn(8) Z ¢cMmaxFn)**, BEN, n=ny,
with some constants ¢, 6 > 0 and a random number n,.

It is easily verified that Theorems 1 (resp. 2) of Section 3 remain true under
AminF'» — % and (C*) (resp. (S¥)) for a sequence {ﬁn} as discussed above. The
form of R, (B) in the decomposition H,(8) = F,(8) — R, (8) suggests that it may
be shown that F,(8) dominates R,(8) for large n, applying some law of large
numbers. We will pursue this idea in Section 4.2.

Modifying the normality condition (N) in the analogous way we arrive at

(N*) forall & >0,
maxgen, ) IV.(8) — I — 0
where V,(8) = F;**H,,(8)F; 2.

As in Section 3, (N*) implies (C*).

Now a reexamination of the proofs of Lemma 1 and Theorem 3 exhibits
the following: If the normed score function F,?s, is asymptotically normally
distributed, then the method of proof for Theorem 3 works under (N*)
again. However, to extend the proof of the asymptotic normality of F;"%s, in
Lemma 1, a strengthened version of (N*) is required,

(N**) foralld>0andAE R, N'A=1,
maxgen, || Va(8) — I|| — 0 in probability under P and P,
with 8, = 8, + oF,; 72\,
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Under (D) and (N**) Lemma 1 and, hence, Theorem 3 remain true. A detailed
proof of this statement would follow the line of arguments in Kaufmann (1983,
page 54). In the next subsection we shall not demonstrate asymptotic normality
of the normed MLE via (N**), but give conditions which assure that (N*) is
fulfilled and establish F,'/?s, —; N(0, I) via the Lindeberg-Feller central limit
theorem. However, it should be remarked that, under (D), this is equivalent to a
direct verification of (N**): If (D), (N*) and F,'%s, —, N(O, I) are true, then it
can be deduced by the same arguments as in Basawa and Scott (1983, page 26)
that P and the sequence {Pg } are contiguous. Thus, (N**) holds. Conversely,
(N**) implies (N*) and, together with (D), F;%s, —4 N (0, I).

For an application of Haberman’s fixed point approach in the different, but
related, context of survival models we refer to Friedman (1982).

4.2 Verification of the conditions. We treat the same cases of general interest
as in Subsection 3.3. The assumptions (R.), (Ry) and (R,) have to be modified:

(R&) (i) the sequence {Z,} lies in a compact set Z with u(Z’g) € ° for all
Z€ 7, 8€EB,

(i) Amin 271 ZZ{ — oo,
(R#) (i) the range of y is bounded,
(i) AminFn — oo,
(iii) tr Z,F;'Z, — 0,
(iv) Shitr Z/F,'Z; < ¢ < oo,

(v) the first and second derivatives of u are bounded, the second deriv-
ative is uniformly continuous.

For stochastic regressors, let the pairs (y,, Z,) be i.i.d. as the pair (y, Z), say.
Define the random matrices F(8) = F;(8) and R(8) = R, (8) where Z is replaced
by Z. Then we require the following condition:

(R¥) (i) EF exists and is positive definite,

(ii) E maxgen|| F(8) | and E maxgen] R(B) || exist for a compact neigh-
borhood N C B of g,.

The remark (i) after condition (R,) in Subsection 3.3 remains valid if, addition-
ally, the first and second derivatives of u are bounded.

LEMMA 2. Under (R}), or (R}) without (iv), or (R¥) (i), the normed score
function is asymptotically normal:

F;'%s, —4 N(0, I).

The following theorem refers to regressors with a compact range or to responses
with a bounded range.

THEOREM 4. Under (R¥) or (R{) there exists a sequence {3n} of random
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variables with
(i) P(sn(B,) =0) — 1 (asymptotic existence),
(i) Bn—pBo (weak consistency),
(iii) F2*(B, — Bo) —a N(0,T) (asymptotic normality).

If the regressors are stochastic, or have a compact range and additionally obey
an eigenvalue condition, then even strong consistency can be achieved.

