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Abstract

Background: The prognosis, diagnosis, and treatment of many genetic disorders and familial diseases significantly improve if
the family history (FH) of a patient is known. Such information is often written in the free text of clinical notes.

Objective: The aim of this study is to develop automated methods that enable access to FH data through natural language
processing.

Methods: We performed information extraction by using transformers to extract disease mentions from notes. We also
experimented with rule-based methods for extracting family member (FM) information from text and coreference resolution
techniques. We evaluated different transfer learning strategies to improve the annotation of diseases. We provided a thorough
error analysis of the contributing factors that affect such information extraction systems.

Results: Our experiments showed that the combination of domain-adaptive pretraining and intermediate-task pretraining achieved
an F1 score of 81.63% for the extraction of diseases and FMs from notes when it was tested on a public shared task data set from
the National Natural Language Processing Clinical Challenges (N2C2), providing a statistically significant improvement over
the baseline (P<.001). In comparison, in the 2019 N2C2/Open Health Natural Language Processing Shared Task, the median F1
score of all 17 participating teams was 76.59%.

Conclusions: Our approach, which leverages a state-of-the-art named entity recognition model for disease mention detection
coupled with a hybrid method for FM mention detection, achieved an effectiveness that was close to that of the top 3 systems
participating in the 2019 N2C2 FH extraction challenge, with only the top system convincingly outperforming our approach in
terms of precision.

(JMIR Med Inform 2021;9(4):e24020) doi: 10.2196/24020
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Introduction

Motivation and Contributions
The widespread use of electronic health records (EHRs) is
believed to be one of the key enabling factors leading to the
improvement of patient outcomes through data analytics. The
analysis of EHRs has been successfully carried out for more
than a decade in various health care scenarios [1,2]. Nonetheless,
a significant proportion of the information stored in digital
patient files is trapped in free-text representations. In particular,
family history (FH) reports, vital in the diagnosis and treatment
of genetic disorders and familial diseases, such as cardiovascular
diseases and cancers, are often stored within EHRs as lengthy
textual fields.

In the natural language processing (NLP) subfield of artificial
intelligence, information extraction (IE) from free text has been
studied for decades. However, IE for biomedical and clinical
text is one of the most difficult scenarios for 3 main reasons:
(1) entities are complex and diverse [3], (2) clinical text is
fragmented and contains shorthand terms, and (3) annotated
data are scarce.

We describe a system for extracting information contained in
FH reports. The aim of our system is to detect family member
mentions (family member [FM] type) and detect mentions of
diseases (Observation type). It is developed and evaluated within
Track 2 of 2019 N2C2/Open Health Natural Language
Processing Shared Task [4], subtask 1.

We leverage pretrained biomedical neural language models
(LMs) and combine them with rule-based heuristics and
coreference resolution to identify diseases (observations) and
FMs in clinical notes. Our main contributions are as follows:

• An entity detection system for FH notes with a
state-of-the-art named ennity recognition (NER) model for
disease mention detection and a set of heuristics for
annotation and normalization of FM mentions

• A detailed evaluation of different transfer learning strategies
to improve the annotation of diseases

• A discussion of contributions of individual system
components in FM mention detection paired with a detailed
error analysis

• An analysis of applicability of coreference resolution to the
problem of FM annotation

Our experimental evaluation shows that our system performs
better than the median for all systems participating in the shared
task by a considerable margin. We believe that an architecture
such as ours, which uses domain-specific rules where training
data are noisy or scarce, has high applicability in the creation
of refined training data sets for FH IE.

Background and Previous Work

EHRs - Context
EHRs, the majority of which contain free text, such as clinical
notes, discharge summaries, and pathology reports, have led to
an improvement in health care quality by electronically
documenting patients' medical conditions [5,6]. EHRs are used

for various primary and secondary purposes, such as care
process modeling, clinical decision support, biomedical research,
and epidemiological monitoring of the nation's health. Although
NLP and machine learning (ML) applications in clinical text
are receiving attention, the progress is limited because of the
lack of shared data sets and tools because of privacy and data
confidentiality constraints. To overcome these challenges, efforts
have been made by shared task organizers, such as the National
Natural Language Processing Clinical Challenges (N2C2), to
promote clinical NLP research and provide a standard
benchmark to evaluate the performance of the proposed systems.

In next subsections, we introduce some of the related IE
techniques and provide a summary of past studies on FH
extraction.

Clinical IE
IE is the process of translating free text into structured data. It
often includes 2 tasks: (1) NER, where mentions of named
entities are identified in free text, and (2) relations between
these named entities are identified. In the clinical setting, these
entities can be symptoms, drugs, or diseases [6].

Earlier IE systems often relied on expert rules to identify
mentions of predefined entities. Rule-based toolkits specialized
for clinical text, such as MetaMap [7,8], rely on external
knowledge sources of biomedical terms, such as the
SPECIALIST lexicon, and use complex rules to identify all
possible mention variants of an entity, including acronyms,
abbreviations, synonyms, or derivational variants. These tools
can usually achieve high precision (when the identified mentions
are indeed correct) at the expense of low recall (when many
mentions are missed). Another shortcoming of rule-based
systems is that expensive human efforts are required to maintain
the resources and to expand the rules, enabling them to stay up
to date with evolving language use and domain knowledge.

ML-based systems [9,10] replace hard rules as soft features and
estimate the importance (weights) of features using annotated
training data. Despite the successful applications of ML-based
IE systems, they still display domain discrepancies. That is, the
distribution of training data, based on which feature templates
are designed and weights are estimated, differs from the data
distribution where the system is employed. Therefore, the quality
of manually designed feature templates is critical for the system.
These features should be informative and should generalize for
unseen data.

To alleviate the burden of manually building feature templates,
deep learning models have been increasingly applied on clinical
IE tasks. A key idea that enables the success of recent deep
learning–based models in NLP is that word meanings can be
encoded in dense vectors via pretraining on raw text [11-13].
Efforts along this direction in clinical NLP focus on obtaining
better word representations for clinical text [14]. For example,
Alsentzer et al [15] and Huang et al [16] pretrained Bidirectional
Encoder Representations from Transformers (BERT) models
on clinical notes and achieved better performance than BERTs
pretrained on generic-domain text. Zhang et al [17] investigated
strategies to adapt generic-domain embeddings to the clinical
domain. Another direction in clinical IE is to identify complex
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entities that are less common in generic NLP. For example,
Wang and Lu [18] and Dai et al [3] proposed models to
recognize overlapping or discontinuous entities that usually
represent compositional concepts that differ from concepts
represented by individual components.

Previous Work
FH plays an important role in the decision-making process of
diagnosis and treatment of medical conditions, as it captures
shared genetic variations among FMs. Information such as age,
gender, and the degree of relatives are also considered in the
risk assignment of various common diseases [19]. Many care
process models use FH information for decision making in
diagnosis and treatment [5]. Modern health care systems usually
record FH through structured forms, including free-text sections,
which are filled either by a patient or by a clinician.
Polubriaginof et al [20] assessed the quality of the FH captured
in EHRs. They found that free-text observations were more
comprehensive than structured observations, which motivated
our study.

The task of extracting FH from clinical notes is challenging
because the information can be spread in the patient's progress
notes [21]. In addition, FH information is expressed via relations
between named entities and may contain contextual information
such as certainty and negation, vital statistics, and age modifiers
[22]. If we predict that a patient is at an increased risk of
developing a certain disease based on FH, we could potentially
diagnose it early, leading to early treatment. Computer-based
tools can facilitate the effective use of FH and, therefore, provide
better personalized care [20]. To provide comprehensive
patient-provided FH data to physicians, there is a need for NLP
systems that can extract FH from text. The task of FH IE
generally includes NER or relation extraction [23].

