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CORRECTION FACTOR TECHNIQUES FOR

IMPROVING AERODYNAMIC PREDICTION METHODS

By Joseph P. Giesing, Terez P. Kalman

and William P. Rodden

Douglas Aircraft Company

SUMMARY

This report describes a method for correcting lifting surface theory so

that it reflects known experimental data. Specifically the theoretical press-

ure distribution is modified such that imposed constraints are satisfied

(e.g., lift, moment, etc.) while minimizing the change to the theoretical

pressure distribution. It is assumed that a finite element or discretized

lifting surface method is used, such as either the Doublet or Vortex Lattice

Methods.

There are several ways in which the theoretical pressures are modified.

One is a direct application of a set of correction factors to the pressures.

This is accomplished by premultiplying the pressures with a diagonal matrix

of correction factors. A second approach to correcting the theory is to

modify the downwash. This modification can be accomplished by either multi-

plying the downwash by a diagonal matrix of correction factors or by adding

an incremental downwash (which is proportioned to the pressure) to the theo-

retical downwash. In any case the correction factors are adjusted so that

the imposed experimental constraints are satisfied by the corrected pressure

distribution while the changes in the pressure distribution are minimized.

There are several features that have been built into the basic method

and these include: (1) the ability to consider together experimental data

* The authors wish to acknowledge Dr. Edward Albano for interesting

discussions of alternate formats (non-diagonal) of correction matrices and

their potential derivations.

** Consulting Engineer
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from more than one mode (e.g., control surface rotation, pitch, camber, etc.),

(2) the ability to limit the excursions of the correction factors (i.e.,

establish minimumand maximumvalues for them) and (3) the ability to use

correction factor modeshapes (i.e., construct correction factors from known

distributions or functions).

The methods developed have been implemented on the computer and many

correlations and calculations made, Specifically cases involving all three

Mach Number ranges are considered. For instance in the subsonic speed range

a swept wing with an oscillating partial span flap and a swept wing with a

leading edge droop are discussed. In the transonic speed range a two-dimen-

sional symmetric airfoil with an oscillating flap is treated in detail. An

arrow wing with and without camber is used in the supersonic analysis.

The computer program used to generate the correction factors for these

cases is also fully described in this report and test cases are provided.

Finally, a new, simple method for accounting for transonic _ffects in

the lifting surface theory is described and correlated for the two-dimensional

case. Basically, a transformed distance between the sending element and re-

ceiving point is employed. The transformation depends on the time delay en-

countered by a signal traveling from the sending point to the receiving point.



INTRODUCTION

Wind tunnel data have provided the basis for semi-empirical methods of

aeroelastic analysis for manyyears, whether in the estimation of stability

and control characteristics, the calculation of structural loads, or in flutter

analysis by modified strip methods. These semi-empirical methods have been

tailored to aerodynamic lifting-line theory or to strip theory and not to the

more general (and more accurate) lifting-surface methods. The use of a

diagonal correction matrix to be applied as a premultiplying factor to matrices

of aerodynamic influence coefficients obtained from lifting surface theory has

been considered by a numberof authors. A premultiplier maybe regarded as a

correction to the pressure distribution; as an alternative, a postmultiplier

would be regarded as a correction to the downwashto account for thickness

effects and for camber induced by boundary-layer displacement effects. Rodden

and Revell (refs. ] - 4) considered a real correction matrix derived from

static wind tunnel measurementsand theoretical load predictions. Bergh and

Zwaan(refs. 5 and 6) investigated a complexcorrection matrix derived from

oscillatory wind-tunnel pressure measurementsand theoretical predictions.

These authors assumedmeasurementswere available only for a single mode, a

steady angle of attack or an oscillatory pitching (or yawing) mode.

Current interest in using actively controlled aerodynamic surfaces to

minimize aeroelastic response requires an improvement in accuracy in predict-

ing unsteady aerodynamic characteristics of lifting surfaces equipped with

control surfaces. The correction matrix provides one meansof improving the

accuracy but it requires experimental data on control surface characteristics

in addition to the angle of attack characteristics of the surface. Hence, an

extension of references l - 4 is necessary to obtain the correction matrix

for more than one aerodynamic mode. Furthermore, the discrepancies between

theory and experiment in predicting trailing-edge control surface loads are

most likely caused by boundary-layer displacement effects on the effective

downwash. Hence, another extension is necessary to obtain a postmultiplying

correction matrix. These two extensions are considered in the present



development. The diagonal format has been retained and complex pre- and,

postmultiplying correction matrices have been derived which satisfy the con-

straints of matching experimental data from multiple aerodynamicdownwashmodes.