THEOREM 5. Suppose (R¥) and
(41) >\min ZT lel’ =cC Amax E? Zizil, n=z= n

to hold, with some_constants ¢ > 0, n,. Alternatively, let (R¥) hold. Then there
exists a sequence {8,} of random variables and a random number n, with

(i) P(sn(B,) =0 foralln = ny) =1 (asymptotic existence),
(ii) Bn —as.B0 (strong consistency),

(iii) FI2(B, — Bo) —=a N(0, 1) (asymptotic normality).

REMARK. Asin Subsection 3.3, an unconditional version of Theorem 5 holds
under (R¥):

n(B, — Bo) —4 N(O, (EF)7).

EXAMPLES. (i) A special example, where (R¥) holds, are grouped data. The
compact set & consists of a finite number I of regressors Z;, - - , Z;. There are
n; observations for each Z;. If n;/n — \; > 0 and Y!Z,Z! has full rank, it follows
that

nY*(B, — Bo) —4 N(O, V), V=3I NZUZU/Z!.

A similar result can be obtained from Bradley and Gart (1962, part I) in a paper
on associated populations. Part II of this paper would also give results for
I — . However, the conditions are far stronger and more difficult to check than
ours.

(ii) Binomial models. If we slightly strengthen the assumptions on the deriv-
atives of u in (Rf), then (iv) of (Rf) can be dropped in the case of binary
responses: assume u to be three times continuously differentiable, u’, u”, u” to
be bounded and u’ to be bounded away from zero. Since u’ = 1, u” = 0 for
natural link functions, these assumptions mean that g must not depart too much
from the natural link function; they are fulfilled e.g. in the probit model. If,
additionally,

max; <<,z F,'z; — 0

holds, thén the MLE is weakly consistent and asymptotically normal as in
Theorem 4.
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4.3 Proofs. PROOF OF LEMMA 2. We use the Lindeberg-Feller theorem for
triangular arrays. Fix A with A’\ = 1. For the triangular array

2m = NF P20 (y: — w)
we have
Ez,; =0, var Y%, 2z, = var N'F;%s, = 1.

We shall show that the Lindeberg condition is satisfied, i.e. for any § > 0

(42) gn(a) = ?=1 f 22 anz g 0,
(22>8%}
where F,; is the distribution function of z,;.

(i) Regressors with a compact range or responses with a bounded range: Set
al; = NF;2Z;U;. Insertion into (4.2) and use of 2%; < a0 y: — w:||2 (Cauchy-
Schwarz inequality) provides

(4.3) 8n(8) = X1 anian j; ¥2dGy,.
, i)

(n,

Here Gz is the distribution function of || y — u(Z’8,) || for a given Z, and B(n, i)
is the set {y® > 8%/a};a,;). From the compactness of Z and (R¥) (ii) it follows
that A F, — . Using the compactness of & again, respectively (R¥) (ii), (iii),
(v), we get

(44) max;—,.. .,,,a,’,ia,,i — 0.
Thus, defining

h(Z) = f 2 dGg,

(Z) d Yy Z

'c

we have, for any (large) ¢ > 0,
f y2 dGz; = hc(Zi), i = 1’ MY n,n = nZ(c)y
B(n,i)

and, inserting into (4.3),
(4.5) - &n(8) = Y1 anianihe(Z;), n = ns(c).

Under (R}) (i), h.(Z;) vanishes identically for ¢ large enough, since || y; — | is
bounded, whereas 3% — 0. Thus g,(6) — 0.
Under (R¥) (i), ¥ aa < K < o with a constant K. Therefore,

&.(8) = K maxzeho(Z), n = ny(c).

It remains to show that max h.(Z) — 0 as ¢ — . The function h.(Z) has the
following properties: h.(Z) is continuous in Z (by the Helly-Bray Lemma and
continuity properties of exponential families), h.(Z) — 0 (pointwise for any
Z € Z), and h.(Z) is monotonously decreasing in c. Due to the last property and
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the compactness of &, pointwise convergence implies uniform convergence, i.e.
max h.(Z) — 0 as ¢ — .

