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Abstract
In four-probe (4-probe) electrical measurements, especially on highly
resistive materials, it is not always possible to configure the electrodes such
that the current density is uniform throughout the sample. Under such
circumstances, simply considering the material’s electrical resistivity to be
proportional to the measured resistance with the proportionality constant
given by the sample geometry can give an incorrect result. In this paper, a
numerical finite element model is presented which can extract a material’s
true resistivity from co-linear 4-probe electrical measurements on highly
resistive samples with large electrodes that extend across the sample width.
The finite element model is used to investigate the influence of material
anisotropy, the resistance of the sample–electrode interfaces and the relative
electrode-to-sample size on the potential and current density distributions in
the sample. A correction factor is introduced to account for the impact of
these effects on the measured resistivity. In the limit of large interface
resistance, excellent agreement is found with an analytical expression
derived elsewhere (Esposito et al 2000 J. Appl. Phys. 88 2724–9). The
approach presented here can be used to evaluate a variety of effects on
co-linear 4-probe electrical measurements, can be extended to complex
specimen geometries with arbitrary electrode arrangements and,
additionally, could find use in the evaluation of data from 4-probe thermal
conductivity measurements.

Keywords: electrical resistance, four-probe method, anisotropy, interface
resistance, correction factor, finite element model

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The direct current electrical resistance measurement is a
routine method of characterizing the electrical properties of
bulk materials, and many experimental methods have been
developed [1]. A common experimental technique is the

1 Now at Boeing Commercial Airplanes, Seattle, WA, Eric.J.Zimney@
Boeing.com.

co-linear four-probe (4-probe) method. This configuration
(see figure 1) consists of four independent electrical terminals
where two terminals are used to apply current to the sample,
and the other two terminals measure the resulting potential
drop across a defined portion of the specimen. Provided a
high impedance voltmeter is used to measure the potential
drop, the 4-probe arrangement under ideal conditions (i.e.
point electrodes) prevents current from flowing through the
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Figure 1. Schematic of the co-linear 4-probe configuration with
electrodes that span the width of the specimen.

interface between the sample and the potential leads, thus
eliminating interface resistance from the measurement.

A material’s resistivity can be calculated from the
measured 4-probe resistance

(
Rkl

ij

)
, the sample dimensions and

the relative positions of the electrodes (assuming electrodes
with zero width) by the following relationship:

ρm = wt

s
Rkl

ij = wt

s

Vkl

Iij

, (1)

where w, s and t are the sample width, inter-electrode spacing
and sample thickness respectively, Iij is the current applied to
the i and j electrodes and Vkl is the measured potential drop
across the k and l electrodes. In equation (1), it is assumed
that there is a linear potential field distribution (i.e. uniform
current density distribution) within the sample. In this work,
the resistivity computed using equation (1) is referred to as the
measured resistivity, ρm.

Performing electrical measurements on highly resistive
materials is difficult due to the challenge of getting sufficient
current into the specimen to ensure that the resulting potential
drop is measurable. This often requires the use of large
electrodes that are close together. In such cases, current
can flow through the highly conductive electrodes and perturb
the current and potential field distributions within the sample.
Perturbations to the potential and current density fields can
also be the result of the geometry of the specimen, material
anisotropy, value of the electrode–sample interface resistance,
inhomogeneous properties and any other nonlinear effects
that may occur. A correction factor

(
Fkl

ij

)
is often added

to equation (1)
(
ρ = Fkl

ij ρm
)

to account for the effect of
these perturbations in the calculation of the material’s true
resistivity (ρ). Correction factors for the 4-probe method with
point electrodes on isotropic materials have been investigated
extensively [2–7].

In this paper we report a method based on numerical
finite element (FE) analysis, to determine correction factors for
the analysis of co-linear 4-probe electrical measurements on
isotropic and anisotropic samples with large, highly conductive
electrodes that extend across the sample width. The results of
the FE analysis in the limiting case of large interface resistance
are compared with an analytical expression derived elsewhere
[8–10]. All FE analysis was carried out using the Comsol
Multiphysics 3.2 software package (Comsol, AB).

2. Analysis method

The FE analysis presented here is based on the formulation of
a linear conductivity model that obeys local electrodynamics

and assumes that the material being interrogated has a linear
I–V relationship and is homogeneous. The electrical potential
field distribution, V (x, z), is governed by Laplace’s equation,

−⇀∇ · [(ρ−1)
⇀∇V ] = 0. Since the electrodes span the entire

width of the specimen, the potential and current density fields
are constant along the sample width (y-axis, see figure 1), and
a two-dimensional (2D) model is sufficient.