Friedlin and McDonald [24] developed a rule-based system, a
Regenstrief Data Extraction (REX) tool, for extracting and
coding FH data from hospital admission notes. The REX tool
first locates and extracts the FH section from the admission
notes. It then attempts to identify diseases. This system led to
a sensitivity of 93% and a positive predictive value of 97% on
the 1 years’ worth of hospital admission notes. However, the
study was limited to only 12 diseases. Goryachev et al [25]
developed a rule-based system to identify and extract FH from
discharge summaries and outpatient clinical notes. The Health
Information Text Extraction [26], which is built on top of a
General Architecture for Text Engineering [27] framework, is
used to parse discharge summaries and patient notes.
Experiments on a set of 2000 reports yielded 85% precision and
87% recall. The architecture yielded promising results; however,
the validation set used in the study was small.

Lewis et al [21] followed a 2-step method that selects candidate
FH sentences based on the presence of words such as mother
or brother and then uses a set of dependency-based syntactic
patterns to extract appropriate diagnoses and identify the FMs
referred to. This study restricted observations to concepts that
could be mapped to the International Classification of Diseases,
ninth edition, codes. They also limited their work to per-sentence
IE without considering any cross-sentence anaphoric or

coreference resolution. In our study, we experimented with a
coreference resolution and evaluated it in our setup.

Almeida and Matos [28] developed rule-based methods using
dependency parsing and a phrase-characteristic extraction
approach to extract FH information from clinical notes. They
used Stanford CoreNLP [29] to process the data, perform
dependency parsing and coreference resolution, and then
annotate their data for all FMs and observations. This way,
context from previous sentences was also considered. On the
N2C2 2019 shared task, which is the same data set that we used,
they reported F1 scores of 72% and 74% for the discovery of
FMs and observations, respectively. Their approach relied on
heuristics to detect arguments of relations, such as using a
predefined list of family relationships and diseases or making
use of it as arguments in the noun phrases that are detected close
to the suspected relationship markers. However, finding relation
arguments is challenging because of their variable lengths.

When NER and relation extraction are applied in a pipeline, the
error propagates from the NER module to the relation extraction
module. To avoid this error propagation, Shi et al [23] proposed
a joint learning method that tackles both of these tasks by
sharing parameters in a unified neural network framework. The
FH IE is performed at different levels, including FMs,
observation, and living status and the side of the family
(maternal, paternal, and not available). Each input token is
represented by word embeddings and corresponding
Part-of-Speech embeddings and is given as an input to the
bidirectional long short-term memory (BiLSTM) model. Their
proposed model ranked first in the 2018 N2C2 FH extraction
challenge. They achieved an F1 score of 89% for entity
identification and 64% for FH extraction. On the basis of the
error analysis, the authors found that a large number of errors
are caused by indirect relatives, which can be improved by
considering relations among relatives, a feature we incorporate
in this study.

Dai [30] formulated the FH IE task as a sequence-labeling
problem in which a neural sequence-labeling model was
employed along with different tag schemes to distinguish FMs
and their observations. They proposed a BiLSTM-Conditional
Random Fields (CRFs) model with 3 layers: the character
sequence representation layer, the word sequence representation
layer, and the inference layer. The proposed method achieved
an F1 score of approximately 85% on the test set, which ranked
second in the FH entity recognition subtask of the 2018 N2C2
FH extraction challenge. Although the proposed BiLSTM-CRF
network is effective in modeling contextual information and
label dependencies, it has limitations in that the network can
only exploit contexts within individual sequences (sentences)
but cannot obtain context from cross-sentence information. To
overcome this limitation, Dai et al [31] introduced a neural
attention model to exploit cross-sentence information to identify
mentions.

Zhan et al [32] fine-tuned the BERT model by including an
additional biaffine classifier adapted from the dependency
parsing to extract FH mentions.
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FH Extraction Task
FH IE, as defined in the N2C2 FH 2019 shared task, includes
the following 2 subtasks:

1. Entity identification, including FMs, the side of family
(paternal, maternal, and not applicable [NA]), and
observation (disease)

2. Relations between FMs, including observations (negated
or not) and their living status.

The possible FMs in this task are father, mother, parent, sister,
brother, daughter, son, child, grandmother, grandfather,
grandparent, cousin, sibling, aunt, and uncle. Other relatives,
such as spouses (not blood related), nieces, and nephews were
excluded. For first-degree relatives—parents, children, and
siblings—the side of family is NA.

In relation extraction, a living status score is defined per
extracted FM to encode whether they are alive and healthy. In
this study, however, we focused only on the entity identification
subtask.

Data Set
The data set for the FH task was curated from synthetic English
patient notes, which were randomly sampled from the Mayo
Employee and Community Health cohort. It contains 216 notes,
which we refer to as documents, from which 99 documents are
for training and 117 for testing. A total of 2 annotators and 1
adjudicator annotated the corpus, with an interannotator
agreement of 0.84 for entities and 0.70 for relations. The overall
statistics of the corpus are shown in Table 1.

Table 1. Statistics (counts) of entities and relations in the National Natural Language Processing Clinical Challenges family history data set.

Test size, nTraining size, nData set’s artifact

11799Document

760803Family member

1062978Observations

Evaluation Metrics
For entity extraction, a system extracts either a triplet (document
identifier, family member, and side of family) for FM mentions
or a pair (document identifier and text of observation) for
observation mentions. These triplets and pairs were matched
against the gold standard.

Observation partial matches are acceptable. For example,
diabetes is accepted for diabetes type 2. The standard F1 score,
precision, and recall metrics are used to evaluate the
effectiveness of the proposed models as follows:

TP denotes true positive, FP denotes false positive, and FN
denotes false negative.

Importantly, recall and precision are defined on sets of
annotations pertinent to each document. That is, a document

can mention cancer multiple times, but detection of any of these
mentions contributes to the TP count only once. Conversely,
the lack of detection of any of these mentions contributes only
once to the FN count.

For statistical significance testing, we use a paired approximate
randomization test [33] for pairwise comparisons between
system variants. We obtain the significance levels by running
9999 pseudorandomized shuffles of the test set results.

Methods

Overview
Our task consists of detecting 2 types of mentions: Observation
and FamilyMember. The dual objective of the task is reflected
in the design of our system, in which the disease mentions are
detected with an ML-based NER component, whereas
FamilyMember mentions are detected with a hybrid (rule based,
with some ML components) module. The overall architecture,
together with the inputs and outputs, is illustrated in the top part
of Figure 1.
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Figure 1. Overview of the system and the FamilyMember mention detection. N/A: not applicable; NER: named entity recognition.

Observation-NER

Problem formulation
We formulated the observation-NER as a sentence-level
sequence tagging problem, in which each word in the sentence
is assigned a tag. The tag, which uses the
Beginning-Inside-Outside schema [34], can be used to infer
whether the word is the first word within a mention or inside a
mention or does not belong to any mention.

The sequence tagger we use is a state-of-the-art model: the
BERT-CRF model [11,35]. It takes advantage of large-scale
pretrained LMs using BERT to create contextual representations
for each word and a probabilistic graphical model using CRFs
[36] to capture dependencies between neighboring tags.

BERT-Based Encoder
Given a sentence, the tokenizer, coupled with the pretrained
BERT model, first converts each word in the sentence into word
pieces. That is, if the original word does not exist in the
vocabulary of the tokenizer, it will be segmented into several
units from the vocabulary [37]. Then, the word pieces are
mapped to dense vectors via a lookup table (also known as token
embeddings). Finally, the sum of token embeddings and
positional embeddings, which indicate the position of each token
in the sequence, is fed into a stack of multihead self-attention
and fully connected feed-forward layers [38]. Following the
work by Devlin et al [39], we use the final outputs corresponding
to the first word piece within each word as the word
representation.