(ii) Stochastic regressors: Redefine «i; as ai = NF;Y?Z,UZSY? and
Gz in (4.3) as the distribution function of || Z"Y%(Z’8,) (y — u(Z’Bo)) ||. From
F,./n — F as,, it can be deduced that (4.4) holds a.s. Thus (4.5) remains valid
a.s., providing

8:(8) = InF*| | 1/n i1 ZUZUIZ he(Z) ||, n = ny(c), as.

The first term || nF;" || is uniformly bounded, a.s. For any fixed § > 0, the strong
law of large numbers yields (note that h.(Z;) < p)

I1/n Xy ZUZUZ{ h(Z;) | —as. | EFh(Z) ||.

Since h.(Z) — 0 as ¢ — », an application of the dominat‘ed convergence theorem
proves that | EFh.(Z) || — 0 as ¢ — . Choosing first ¢ and then n large enough,
it follows that g,,(8) will be arbitrarily small for sufficiently large n, a.s.

PrOOF OF THEOREM 4. Under both conditions, divergence of the information
and, from Lemma 2, F;"%s, — N(0, I) hold. Hence, following the discussion in
Subsection 4.1, it is sufficient to establish condition (N*). To keep notation
simple, we consider only univariate responses (g = 1). Multivariate responses can
be treated similarly. At first, assume (R¥) to hold.

For g = 1, let u;(8), un (B) be the first respectively second derivative of u(y),
evaluated at z,8. We have F,(8) = X7 zz/ (u} (8))%:%(8) and H,(8) = F.(8) —
R.(B) with R,.(8) = X1 z.z/ u! (B)(y; — 1:(8)). Condition (N*) will be verified via
the decomposition

V.(8) — I = As(8) — B, — C.(8) — D.(8),

with

An(B) = IT aman[(u! (®)%i(B) — (u!)?s?],

B, = X! amanu! (yi — w),

C.(8) = X7 anian(ui (8) — ul )y — w),

D.(8) = 2T anianu! (B)(w; — p:(8))
where a,; = F,‘,l/z_g,-, i=1,.--,n,n=ng. Since (u.)%2,n=1,2, ---,is bounded
away from zero, it holds, with a constant ¢, that
(4.6) X1 lomanll = 27 anon < ¢ <%, n=no.

Fix 6 > 0. Using (4.6), we have
maxgen,o | An(B) | < ¢ maxgen,pmaxi—1,....| (! ()%} (8) — (u!)%?|,
n = ng, Since
max;| (u/ (8))%c?(8) — (u/)%}|

4.7)
< maxseg| (u'(z'8))’0*(u(z'B)) — (u'(2'Bo))*a*(u(z'Bo)) |,
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and the right side of (4.7) is a continuous function of 8 with a zero at 8 = 8,, we
obtain

(4.8) maxgen, s | Az (6) || — 0.
Next look at B,, —, 0. The variance of the (s, t)-element of B, is (recall EB,
=0)

Var(Bn)st = Zi‘ a?zi,sa?;i,t(ut{,)zazz:
where a,;; denotes the sth component of «,;, and can be estimated from above:
var(B,)s < X7 (anian)*(ul’)?e?
= ¢, MaXio1,... nQpiOni, N = Ny,

with a constant ¢, < o. The rightmost inequality follows from (R{) (i), which
gives an upper bound to (u!)%s?, i =1, 2, ---, and (4.6). Furthermore, the
compactness assumption implies max,_; ... ,anian; — 0. This yields B, — 0 in
quadratic mean and in probability.

For maxgen s || Cn(8) ||, convergence to zero can be demonstrated in the first
mean:

E maxgen,s) IC.B) Il =c maxﬁENn(a),i=1,~-~,n| u? (B) — ul| maXi=1,...,nE|yi - wil.

With analogous arguments as in the proof of (4.8) it can be shown that the right
side of this inequality, and hence the left, converges to zero.

Finally, max || D,.(8) | — 0 can be demonstrated similarly as (4.8). Condition
(N*) is established under (R¥).