2.1. Material anisotropy

Here we consider anisotropic materials where the in-plane
resistivity (ρx = 1) differs from the transverse resistivity
(ρz). Such anisotropy is common in many materials such as
graphite [11], layered chalcogenides [12], perovskites [8, 10,
13], artificial super lattices, some biological tissues [14, 15],
polymer composites [16, 17], among others. For an anisotropic
material, the 2D Laplace’s equation can be rewritten as

ξ(∂2V /∂x2) + (∂2V /∂z2) = 0, (2)

where ξ = ρz/ρx , and the limits of z are from 0 to t. We
now define a variable substitution given by zeff = z

√
ξ and

substitute this into equation (2) to find

(∂2V /∂x2) +
(
∂2V

/
∂z2

eff

) = 0. (3)

Equation (3) is Laplace’s equation for an isotropic material
where the limits of zeff are now from 0 to the effective
thickness, teff = t

√
ξ . A single variable teff is therefore used

to account for both sample thickness and material anisotropy
in the following analysis.

2.2. Interface resistance

Interface resistance (Rc), the resistance of the electrode–
sample interface, is incorporated into the FE model through
the boundary conditions (BCs) applied at the electrodes. All
contacts are assumed to have the same Rc, which is independent
of the applied potential. An interface resistance factor (α) is
defined by α = Rc

/
Rkl

ij .

2.3. Electrode configuration

In 4-probe electrical transport measurements, the outer
electrodes are typically connected to a current source and
the inner electrodes to a high impedance voltmeter (R23

14 =
V23/I 14, see figure 1). The reciprocity principle states that for
a network of linear resistors, an electromotive force (emf) in
one branch of the network will produce the same current in the
other branches as an equivalent circuit where the emf has been
moved to another branch [18, 19]. Thus for a linear system
(i.e. linear I–V dependence of the sample and interface), the
electrode arrangement in figure 1 is equivalent to the reverse
configuration

(
R23

14 = R14
23

)
where the inner electrodes are the

current terminals and the outer electrodes measure the resulting
potential drop. In this work only the electrode configuration
shown in figure 1 is considered.
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Table 1. Dimensionless variables used in all analyses.

The effective thickness ratio TReff = t
√

ξ/s
The electrode ratio ER = �/s
Interface resistance factor α = Rc/R

kl
ij

Table 2. The boundary conditions implemented in the FE model for
the source and sense electrodes.

No Description Source electrode Sense electrode

1 Moderate interface n · J = V+−V (x,t)

Rcw�
(4)

∫
∂�

n · J = 0, (5)

resistance n · J = V (x,t)−Vs

Rcw�
(6)

2 Perfect contact V (x, t) = V+ (7)
∫

∂�
n · J = 0 (5)

(α = 0)
3 Large interface n · J = Iij

w�
(8) n · J = 0 (9)

resistance (α � 1)

2.4. Definition of variables

For samples with finite-width electrodes, it is non-trivial to
define an appropriate inter-electrode spacing that properly
defines the distance of the measured potential drop. In this
work the inter-electrode spacing (s) is defined as the distance
between the inner edges of neighbouring electrodes, as shown
in figure 1. The inter-electrode spacing is also used as the
characteristic length scale with respect to which the remaining
geometric variables are defined. All the dimensionless
variables used in this work are listed in table 1.

2.5. The finite element model

The current density and potential distributions within the
sample are symmetric about the centreline (x = 0, see figure 1),
so only half of the specimen geometry needs to be modelled.
The centreline is constrained to be an electrical ground. All
the remaining boundaries, with the exception of the source
(current) and sense (potential) electrodes, are modelled as
electrically insulating (n · J = 0, where n is the unit vector
normal to the boundary).

All electrodes are assumed to have a conductivity that is
much greater than the sample conductivity and are treated as
equipotential. In this work, the electrodes and interfaces are
not directly modelled. Their effect is included in the FE model
via appropriate BCs. Six BCs, listed in table 2, are used to
model the full range of possible interface resistances including
the general case for moderate Rc as well as the limiting cases
of perfect contact (α = 0) and very large interface resistance
(α � 1).