CRFs in NER
Instead of assigning a tag to each word independently, we
modeled them jointly using CRFs [40]. That is, given a sequence
of word representations X= (x1, x2,..., xn), we aim to predict a

sequence of tags (Y= (y1, y2,..., yn)) that has the maximum
probability over all possible tag sequences. This conditional
probability can be calculated using the following equations:

Ai,j is the compatibility score of a transition from the tag i to tag
j and Pi,j is the score of the tag j given Xi.

The parameters from both BERT and CRFs are trained to
maximize the conditional probability of the gold tag sequence,
given the training sentences.

Enhancing BERT
The vanilla BERT model is pretrained using generic-domain
data such as books and Wikipedia, which are very dissimilar to
task data. A previous study has shown that the effectiveness of
pretrained LMs is highly affected by the similarity between
source pretraining and target task data [41].

Thus, we explored 2 approaches to improve the effectiveness
of vanilla BERT on the target task: domain-adaptive pretraining
(DAPT) [42] and intermediate-task pretraining (ITPT) [43].

DAPT Approach

The DAPT approach consists of continued pretraining of BERT
on a large volume of unlabeled in-domain text. The training
uses a masked language modeling objective to adapt the weights
of BERT to the domain of the target task. We use BioBERT
[44] and ClinicalBERT [15] as proxies for DAPT. These models
employed continued BERT pretraining on biomedical scientific
papers and hospital discharge summaries.
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ITPT Approach

ITPT consists of the pretraining of BERT together with CRFs
by training on a target task-related NER data set (usually
annotated with similar entity types). The training uses the
sequence tagging objective to jointly optimize the weights of
both BERT and CRF layers toward the specific task. We used
the National Center for Biotechnology Information
(NCBI)-disease [11] data set for ITPT. This data set consists of
793 PubMed abstracts that are fully annotated at the mention
and concept levels. It contains 6892 disease mentions, which
are mapped to 790 unique disease concepts. The motivation for
this choice is 2-fold. First, we used the NCBI-disease data set

because of the semantic overlap between the Disease and
Observation concepts and because of the size of the
NCBI-disease data set, which is larger than the in-domain data
(NCBI-disease consists of nearly 800 documents, with almost
7000 disease mentions). Second, this choice results in a more
direct comparison with our off-the-shelf baseline, which was
trained on the same NCBI-disease corpus (our experimental
setup is explained in more detail at the beginning of the Results
section).

We also explored the combination of these 2 approaches, that
is, DAPT and ITPT. A high-level comparison of these 3
approaches is presented in Figure 2.

Figure 2. Different approaches to enhance Bidirectional Encoder Representations from Transformers for a given target task (domain-adaptive pretraining
and intermediate-task pretraining). BERT: Bidirectional Encoder Representations from Transformers; DAPT: domain-adaptive pretraining; ITPT:
intermediate-task pretraining; NER: named entity recognition.

After DAPT or ITPT, we continued to fine-tune the model
weights of the target task's training data.

Owing to the aforementioned semantic overlap between classes
of interest, NCBI-disease was our first choice for ITPT.
Nonetheless, for the sake of completeness, we also present an
ITPT evaluation (for all DAPT configurations) for other publicly
available candidate data sets, which involve annotation of
diseases, that is, Integrating Biology and the Bedside (i2B2)
2010 [45] and Shared Annotated Resources - Conference and
Labs of the Evaluation Forum 2013 [46].

Details of implementation and training of our BERT-CRF
models are outlined in Multimedia Appendix 1.

FamilyMember Mentions
The FamilyMember mentions’ detection often requires an
out-of-sentence context to make correct inferences. In the

example shown in Figure 1, an out-of-sentence context is needed
to resolve coreference to “the mother” and correctly normalize
the brother or uncle mention. Another instance where a broader
document context is required is deciding whether the
information provided in a given fragment of an FH note pertains
to the patient's or their partner's family. The task is focused on
extracting the information on the patient's blood relatives;
therefore, the mentions of the partner's family should not be
annotated, although at the sentence level, the information can
be identical.

Given the moderate size of the training corpus of approximately
100 documents and the complexity of the FamilyMember
normalization task, which entails multiple entity classes, during
our participation in the shared task, we opted for a rule-based
approach enhanced with some ML elements. This early design
choice determines the scope of our focus; however, we compare
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our approach with state-of-the-art deep learning baselines trained
on the available in-domain data.

In our hybrid system, the documents are analyzed sentence by
sentence with a series of pattern-matching rules. The previous
sentence is used as context when producing FamilyMember
annotations for a given sentence (we split each document into
sentence-level bigrams). We experimented with a state-of-the-art
coreference resolution model neuralcoref [47]. Coreference
resolution is used on pairs of consecutive sentences to
incorporate context information from possessive pronouns (eg,
her son) or other third-person pronouns (she has a son) and
alternative references (eg, this woman has a son).

To detect paragraphs of the notes containing information on the
partner's family, we incorporate a state-of-the-art text
classification model. Owing to the lack of dedicated
partner-paragraph annotations, we fine-tune a BERT [39] model
on the available training data. We formulate the task as a binary
classification problem, where the model predicts whether a
given paragraph is valid (containing patient-focused
information). The previous paragraph is also fed to the model
to provide contextual information. We derive validity from the
existing training data. That is, a paragraph is valid if at least
one annotation is present within its scope in the training data
set. At the annotation time, we skip sentences predicted to be
part of invalid paragraphs by the model.

Our first step is to predict the validity of each of the paragraphs
of an FH note using a BERT-based paragraph filter. This step
results in filtering out the paragraphs that are predicted to be
invalid by the model. We then iterate all the remaining document
sentences to create sentence-level annotations. These annotations
are then put into one document-level annotation set. The
procedure for FamilyMember mentions’ detection within the
scope of a sentence, given a previous sentence and its
annotations as context for coreference, consists of the following
steps:

1. Check if a sentence is not part of an invalid paragraph. If
it is, we skip to the next sentence.

2. Detect candidate mentions in the second sentence
(predictions for FamilyMember for the previous sentence
are already available); candidate mentions are occurrences

of words denoting family relationships relevant to the task
as per the task definition, such as brother, sister, mother,
and father.

3. Build a graph of candidate-candidate relationships. For
example, an expression mother's sister would result in
vertices mother and sister and a directed edge from mother
to sister; this graph incorporates coreference information.

4. Generate FamilyMember annotations from the graph
structure according to a set of rules. For example, the
mother-to-sister structure would generate annotations
Mother-NA (not applicable) and Aunt-Maternal.

To build a graph of candidate-candidate relationships, we look
for specific linguistic patterns between pairs of adjacent
candidate mentions. These patterns are “X's *Y, X*has/had *Y,
Y of *X,” where X and Y denote candidates such as brother,
sister, or uncle and the * symbol denotes a wildcard matching
any text. We also detect candidate-candidate relationships as
adjacency of candidate mentions to expressions linked with
coreference resolution to other candidates or FamilyMember
mentions from the previous sentence. For example, if in the
sentence pair “Mr. Williams' mother is alive and well. She has
an older sister...,” the word mother is annotated with as Mother
and word She falls into the same coreference cluster as the word
mother, and then a Mother-Sister relationship will be added to
the graph as an X*has*Y pattern is triggered. Downstream, this
relationship is used to normalize the annotation of the sister
according to the rules (to Aunt, Maternal).