If (Rf) holds, we obtain condition (N*) using the same decomposition of
V.(8) — I. The inequality (4.6) is equivalent with (R¥) (iv). The function
(' (v))26%(u(y)) is uniformly continuous, since its derivative is uniformly
bounded. Using this fact instead of (4.7), assertion (4.8) follows from (R¥) (ii),
(iii). The other terms in the decomposition may be handled by the parallel
arguments, too.

ProOOF oF THEOREM 5. (i) Regressors with a compact range: Assertion (iii)
of the theorem is included in Theorem 4. To obtain the assertions (i) and (ii) of
the theorem, we demonstrate that (S}2) holds under (R¥) and (4.1). Set A, =
AmaxFn, n=1,2, ... . Due to H,(8) = F.(8)— R..(8) we have

Amian(B)/An = AminFn(B)/An - " Rn (ﬁ) " /An-

Similarly as in the proof of Corollary 1, it can be shown that A\, F.(8)/\. is
bounded away from zero, uniformly in n, in a neighborhood of 8,. Condition
(St2) holds if || R,(8) |I/A. is arbitrarily small for sufficiently large n in a
(sufficiently small) neighborhood N of 8,. This can be verified via the decompo-
sition R,(8) = B, + C.(8) + D,(B) with

Bn = 2? zizil uz{l(yi - ﬂi)’
C.(8) = X1 zz! (ui (B) — ui)(y: — w),
D.(8) = 31 zz{ u! (B)(w: — w:(B)).
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(For simplicity, we consider only univariate responses, as in the proof of
Theorem 4).
For any A with A’A = 1, we have

var BA = 37 (Nz)Hul )i <=ce X Nz)? n=1,2, ...,

with some constant ¢. Using (R¥) (i) again, it follows that 37 (N'z:)? < ¢, A,
n=1,2, .., with some constant c,. Hence, N'B,\/\, converges a.s. to zero, by
an application of Lemma 2 of Wu (1981). Since A with A’A = 1 was arbitrary and
pointwise convergence of quadratic forms on the unit ball implies uniform
convergence, || B,||/\. converges to zero, a.s. Now, consider the second term in
the decomposition of R,(8):

| Cn(B) I/Xn < maxiey,...n| ul(B) — ul'| X1 2/Z:i| y; — wil /A
Using again Lemma 2 of Wu (1981), it follows that
X1 zizi(lyi — wl = Elyi — wil)/A — 0, as.

Since X7 z/z; E | y; — ui| /M 1s bounded, uniformly in n, the term Y.} z/z;|y; —
u:| /A, is a.s. bounded, uniformly in n. Since max;—,,... ngen| uf’ (8) — u!| can be
made arbitrarily small in a neighborhood N of 8¢, the same result holds for

maxn-1.2,. .. ,6eN " C.(8) " /)‘n, a.s.

The third term in the decomposition of R,(8) can be handled with similar,
but simpler arguments, since D,(8)/\, is nonrandom. Collecting together, we
obtain the desired result on || R,.(8) ||/\., and (S2) follows.

(ii) Stochastic regressors: With the same arguments as in the proof of Corollary
3, we obtain

F.(8)/n — EF(B8), R.(8)/n—0
uniformly in 8 € N, a.s. Condition (D) follows immediately a.s., (N*) and (S%)
similarly as in the proof of Corollary 3.

PrROOF TO EXAMPLE (ii). We use the same decomposition of V,(8) — I as in
the proof of Theorem 4. It may suffice to consider the term C,(8). For any A
with A’X = 1, we have

E max,geNn(‘;)N Cn (ﬁ)A

u/ (8) — u/ Elyi — u
= max;g L (ﬁ)’ 2 ‘| max; L 2 bl Y WF?2)? ul e}
| ui| gi
ul” (8 0
=< max,g | 7 (6) | 2.1-0,

I uil | z AminF}/z
since E | y; — u;| = 207 for binomial responses, and
>t WFz) 2 (ul) %} = 1.
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