In the general case for moderate values of interface
resistance (table 2, case 1), a potential drop occurs when
current passes though the sample–electrode interface. For
the source electrode, this effect is modelled using equation (4)
where V+ is the potential applied to the source electrode (an
input parameter) and V(x, t) is the potential on the sample
surface. Application of this nonlinear BC leads to a non-
uniform distribution of current injected into the sample at
the source electrode. At the sense electrode, a portion of
the sample current passes through the equipotential electrode
resulting in a potential drop across the interface. This effect
is accounted for in the FE model by applying equations (5)

and (6) simultaneously at the boundary, where Vs is the
potential of the sense electrode (a variable in the FE model).
The application of equation (5) to the boundary allows some
current in the sample to be diverted locally through the less
resistive electrodes, but ensures that the total current flowing
across the boundary is 0.

In the limiting case where the sample and the electrodes
are in perfect contact (α = 0, table 2, case 2), the potential on
the sample surface under the electrodes will be constant and
equal to that of the electrode. In this regime the boundaries
of the source and sense electrodes are modelled using the
uniform potential, equation (7), and floating potential BCs,
respectively. The floating potential BC sets the potential of the
boundary equal to a constant that is determined by applying
equation (5) at the boundary. The floating potential BC is a
built-in boundary condition in Comsol Multiphysics 3.2.

At the opposite limit, where α � 1 (table 2, case 3),
the large interface resistance impedes current from flowing
through the highly conductive electrodes, thus decoupling
the electrodes from the current and potential distributions
in the sample. In this case the electrodes are modelled
using the uniform current distribution, equation (8), and the
electrical insulation, equation (9), BCs for the source and sense
electrodes, respectively. The potential of the sense electrode,
Vs, is assumed to be equal to an average of the potential on the
sample surface under the sense electrode [8, 9]. The potential
measured by the ith electrode whose mean position is located
at xi is given by

(Vs)i = 1

�i

∫ xi+�i/2

xi−�i/2
V (ς, t) dς, (10)

where �i is the width of the ith electrode and ζ is the
variable of integration. The integral is evaluated by the
Comsol Multiphysics program using element-wise fourth-
order numerical quadrature.

The mesh is generated by a built-in algorithm in Comsol
Multiphysics and consists of 2D six node (quadratic) triangular
elements. An anisotropic mesh is used with mesh elements
concentrated along the upper surface (z = t) and along the
line of symmetry (x = 0). Convergence of the FE solution
is ensured by using optimized mesh parameters and verified
for α � 1 by comparing the values of the applied current (Iij)
with the total current (I) found by evaluating the following
relationship I = w

∫ t

0 (n · J) dy along the line of symmetry.
The optimized mesh parameters are established by running
the model several times with increasing mesh refinement until
the solution converges. The total number of elements is a
function of the geometry of the sample with the average
number of elements varying from 5000 to 80 000 with an
increasing sample area. The mesh is regenerated for each
sample geometry.

The Comsol Multiphysics FE program is implemented in
MATLAB 7.0.3 (Mathworks, Inc) allowing the FE calculation
to be quickly carried out for a variety of sample geometries.
The sample’s 4-probe resistance is computed using R =
2Vs/I . The measured resistivity is found using equation (1),
and the correction factor is found by calculating the ratio of
the in-plane resistivity used in the model (ρx = ρ = 1) and the
measured resistivity.
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(a)

(b)

(c)

(d)

Figure 2. (a) Correction factor versus TReff for the limiting cases of perfect contact (α = 0) and large interface resistance (α � 1) for a
sample with ER = 1. The dashed line is the analytical solution from equation (11). The contour plots are of the potential field distribution
for α = 0. The arrows pointing to the contour plots show the corresponding position on the F curve (TReff = 0.4 and 15). (b)–(d) Contour
plots of the magnitude of the current density with an arrow plot superimposed showing the current flow for samples with α � 1. The
contour levels are identical for all plots, and the length of the arrows is proportional to the magnitude of the current density. Sample
parameters are ER = 1 and TReff = 50 (b), 5 (c), 0.5 (d).

3. Simulation results and discussion

3.1. The effect of material thickness and anisotropy

As indicated above, the material anisotropy and the thickness
of the sample are intimately linked. The contour plots in
figure 2 illustrate the non-uniformity in the current density field
that develops in a sample as its effective thickness increases.
For large values of effective thickness (TReff > 50), the applied
current is restricted to a thin layer near the sample surface (see
figure 2(b)). The opposite is true for a sample with small
effective thickness where the current now prefers to flow in
the z-direction probing the entire depth of the sample (see
figure 2(d)).