To convert the candidate graph to a final representation, we
apply a set of rules to each of the vertices. The procedure,
together with these rules, is presented in the pseudocode in
Figure 3.

In addition, we apply a simple heuristic approach to determine
the family side for those annotations where the side of the family
cannot be determined by inspecting the parent node in the
candidate graph. We look for the last occurrence in the text of
words maternal, mother or paternal, father, before the given
candidate is mentioned. The maternal or paternal status is
determined according to this last occurrence. We only assign
NA if none of these words appear in the document before the
candidate is mentioned.
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Figure 3. A pseudocode representation of the rule-based processing.

Results

Observation Extraction
The gold standard tags are recreated naively by string matching
the gold annotations provided. For example, given a gold
annotation mental retardation, we find all occurrences of this
annotation in the corresponding document and assign
B-Observation I-Observation tags to all the identified spans.
We select the first 18 documents from the training set as the
development set. The trained model that is most effective on
the development set, measured using the span-level F1 score,
is used to evaluate the test set. In addition to the different

variants of BERT models, we use an off-the-shelf disorder NER
model as the baseline [48].

We present the results of our main experiments with the
Observation annotation in Table 2. We achieve the best results
for a BERT model using both DAPT and ITPT. We provide a
detailed discussion of these results in the Discussion section.

The results of the additional ITPT experiments with i2b2 2010
and ShARe-CLEF (Shared Annotated Resources-Conference
and Labs of the Evaluation Forum) 2013 are presented in Table
3. The results indicate that, although improvements from ITPT
alone are comparable with those obtained with the NCBI-disease
data set, the DAPT+ITPT combination with the alternative
disease annotation data sets is less successful.
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Table 2. Evaluation results on Observation concepts in the test seta.

F1 scoreRecallPrecisionMethod

P valueValueP valueValueP valueValue

N/A78.1N/A75.0N/Ab81.5Stanza [48]

N/A78.1 (1.1)N/A87.3 (1.5)N/A70.7 (2.7)BERTc (baseline), mean (SD)

.0879.4 (0.6)<.00186.5 (1.7)<.00173.4e (2.2)DAPTd (BioBERT), mean (SD)

.00279.5e (1.0)<.00183.4 (3.1)<.00176.2e (3.5)DAPT (ClinicalBERT), mean (SD)

<.00179.8e (0.6)>.9985.3 (1.1)<.00175.0e (1.8)ITPTf (NCBIg-disease), mean (SD)

<.00181.1e (1.1).0885.1 (2.8)<.00177.7e (2.6)DAPT (BioBERT)+ITPT (NCBI-disease), mean (SD)

<.00181.3e (1.2).5684.4 (1.5)<.00178.6e (3.2)DAPT (ClinicalBERT)+ITPT (NCBI-disease), mean (SD)

aDocument-level precision, recall, and F1 score are reported using official evaluation scripts.
bN/A: not applicable.
cBERT: Bidirectional Encoder Representations from Transformers.
cDAPT: domain-adaptive pretraining.
eRepresents results that are significantly better than the Bidirectional Encoder Representations from Transformers baseline (approximate randomization
test; P=.05). Although the recall of baseline Bidirectional Encoder Representations from Transformers is the highest, the differences are not significant
except those for 2 domain-adaptive pretraining variants.
fITPT: intermediate-task pretraining.
gNCBI: National Center for Biotechnology Information.

Table 3. Evaluation results on Observation concepts in the test set for different intermediate-task pretraining and domain-adaptive pretraining

combinationsa.

F1 score, mean (SD)Recall, mean (SD)Precision, mean (SD)ITPTb and BERTc model

79.8 (0.6)85.3 (1.1)75.0 (1.8)BERT

NCBId-disease

81.1 (1.1)85.1 (2.8)77.7 (2.6)+DAPTe (BioBERT)

81.3 (1.2)84.4 (1.5)78.6 (3.2)+DAPT (ClinicalBERT)

79.2 (1.5)88.9 (2.4)71.6 (3.4)BERT

i2b2f 2010

80.5 (1.4)86.2 (1.4)75.6 (1.9)+DAPT (BioBERT)

80.3 (0.7)89.0 (1.8)73.2 (2.0)+DAPT (ClinicalBERT)

78.6 (1.3)88.7 (1.5)70.7 (2.7)BERT

ShARe-CLEFg 2013

79.8 (0.8)88.3 (2.3)72.9 (2.5)+DAPT (BioBERT)

79.8 (0.9)86.5 (3.8)74.2 (2.6)+DAPT (ClinicalBERT)

aDocument-level precision, recall, and F1 score are reported using official evaluation scripts.
bITPT: intermediate-task pretraining.
cBERT: Bidirectional Encoder Representations from Transformers.
dNCBI: National Center for Biotechnology Information.
eDAPT: domain-adaptive pretraining.
fi2b2: Integrating Biology and the Bedside.
gShARe-CLEF: Shared Annotated Resources-Conference and Labs of the Evaluation Forum.
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FamilyMember Extraction
We experimented with the different settings of our approach by
evaluating, both on training and test sets, different combinations
of the elements of our systems. In addition, we experimented
with removing child, sibling, parent, and grandparent from the
set of relationships, as we hypothesized that the corresponding
words are not often used to introduce a particular FM (eg, “She
has 4 siblings: two brothers and two sisters”). We obtained the
best results on the test set for a system with a restricted set of
relationships, using all the rule 1 (R1) to R6 and with
BERT-based paragraph filtering, but without the coreference
resolution.

The performance of the best system is presented in the first row
of Table 4. Subsequent rows demonstrate the impact of
modifying the best run by adding the remaining relations (row
2), adding coreference resolution (row 3), removing the BERT
paragraph filter (row 4), and removing rules R1-R6 (rows 5-10).
Row 11 shows a baseline system with no rules, no paragraph
filter, and no coreference resolution, working with the full set
of relations.

We compare the results obtained with our hybrid approach with
those obtained with a BERT-CRF baseline, identical to those
employed for disease annotation. For the sake of completeness,
we include baseline results for domain-adapted flavors of
BERT—BioBERT and ClinicalBERT.
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Table 4. FamilyMember detection for different settings of the system.

Test, F1
score (P
value)

Training,
F1 score (P
value)

Test, recall
(P value)

Training,
recall (P
value)

Test, preci-
sion (P val-
ue)

Training,
precision
(P value)BPFcR6R5R4R3R2R1b

Corefer-
ence

Number
of rela-

tionsaRow

82.14f,g87.91f82.9185.60f81.38f90.34f✓✓✓✓✓✓✓e—d11(1)

79.68f,h

(<.001)
87.64f

(.68)
86.67g,h

(<.001)
89.35f,h

(<.001)
73.73f,h

(<.001)
86.00f,h

(<.001)

✓✓✓✓✓✓✓—15(2)

78.67f,h

(<.001)
85.49h

(<.001)
79.78f,h

(<.001)
83.05f,h

(<.001)
77.59f,h

(<.001)
88.07f,h

(<.001)

✓✓✓✓✓✓✓✓11(3)

80.81f,h

(.01)
86.96f,h

(.04)

83.85 (.13)86.50f,h

(.03)
77.98f,h

(<.001)
87.42f,h

(<.001)

—✓✓✓✓✓✓—11(4)

81.87f

(.35)
87.69f

(.51)

82.13 (.07)85.45f

(>.99)
81.61f

(.40)
90.04f

(.51)

✓✓✓✓✓✓——11(5)

81.84f

(.19)
87.77f

(.51)
81.97h

(.03)
85.60f

(>.99)
81.71f,g

(.14)
90.06f

(.51)

✓✓✓✓✓—✓—11(6)

81.47f

(.25)
88.13f,g

(.50)
81.34f

(.09)
85.75f

(>.99)
81.60f

(.59)
90.64f,g

(.50)

✓✓✓✓—✓✓—11(7)

81.81f

(.27)
87.73f

(.26)

83.54 (.13)85.75f

(>.99)
80.15f,h

(.004)
89.79f

(.14)

✓✓✓—✓✓✓—11(8)

82.01f

(.74)
87.96f

(>.99)

82.91
(>.99)

85.45f

(>.99)
81.13f

(.56)
90.62f

(.73)

✓✓——✓✓✓—11(9)

82.14f,g

(>.99)
87.91f

(>.99)

82.91
(>.99)

85.60f

(>.99)
81.38f

(>.99)
90.34f

(>.99)

✓—✓✓✓✓✓—11(10)

75.96h

(>.001)
85.53h

(.01)

84.48 (.38)89.95h

(>.001)
69.01h

(>.001)
81.52h

(>.001)

————————15(11)

80.35f

(.26)

N/A81.35 (.45)N/A79.72f

(.33)
N/Aj————————(12)i

81.29f

(.70)

N/A81.03
(.462)

N/A81.55f

(.95)

N/A————————(13)k

81.06f

(.62)

N/A79.47 (.17)N/A82.71f

(.62)

N/A————————(14)l

aDenotes size of the relationship set.
bR1-R6 denote uncle rule, aunt rule, grandparents rule, sibling's kids rule, cousin rule 1, and cousin rule 2, respectively.
cBPF: Bidirectional Encoder Representations from Transformers–based paragraph filter.
dNot available.
eDenotes that the corresponding rule is applicable.
fDenotes statistically significant (P≤.05) difference from the baseline (row 11).
gWe report the P values corresponding to the test against the best system. Highest measured value is denoted in italics.
hDenotes statistically significant (P≤.05) difference from the top system (row 1).
iBidirectional Encoder Representations from Transformer-Conditional Random Field baseline results on the test set for Bidirectional Encoder
Representations from Transformer.
jN/A: not applicable.
kBidirectional Encoder Representations from Transformer-Conditional Random Field baseline results on the test set for BioBERT.
lBidirectional Encoder Representations from Transformer-Conditional Random Field baseline results on the test set for ClinicalBERT.

Discussion

Principal Findings
Challenges of recognizing diseases in clinical narratives, such
as a wide variety of naming patterns and data anonymization,
have been widely studied in the literature [49,50].

Therefore, we provide only a discussion on disease identification
that relates specifically to FH extraction tasks and a detailed
discussion on FM identification.
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Annotation of Observations

Impact of Domain Adaptation
From Table 2, we observe that both DAPT and ITPT can
improve over the baseline of the BERT-CRF model, and
combining these 2 approaches first with DAPT and then ITPT
achieves the best F1 score. On the basis of this result, we argue
that DAPT and ITPT can complement each other. In other
words, they enhance pretrained LMs by providing different
inductive biases. We hypothesize that in the ideal scenario,
DAPT enforces the model to be more compatible with the
language distribution of the target data and ITPT enforces the
model to pay more attention to features that are informative to
the NER task.

The aforementioned hypothesis can also be used to explain the
results presented in Table 3. We observe that NER problem and
disorder classes (i2b2 and ShARe-CLEF, respectively) are less
semantically aligned to our Observation class than Disease from
NCBI. In particular, a large proportion of the problem and
disorder mentions could be classified as symptoms (eg,
headaches, fever, and pain). Disease names annotated in
NCBI-disease seem closer to our target task's Observation entity
category. It is possible that the alternative ITPT data sets provide
an isolated improvement by exposing the model to documents
similar to that of the target corpus but offer little improvement
when combined with DAPT (which, we assume, already
provides this inductive bias).

Error Analysis
To provide some insight into the role of task-specific fine-tuning
with BERT-like models, we provide a detailed error analysis
performed on the outputs generated by an off-the-shelf baseline
(trained on the NCBI-disease data set, not tuned on the FH
extraction task) and our best system, which is ClinicalBERT
with ITPT on the NCBI-disease data set.

The error analysis, apart from counts of FP and FN errors,
involves a fine-grained classification of 50 errors of each type
(FN/FP) per model. The errors were sampled by taking the first
50 errors of a given type from the output log with randomly
shuffled documents.

We classify FP errors into the following categories:

• True FPs: The span does not cover a valid Observation
candidate. For example, “The patient's father had six-vessel
bypass surgery at age 56.”

• Relative error: The Observation mention by itself is
identified correctly but is linked to a relative who is not a
suitable candidate for a FamilyMember annotation (eg, a
great-uncle would be an example of a too distant
relationship, according to the annotation guidelines provided
for the task). Importantly, this class of FP errors also covers
disease mentions pertaining to the family of the patient’s
partner (thus, not related by blood); for example, “His
[husband's] brother died at age 14 of suicide and was
thought to have depression.” Note that errors are classified
as relative errors if the identified Observation looks correct,
and it can be linked to a non-FamilyMember; the annotation

is missing from the gold standard test data set; for example,
the gold standard annotations expect a span containing
stomach cancer, a string that does not appear in the
corresponding document.

• Nonobservation errors: FNs where the gold-standard
annotation is missed by the system, although it appears in
the document, but it could be debated whether it constitutes
an actual Observation. For example, “She has some
freckles.”

• Questionable and nonerrors: The candidate mention looks
correct and is linked to a valid FamilyMember candidate.
For example, “Mrs. William's sister has had three
miscarriages and a son.”

• Trauma or procedure errors: The predicted span includes
a name of a procedure or a traumatic injury. For example,
“These last two maternal aunts have had hysterectomies.”

• Negation errors: The predicted span covers a valid
Observation candidate, but it appears in a negated and often
general context. For example, “There is no known history
of ADHD or schizophrenia.”

We propose the following categorization for the FN errors:

• True FNs: An actual valid observation was missed by the
model. For example, “Her father is 53 with high
cholesterol.”

• Gold standard errors: Errors in the gold standard.
• Mental health/substance abuse–related errors: FNs where

the models fail to annotate mental health conditions or
addictions. We present this special case of true FNs
separately, as the evaluated models particularly struggle
with detection of this type of observations. For example,
“Maternal grandfather, age 67, smokes but is healthy.”

Overall, the off-the-shelf baseline yielded 166 FPs and 244 FNs,
with 733 correct annotations. ClinicalBERT-ITPT generated
150 FPs, 172 FNs, and 805 correctly identified mentions. For
Stanza, the off-the-shelf baseline values are shown in Table 2.
For ClinicalBERT+ITPT, we analyze the run that achieves the
highest F1 score among all 5 experimental runs (0.8333 F1
score, 0.8429 precision, and 0.8240 recall).

Table 5 shows the distribution of the error classes over the
evaluated sample of FPs. The distribution of the FN errors is
shown in Table 6.

An inspection of FPs reveals that for both models, the main
source of error is the annotation of observations pertaining to
FMs that are not related by blood to the patient (eg, partner's
family) or the family relation is too distant (eg,
great-grandparents). The BERT-based model alleviates this
problem by fine-tuning, at least to a certain degree. However,
as the observation-NER is done on a stand-alone basis (ie,
without the joint modeling of Observation and FamilyMember
spans), the context awareness of the BERT-based model
regarding family relationships remains low.

Both models lead to approximately 20% of FPs that appear to
be correct; however, they are not present in the gold standard
annotations.
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Table 5. Results (counts) of error analysis for false-positive errors for the Observation entity type.