The non-uniformity of the current density field leads to
a change of the correction factor. Figure 2(a) is a plot of F
versus TReff for the limiting cases of perfect contact and large
interface resistance. For samples with a large thickness
compared to the inter-electrode spacing (i.e. TReff > 2 in
figure 2(a)), F for both limiting cases steadily decreases with
a slope of 1/TReff with increasing TReff. In this regime, the
applied current only probes a portion of the sample volume
near the surface (see figure 2(b)). For an infinitely thick
sample, the depth reached by the applied current is dependent
on the distance between the outer electrodes (L = 3s + 4�).
As TReff for a finite thickness sample increases beyond this
depth (teff > L), the thickness of the probed volume remains
constant (see the contour plot for TReff = 15 in figure 2(a))
causing a steady decrease in F.

An analytical solution for Laplace’s equation with BCs
that are identical to those used in the limiting case of α � 1
(see table 2, case 3) has been derived elsewhere [8–10]. Using

these results, an analytical expression for the correction factor
is given by

F = 1

8 (T Reff)

1



, (11)

where 
 is an infinite series having the following form:


 =
∑

n=1,3,5,...

(−1)n−1/2sinc

(
nπ

ER

LR

)
sinc

(
nπ

ER

2 (LR)

)

×
sin

[
nπ

2(LR)
(ER + 1)

]
nπ

coth

(
nπ (T Reff)

LR

)
. (12)

In equation (12), LR is the length ratio (L/s) for the
specimen, which can be expressed in terms of ER by LR =
3 + 4ER. The dashed lines in figures 2(a) and 5 represent the
analytical solution from equation (11). The FE and analytical
results show excellent agreement in the limiting case of α � 1
for all values of TReff and ER.

3.2. The effect of interface resistance

The effect of interface resistance on the potential field
distribution in the specimen is shown in figure 3. When
the electrode and sample are in perfect contact (α = 0),
the surface of the specimen is forced to be at the same
potential as the electrode, perturbing the linear distribution
of the potential field (see figure 3(a)). The gradient of the
potential is increased near the edges of the electrodes due to
current passing into or out of the highly conductive electrodes.
In this regime, the current applied to the sample flows along
the source electrode and is injected into the sample near the
electrode edge. As the interface resistance increases, the effect
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(a)

(b)

(c)

Figure 3. Potential contour plots for an isotropic material (ξ = 1)
with ER = 1 and TReff = 1. The interface resistance increases from
top to bottom: (a) α = 0, (b) α = 0.1 and (c) α � 1.

of the perturbation due to the equipotential electrodes on the
potential field decreases (see figure 3(b)). In the limiting case,
where α � 1, the electrodes are fully decoupled from the
sample, and the potential field has a linear distribution that
is constant through the thickness for a large portion of the
sample volume (see figure 3(c)) approximating the potential
distribution assumed in equation (1).

A comparison of the contour plots in figure 3 shows that
interface resistance has a significant impact on the potential

(a) (b)

(c) (d)

Figure 5. Correction factor versus TReff for the limiting cases of perfect contact and large interface resistance. ER of the samples is (a) 0.05,
(b) 0.02, (c) 5 and (d) 20. The dashed line in each plot is the analytical solution from equation (11). The contour plots in (c) and (d) are of
the potential field for a sample with α = 0 and TReff = 1 and 5, respectively. The arrows pointing to each contour plot originate from the
corresponding position on the F curve.

Figure 4. Correction factor versus interface resistance factor for
several values of TReff and at ER = 1, showing the transfer of the
correction factor between the limiting cases of perfect contact and
large interface resistance.

field distribution in the specimen, which can be accounted for
by F . Figure 2(a) is a plot of F versus TReff for both limiting
cases of α � 1 and α = 0. For thin samples (TReff < 2,
when ER = 1), the difference in the value of F for the limiting
cases is due to a difference in the current flow in the sample;
when α � 1 (see figure 3(c)) all of the current remains in
the sample, and when α = 0 (see figure 3(a)) some current is
diverted through the electrodes.

For moderate values of α, the correction factor transitions
between the limiting cases (see figure 4). This transition
occurs over five orders of magnitude with perfect contact
being approximated by α < 10−5 and the large interface
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resistance limit occurring at α ≈ 1. With increasing TReff,
the values of F for all values of α converge. This is caused
by a decrease in the volume of the sample affected by the
equipotential electrode with increasing TReff, which is evident
by comparing the contour plots in figure 2(a).

3.3. The effect of the electrode size

The effect of the electrode size on F in the limiting cases
of perfect contact and large interface resistance is shown in
figure 5. For thin samples where TReff < 0.1, regardless of
the size of the electrodes, F approaches a constant value for
both limiting cases. The correction factor approaches a value
of 1 in the limiting case of perfect contact. In this regime (i.e.
α = 0), the equipotential electrodes force the potential field in
the sample under the electrode to be equipotential through the
thickness (see the contour plot in figure 5(c)), effectively short
circuiting the sample volume under the electrode [20]. The
distance of the measured potential drop is therefore defined by
the geometric inter-electrode spacing, s.

In the limit of large interface resistance, the potential of
the sense electrode is assumed to be equal to an average of the
potential on the sample surface under the electrode given by
equation (10). In this regime the potential field at the sample
surface varies linearly (see figure 3(c)), so the potential of
the sense electrode can be approximated by the potential on
the sample surface at the mid-point of the electrode [8].
Therefore the region of the measured potential drop for
samples where α � 1 is between the centres of the inner
electrodes, and the appropriate inter-electrode spacing to use
when computing the sample resistivity is seff = s(ER + 1),
where seff is the effective inter-electrode spacing. The
dependence of the effective inter-electrode spacing on the
electrode width in the limit of α � 1 causes the magnitude of
F for thin samples (TReff < 1) to be equal to 1/(ER + 1) (see
figures 2(a) and 5). For moderate values of α, the effective
inter-electrode spacing transitions from the inner edges to the
midpoint of the inner electrodes with increasing α.

The range of TReff and F over which the limiting cases
converge is also dependent on ER (see figures 2(a) and 5).
When the sample and electrodes are in perfect contact (α = 0),
the volume of the sample that is affected by the equipotential
electrodes increases with increasing ER. This is evident by
comparing the contour plots in figures 5(c) and (d), which
have a similar potential field distribution; however, ER and
TReff differ by a factor of 4 and 5, respectively. When α � 1,
the dependence of the effective inter-electrode spacing, seff,
on ER affects the depth with which the applied current probes
the sample causing a shift in F along the TReff axis. The
combination of these effects delays the convergence of the
limiting cases to larger values of TReff. Thus, the importance
of accounting for the effects of the interface resistance becomes
ever greater as the width of the electrodes increases.

4. Conclusions

We have presented a self-consistent finite element (FE)
approach that is used to determine correction factors that
convert the resistivity obtained from a co-linear 4-probe
electrical measurement of sample resistance and sample–
electrodes geometry into the true material resistivity. A

variety of effects were included in the FE model: material
anisotropy, sample geometry and the sample–electrode
interfaces. Interface resistance was included in the model
through the use of appropriate boundary conditions for the
source (current) and sense (potential) electrodes. In this work
the FE approach is used to investigate the effects of anisotropic
material properties, interface resistance and electrode size on
the correction factor for small, highly resistive samples with
large, closely spaced, highly conductive electrodes that extend
across the sample width. The results of the FE analysis show
the following.

(1) Anisotropic electrical properties lead to a change in the
thickness of the sample that is probed by the applied
current. A substitution of the variable is defined where
zeff = z

√
ξ , to account for anisotropic material properties

in the FE model.
(2) Large and highly conductive electrodes perturb the

potential and current density distributions in the sample.
The effect of this perturbation on the correction factor
is dependent on the size of the electrodes, the interface
resistance and the thickness of the sample.

(3) Interface resistance can have a significant effect on 4-
probe electrical transport measurements, particularly for
samples whose thickness is less then s + �.

(4) In the limiting cases of perfect contact and large interface
resistance, the distance that defines the measured potential
drop is between the inner edges (s) and centre (s + �) of
the inner electrodes, respectively. The distance for the
measured potential drop transitions from the inner edge to
the centre of the inner electrodes with increasing interface
resistance relative to the sample resistance.

(5) The FE model showed excellent agreement with analytical
results in the limit of large interface resistance. The
expression for the correction factor given by equation (11)
can be used with reasonable accuracy for samples where
the interface resistance is of the same order as the sample
resistance.

In future work our FE approach could be used to evaluate
other effects on the correction factor including changes in the
resistivity due to temperature variations, different physics that
may occur at the interface between the electrode and sample,
etc. The methods outlined in this paper can also be applied to
4-probe heat transport measurements. Our FE approach and
the results of our analysis will help improve the accuracy of
electrical transport measurements for many materials.
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