ClinicalBERTa with ITPTb, nStanza [48], nError type

2031Relative

910Nonerror

62Trauma or procedure

97Negation

60True

aBERT: Bidirectional Encoder Representations from Transformers.
bITPT: intermediate-task pretraining.

Table 6. Results (counts) of error analysis for false negative errors for the Observation entity type.

ClinicalBERTa with ITPTb, nStanza [48], nError type

44Gold standard

1514Nonobservation

613Mental or substance

2519True

aBERT: Bidirectional Encoder Representations from Transformers.
bITPT: intermediate-task pretraining.

The BERT-based model is more likely to correctly annotate
spans of medical procedures or traumatic injuries. This may be
a consequence of fine-tuning. Interestingly, these entities are
identified inconsistently throughout the data set; that is,
examples of this class can be found both in FPs (“These last
two maternal aunts have had hysterectomies” where
hysterectomies is an FP) and FNs (“The patient's maternal
grandmother died at 83 of diabetes and asthma and had a broken
hip,” where the broken hip is an FN, undetected by the system).

Both models produce a similar proportion of errors resulting
from annotating negated or general contexts (not pertaining to
a specific FM). For both models, spans of this type appear
among FPs (“There is no known history of ADHD or
schizophrenia,” attention-deficit hyperactivity disorder [ADHD]
and schizophrenia are the erroneous predictions of the systems)
and FNs (“Overall, the family history is not significant for
mental retardation, birth defects, multiple miscarriages or
neonatal death, or known genetic conditions”; “genetic
conditions” is present in the gold standard but missed by the
systems).

Finally, the BERT-based model makes some mistakes by
selecting spans that do not correspond to valid observations.
This might be because of the model being fine-tuned on a small
amount of noisy data (examples of negated contexts and
traumas/procedures are mentioned earlier).

The analysis of FNs for both models shows a similar trend
regarding true errors. That is, a large proportion of the
observations missed by both models corresponds to expressions
such as “They do not look different from other members of the
family, and do not have any major internal birth defects,” where
the missed span appears in a negative context. Interestingly,
this is also true for the off-the-shelf model, which may suggest
an inherent problem with negations (as the noisy fine-tuning

data cannot be blamed with the off-the-shelf model, which does
not undergo fine-tuning altogether).

Similarly, both models struggle with detecting questionable
observations. For example, “She attended elementary school
and could not walk until the age of 0,” where “could not walk”
is the gold standard annotation.

A key noticeable difference between the models is that the
fine-tuned ClinicalBERT with ITPT does a better job at
detecting mental disorders and behavioral traits (eg, “Maternal
grandfather, age 67, smokes but is healthy”), resulting in a 50%
decrease in this type of errors. This suggests that fine-tuning is
beneficial.

Learning Points From Annotation of Observations
The first learning point from our experiments is that an
off-the-shelf state-of-the-art model trained for annotating
diseases on the NCBI-disease data set provides a strong baseline,
which yields much fewer true FP errors than the precision alone
suggests. The analysis of the FPs shows that most of the
predictions from the models are actually correct in the sense
that they correctly identify Observation candidates. It is the
detection of only those mentions that are linked only to specific
FMs that are the most problematic. This type of constraint is
inherently application specific (eg, if the aim were to assess the
genetic risk of the child from FH notes collected during
pregnancy, then Observations from the patient's partner FH
would also be relevant). This means that an off-the-shelf model
may be a good starting point for some applications.

Second, we have demonstrated a cumulative value of DAPT
and ITPT. This finding highlights an important advantage of
the BERT-CRF-based architecture over other state-of-the-art
NER approaches, such as BiLSTM. BERT-based architectures
offer an out-of-the-box transfer learning framework, with a
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focus on sharing models domain adapted on huge corpora (eg,
BioBERT and ClinicalBERT used here).

We have also identified the key improvements achieved via
fine-tuning by exposure to actual in-domain training data. The
fine-tuned model provides better recall, at the expense of
precision, achieving the highest aggregated F1 score (although
the best-case scenario, ie, the best of our 5 models, outperforms
the baseline both in terms of recall and precision). Fine-tuning
contributes to better adjustment to the specificity of the task,
such as tying Observations to particular FMs. More importantly,
however, the model learns to detect behavioral and mental health
issues from limited training data, thereby providing a qualitative
improvement. This improvement, in this particular evaluation
scenario, outweighs the downside of tuning the model on a
relatively noisy and low-volume sample of in-domain data
(which may result in some loss of precision).

Finally, we observe that, even in the fine-tuned model, there is
still room for improvement with respect to adherence to the
restrictions relating to the interplay between the observations
and FMs. This means that we do not fully capitalize on BERT's
capability to capture long-distance relationships in text. In fact,
in our experiments, raw BERT-CRF yields a similar F1 score
to that of the long short-term memory–based off-the-shelf
baseline. We hypothesized that using an alternative training
approach or using a network that jointly models both entity
types could be the key to better alignment to this specific task.

Annotation of FMs

Impact of Different System Elements
To provide more insight into the effectiveness of our rule-based
approach in FM detection, we analyze the errors generated by
our best system in row 1 of Table 4.

An ablation study, where we disable one rule at a time, is
presented in Table 2. It can be immediately noted that R6
(cousin rule 2; row 10 of Table 4) is a nonfactor. Indeed, it only
changes the default behavior (of adding one annotation per
surface form, without changing the relationship type), when
cousin annotation is affected by a candidate mention of any of
the grandparents (eg, “grandmother's cousin”). In such cases,
the cousin mention would not be added to the output. The results
show that such an interaction between mentions is not detected
in either of the training or test data sets.

In addition, removal of R3 (grandparents rule; row 7 of Table
4) and R5 (cousin rule 1; row 9 of Table 4) minimally increases
the effectiveness of our system on the training data set, which
does not hold for the evaluation of the test set. Elimination of
all other rules (R1, R2, and R4 corresponding to rows 5, 6, and
8, respectively, of Table 4) from the best system impacts the
results negatively consistently across data sets.

BERT-based parameter filtering (absent in row 4 of Table 4)
impact in the test set evaluation can be seen as a sanity check.
As the model was trained on the entire training data set, we
assume that it can determine which paragraphs should yield no
annotations, as this data set was seen at the training time.
Therefore, recall is almost unaffected (we use a cutoff threshold
lower than 0.5, which explains the minor change), whereas

precision improves, as no annotations are generated from the
paragraphs that contain no gold standard annotations. In the test
set evaluation, we can see that the BERT-based paragraph filter
increases effectiveness in terms of F1 score, but there is some
precision-recall trade-off. The increase in precision of
approximately 3.5% points comes at a cost of approximately
1% decrease in recall. This decrease in recall can be attributed
to 2 types of situations:

• Paragraphs are filtered out correctly but contribute to an
annotation missed elsewhere in the text.

• Paragraphs are incorrectly filtered out (misclassified).

By comparing rows 1 and 2 of Table 4, we can see that
restriction on the relationship set works in the same direction
as BERT-based filtering, which uses only specific relations to
increase precision at the expense of recall. Results indicate that
it yields a better F1 score; therefore, in terms of F1 optimization,
the gain in precision outweighs the loss in recall.

Our experiments with coreference resolution, row 3 of Table
4, show that applying conference resolution within a rule-based
system does not improve the annotation effectiveness. Error
analysis indicates that coreference resolution often gets it wrong
in grammatically ambiguous cases, such as “The patient's mother
is 61 and well. Her brother, aged 21, is healthy....” The
coreference module, which is trained in isolation from the task,
resolves pronouns in a strictly language-focused manner.
Resolving the her pronoun as a reference to the patient's mother
(and consequently producing an Uncle annotation) is
grammatically plausible but is unlikely from the annotation
standpoint. The results and subsequent analysis indicate that
the use of coreference leads to an accumulation of such cases,
thereby reducing annotation effectiveness.

The results do not point to the standout importance of a single
specific technique of those included in our best-performing
system. Nonetheless, a combination of the rules with
BERT-based filtering and a refined subset of family
relationships improves the test F1 score by almost 6% points.
We believe that this finding points to the accumulative potential
of small improvements in rule-based systems.

Comparisons With the BERT-CRF Baseline
Although our best system (row 1) and other variants yielding
similar performance outperform the BERT-CRF baselines (rows
12-14) in absolute values over all metrics, these differences are
not statistically significant. Our initial assumption was that the
N2C2 FH extraction training data set is too small to successfully
train a fully ML-based model for this problem. This assumption
ultimately led us to develop a hybrid solution to the
FamilyMember annotation problem.

The lack of statistical significance in the advantage of our hybrid
model against a strong neural (state-of-the-art) baseline suggests
that the assumption was not entirely valid. In fact, the relatively
strong performance of the BERT-CRF baseline indicates that
this model can cope with the FamilyMember annotation and
normalization, despite the small size of the training data set.
However, this result also suggests that our hybrid model yields
results comparable with those of a state-of-the-art ML model.
It is worth noting that a purely rule-based version of our system
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(without ML components whatsoever; row 4) still yields
comparable results, which would make it an effective, simple
baseline (without the need for retraining any of the system's
elements) to be considered as a starting point reference for
real-world deployment of FH annotation systems. Nevertheless,
the impact of individual rules still needs to be considered in the
context of the target corpus and task.

Finally, our hybrid system allows for relatively intuitive
prioritizing of specific performance aspects (eg, prioritizing
recall over precision) by tuning system settings (row 2 of Table
2).

Sentence-Level Error Analysis: FP
We present the findings of a full error analysis performed on
the results of our best-performing system (row 1 of Table 2) on
the test data. To classify the errors, we examine individual
instances in which sentence-level annotations contributed to
incorrect predictions. The percentages correspond to
sentence-level observations. For example, in a hypothetical

passage “Mrs. X has one child, a healthy son. She also has a
healthy brother whose partner recently gave birth to a daughter,
and a sister, who also gave birth to a healthy daughter,” the
incorrect annotation daughter counts twice (once per
occurrence).

We categorize the FPs into the following classes: nonerrors
(annotations that we believe to be correct but are not present in
the gold standard), nonmentions (relationship word is used but
does not denote this particular FM), partner's family (annotations
pertinent to the family of the partner rather than the patient),
deficiency of rules (when an expression is worded in a way that
the rules miss it altogether or produce an undesired output),
lack of coreference (context from outside the sentence is missing
to produce a correct annotation), wrong family side
(maternal/paternal heuristic failing), and other (the annotation
looks fine, but even after reading the entire note, we were not
able to tell if it is an actual nonerror). We analyze all errors
detected on the test set and provide counts for each of the classes
together with examples (Table 7).

Table 7. Error classes for false positives with counts and examples obtained for the best-performing FamilyMember extraction.

PredictionExampleCount, nClass

(Uncle, paternal)“Mr William’s [from context: Mr Williams is the husband of the pa-
tient—Ms Williams] father has a brother who is currently healthy”

39Partner’s family

(Father, N/Aa)“States on her father's side, ‘there is untreated depression’”38Nonmention

(Son, N/A)“She [sister] has a 2-year-old son”32No coreference

(Grandmother, paternal)“Mrs Alexander's paternal grandmother reportedly had one miscarriage”31Nonerror

(Daughter, N/A)“Mrs William has a healthy 30-year-old sister who has a healthy son and
a daughter who...”

25Rules

(Mother, N/A)“Noah's mother died at age 72”10Other

(Cousin, paternal)“...maternal paternal cousin...”2Wrong side

aN/A: not applicable.

Partner's family annotations constitute the largest group of errors
(approximately 23%), despite the use of the BERT-based
paragraph filter. Without the filter, the number increased by
more than 100%.

A large proportion (approximately 38%) of the errors fall into
nonmention (approximately 21%) and nonerror (approximately
17%) categories. The distinction between these 2 classes is not
always easy; for example, we classify an annotation of father
in “[Patient's] father works in landscapin.” as a nonmention,
although it could well be interpreted as a nonerror. We believe
this explains some of the differences in precision between the
test set and the training set. On the training set, these 2 classes
of FPs account for approximately 30% of total errors.

Lack of coreference contributes to approximately 18% of the
errors. A closer look into the problem shows that many of these
errors would require long-distance contexts (more than one
sentence) to correctly resolve the references. A fairly common
pattern is: “Patient's father suffers from.... His brother.... A
sister....” The reference (brother/uncle) from the middle sentence
can be resolved correctly fairly easily using a coreference
resolution module. The reference form of the last sentence,

however, is not explicit, and it requires context from both
previous sentences. This points to an inherent limitation of our
approach of applying the coreference resolution in the scope of
sentence pairs.

Errors related to rule deficiencies account for approximately
14% of all FPs. The majority of these errors are related to the
fact that our approach does not deal with enumerations, as only
adjacent candidates are considered in rule-based processing (as
shown in the example in Table 7). This problem can potentially
be solved by incorporating sentence syntactic parsing. However,
sentence parsing could introduce another algorithmic source of
errors because errors in parsing caused by, for example,
punctuation errors that are common in medical notes propagate
into the downstream task.

Other errors refer to cases in which we were unable to determine
whether the annotation is a nonerror or not. These notes refer
to many different people by their first names, without explicitly
stating who is the main subject of the note. A context external
to the note might be necessary to produce the correct
annotations.
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Finally, sentence-level analysis shows that the family side
heuristic works exceptionally well, producing very few errors
on rare occasions, such as with double cousins, as shown in
Table 7.

A Closer Look at Coreference Resolution
To provide a better insight into the difficulty of incorporating
a coreference resolution into a rule-based system, we compare
the sentence-level analysis presented earlier with a similar
experiment performed with the coreference resolution module.

We observe that the total number of errors is only 13 at the
sentence level, but different errors are made. It is the larger
variety of errors that contributes to lower precision. To provide
an example of a common pattern, we can consider the following
passage: “Her mother is healthy at age 63. Her father died at
age 48 of COPD (Chronic Obstructive Pulmonary Disorder).”
A system without the coreference resolution will produce correct
Mother and Father annotations. A system with coreference
resolution produces Mother and Grandfather, Maternal
annotations, the latter being incorrect. Although it is incorrect,
it is plausible both context-wise and grammatically. It is the
accumulation of this type of mistake that negatively affects the
precision score of the system with coreference resolution. We
believe that a key takeaway is that in ambiguous cases (without
explicit specification), choosing the patient as a reference point
for a family relation is statistically safer than the coreference
approach.

Missed FamilyMembers: FNs
Analyzing FNs within the test set is an inherently labor-intensive
task, as it requires inspecting the entire FH note (to find the
sentence-level evidence and identify why the system got it
wrong). Our selective analysis indicates that a large proportion
of the annotations missed by our system are related to the
nonerrors detected in the exploration of FPs. For example, for
the passage,

“This maternal aunt has three healthy children, but also had a
daughter that died within the first few days of life secondary to
hydrocephaly,” our system provides an annotation (Cousin,
Maternal). The gold standard requires an annotation of (Cousin,
NA), which we assume relates to this particular text. As we
believe the output of our system is correct, we classify it as a
nonerror. At the same time, by correctly interpreting the
sentence-level evidence, the system misses the gold standard
annotation and the same nonerror penalizes both recall and
precision.

Learning Points From FamilyMember Annotation
Our experiments with the FamilyMember annotation point to
several high-level conclusions, which may be relevant for future
work in this domain. First, the careful optimization of the system
(error analysis on training data for debugging, choosing a more
reliable set of relationships, and introducing BERT-based
filtering) improves the overall performance of the system by
more than 6% points, which we consider to be a fairly
encouraging result. We are convinced that these results can be
pushed even further with minor tweaks; however, it would be
difficult to point to a specific thing that would drastically

improve effectiveness if fixed. In addition, crafting additional
rules that are very specific to the relatively few observed errors
carry a risk of overfitting. In this sense, our approach has been
taken relatively far for effective tuning.

Second, our experiments with coreference resolution
demonstrate the intrinsic difficulty of configuring a language
understanding component as an add-on to a rule-based system.
We imagine that it is possible to come up with a much broader
rule set that could take advantage of the coreference resolution.
Nonetheless, not all context understanding can be solved with
coreference resolution, especially for grammatically ambiguous
cases or when deciding whether a matching surface form is an
actual mention or a nonmention. This is even less useful when
the coreference resolution is trained without task-specific context
understanding. We believe that this points to a general limitation
in rule-based approaches to the problem.

The use of pretrained neural LMs is the most viable path toward
incorporating language understanding in the FamilyMember
annotation. In our experiments, we demonstrate a simple
BERT-based paragraph filtering approach, which improves the
effectiveness of the final system. Its incorporation is easier than
that of coreference resolution because we identify an isolated
task (the interaction with the rest of the system is simple), which
has task-specific training data (the method sees the contexts
from a task-specific perspective). Nevertheless, a fully optimized
ML baseline (BERT-CRF) does not outperform the rule-based
approach.

In an ideal scenario, with thousands of training records, the
FamilyMember annotation problem could be approached
identically to that of Observations. However, with limited
training data available for the task, such a model achieves
effectiveness slightly lower than that of a rule-based system, as
per our baseline experiments.

The third important takeaway relates to another advantage of a
rule-based system, beyond the possibility of tuning F1 with very
little training data. The rule-based system can generate
conceptually correct annotations, regardless of the quality or
completeness of the training data. We believe this is the reason
we see so many nonerror FPs—our rules are conceptually sound.
Therefore, the system will generate those outputs, even if the
training data often miss a particular type of relationship. This
means that rule-based systems, or their combinations, play an
important role in creating annotated data sets that are needed
to train deep learning approaches.

Overall Effectiveness of the System
We provide an overview of our best system’s performance for
FamilyMember and Observation annotations combined,
compared with other approaches on the same data set, as shown
in Table 8. As the FH notes collection is relatively new, most
systems we compare against are those that participated in the
2019 N2C2 shared task (we selected the top 5 runs). We are
aware that this comparison is not entirely fair, as we continued
refining our system after the release of the test data, but it does
put our results in perspective. For our best run, we present a
combination of DAPT (ClinicalBERT) with ITPT
(NCBI-disease) for Observation annotation and the
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best-performing system for the FamilyMember annotation. We
train the neural component for Observations with 5 different
seeds and report average results with SDs.

The combined results demonstrate that the proposed system
performs on par with top systems from the 2019 N2C2 shared
task, with the exception of the Harbin Institute of Technology
(HIT) team’s approach, which achieves superior precision. We
believe this is because of HIT proposing a model that jointly
addresses both FamilyMember and Observation mentions via

ML. It seems that their approach aligns better with the perks of
this specific task (eg, annotating only diseases pertinent to
specific FamilyMembers). In addition, our experiments with
the BERT-CRF baseline for FamilyMember annotation indicate
that the gap cannot be easily closed by simply using a
state-of-the-art NER model for FamilyMember annotation. This
also indicates that the key source of the difference in
effectiveness between our best system and that of HIT is the
HIT's feature of joint modeling of FamilyMember and
Observation mentions.

Table 8. Comparison with other systems for both types of mentions combineda.

F1 scoreRecallPrecisionRun

81.63 (0.8)83.64 (1.2)79.60 (2.2)Our best run, mean (SD)

87.4583.7291.54HITb

82.2583.6580.90EZDI

81.3083.8478.90MUSCc

80.6880.9380.43NTTUd

79.4479.2079.69UFe

76.59——gN2C2f official median

75.1088.9265.01A1h [28]

71.8062.1185.07A2h [28]

aNational Natural Language Processing Clinical Challenges median is calculated from all valid runs participating in the original evaluation within the
shared task.
bHIT: Harbin Institute of Technology.
cMUSC: Medical University of South Carolina.
dNTTU: National Taitung university.
eUF: University of Florida.
fN2C2: National Natural Language Processing Clinical Challenges.
gNot available.
hThese are variants of the system described in the cited study.

In this study, we investigate the impact of a set of techniques
(DATP and ITPT for disease annotation; rules and paragraph
filtering for annotation of FMs) to improve the performance of
a very simple yet reasonably effective baseline system (78.10
and 75.86 F1 scores for Observations and FamilyMembers,
respectively, place it close to N2C2 median performance). Our
experiments suggest that the proposed improvements, although
subtle, generate a considerable cumulative effect, resulting in
a final system performing at a close to state-of-the-art level. We
also present a detailed error analysis for errors for the relatively
less explored problem of annotating FMs in clinical notes.

Conclusions
We investigate the problem of detecting diseases and FM
mentions in FH reports. We propose an approach that leverages
state-of-the-art NER for disease mention detection, coupled
with a hybrid method for FM mention detection. The hybrid
method implements a rule-based approach combined with a text
classifier to filter out irrelevant paragraphs from the reports (eg,
pertaining to the patient partner's family).

Our approach achieved effectiveness close to the top 3 systems
participating in the 2019 N2C2 FH extraction challenge, with
only the top system outperforming it convincingly in terms of
precision.

We believe that immediate improvements could be achieved
by refining the rules used in the FM mention detection module.
Nonetheless, alternative strategies, revolving around the use of
semisuperised and distantly supervised learning, are closer to
our research interests. A more encompassing approach toward
improving performance would be a system that jointly models
diseases and FMs, thereby improving cases that relate directly
to the interplay between both entity types (eg, not annotating
diseases of nonblood-related FMs).

In our future work, we will concentrate on applying FH
extraction to a broader set of medical notes. This broader
approach will not only cater to new use cases but will also allow
for harnessing the FH-related knowledge scattered across other
sections of EHRs.

JMIR Med Inform 2021 | vol. 9 | iss. 4 | e24020 | p. 17https://medinform.jmir.org/2021/4/e24020
(page number not for citation purposes)

Rybinski et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Acknowledgments
This study was funded by the Commonwealth Science and Industrial Research Organization (CSIRO) Future Science Platform
in Precision Medicine, Medical Decision Support Project. XD and SS were supported by the CSIRO’s Data61 scholarship.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Implementation details. The configuration of our BERT model follows the original BERT-based model. In particular, our model
is based on a bidirectional transformer with 768 hidden dimensions, 12 hidden layers, and 12 self-attention heads. The total
number of parameters was approximately 110 million. We implemented our model using PyTorch and trained it using 1 RTX
2080 Ti graphics processing unit. As the training set size is small, iterating all instances once (1 epoch) takes less than 15 seconds.
We adapted the early stop method, wherein the training will stop once there is no improvement (measured on the development
set) during the last 5 consecutive epochs. The trained model that was most effective on the development set (measured using the
F1 score) was used to evaluate the test set. BERT: Bidirectional Encoder Representations from Transformers.
[DOCX File , 9 KB-Multimedia Appendix 1]
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