The use of correction matrices is in the time-honored engineering tradition

of empirical correction factors. It retains the generality of the theory

while approaching the limiting values of the test results. Suchaposteriori

adjustment obviously cannot be regarded as addressing any of the fundamental

causes of the discrepancies. Other possibilities exist whereby empirical

corrections can be introduced directly into the theoretical solution. Ashley

(ref. 7) has discussed two such "irrational correction methods". The first

of these is of interest here and concerns the calculation of the downwash

boundary condition and the pressure distribution by "local linearization"

in terms of the local velocity VL rather than the free stream velocity U ,
The dimensionless downwashthen becomes

!x,y,O,t) U® _ + VL(X'Y)_

where h(x,y,t) is the deflection of the mean surface. Applications of this

"local linearization" to the downwash boundary condition (but not to the

kernel function nor pressure coefficient) have been made for control surfaces

by Ashley and Rowe (ref. 8) and by Rowe, Winther, and Redman (ref. 9), and

improved correlations have been obtained. Tijdeman and Zwaan (ref. I0) have

also employed the local linearization of the downwash boundary condition but

have suggested another modification for use in the Doublet-Lattice Method

for high subsonic flows, viz., that the free stream Mach number be replaced

by a mean Mach number Mjl for each panel (lifting element or box). The down-

wash induced at box i by the lifting pressure on box j then becomes

* The format of a full matrix was briefly investigated but it was found

to destroy the distributional character of the theoretical aerodynamic in-

fluence coefficients, and was not considered further.



wi
U - Dij (Mjl' kr)aCpj

where Dij (Mjl, kr) is the downwashinfluence coefficient between the jth
lifting element and the ith downwashcollocation point and its functional

dependenceon Mjl and the reduced frequency kr is indicated. Tijdeman and

Zwaandenote the freestream Machnumber by M®and the local Machnumberat the

surface of box i by Mi2, so that the locally linearized downwashfor harmonic
motion becomes

wi Mi2 _hi

U - M Bx + i o-_hi

The values of Ml and M2 for a certain box are not equal, in general, because

Ml has to reflect the influence of the Machnumberdistribution normal to the

surface ranging from M_at the surface to the freestream Machnumberfar

away from the wing. Preliminary results from NLRcalculations have shown

that Ml can be chosen simply to be the average value of M2 and M .
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LIST OF SYMBOLS

Matrix that gives pressures in terms of downwash.

Inverse of D

Speed of sound in the free stream

Constraining power of a constraint. If _ = l

constraint is I00% effective. If _ = 0 constraint

has no effect at all

Wing bending moment (about x-axis)

Semi span of wing

Aerodynamic coefficient (e.g. lift or moment coefficient).

Ce is used as an experimental constraint

Lift coefficient

Moment coefficient •

Wing root bending moment coefficient

Reference chord length

Section lift coefficient

Section moment coefficient

Section hinge moment coefficient

Matrix that gives downwash (normalwash) in terms of pressures

Deflection normal to lifting surface

Unit vector in direction of axis

wE
Reduced frequency

An average Mach Number between M2 and M®
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M2

M

R

Sp

Sw

s

S _
P

t

U

VL

W

W

wT

x,y,z

Y

Local Mach Number at wing surface

Free stream Mach Number

Average Mach Number between sending and receiving point

Compressible radius (see Eqn. 73)

Matrix that integrates pressures into aerodynamic

parameters (e.g., CL, CM, ca, etc.)

IS] [_Cpt] see Equation (9)

IS] [A][w] see Equation (30)

See Equation (45)

[S] _ See Equation (54)

See Equation (67.)

Weights given to the correction factors _ for the

minimization process, _ T _2 = min

Time

Free stream velocity

Local surface speed

Correction factor = l + _ (Called CF in computer program)

Downwash (or normalwash) (Called W in computer program)

Weights in the minimization process for estimates

Cartesian coordinates right handed system

x aft, y lateral (starboard), z vertical

Angle-of-attack, also direction cosine for force or moment axis

Direction cosine for force or moment axis



Y

AC
P

AA

nv

¢

Cd

a

d

e

q

H

mod.

P

t

U

w

l

2

3/4

I/4

Dihedral of lifting surface

Lower sur_ce minus upper surface pressure coefficient

Box area

Incremental correction factors = W - l

Generalized incremental correction factors

EV-f

Correction factor mode shapes

Doublet potential function

Circular Frequency

Subscripts and Superscrip.ts

Stands for either p or w

Designated or known correction factors

Experimental

Identifies estimates as opposed to constraints

Hermetian transpose

Modified values

Identifies pressure modifying terms in the correction

factor procedure

Theoretical values

Undesignated or unknown correction factors

Identifies downwash modifying terms

Deflection mode l

Deflection mode 2

Three quarter chord point

One quarter chord point
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{ }

E]

rj

Matrix Notation

Column Matrix

Rectangular

Diagonal
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THEORETICALDEVELOPMENT

Basic Method

Premultiplying Correction Factor Matrix. - A derivation of a real pre-

multiplying correction matrix constrained to match aerodynamic data from a

single downwash mode is presented in references l 4. The use of Lagrange

multipliers considerably simplifies the derivation so we present this alter-

native derivation here. As an introduction we will rederive the same case

first, i.e., the premultiplier for a single mode; then we will consider multi-

ple modes and the postmultiplier. Whether the correction matrix is real or

complex depends only on the experimental data: static data lead to a real

matrix and oscillatory data lead to a complex matrix

Assume that we have a matrix [A] of theoretical aerodynamic influence

coefficients (AIC's) that relates the theoretical pressures {Cp } on a set
of aerodynamic finite-elements to the dimensionless downwashes _w} at the

same aerodynamic elements by

{aCpt} = [A] {w} (I)

The AIC's correspond to the reduced frequency of the experimental data and,

hence, are real for static data and complex for oscillatory data. The pre o

multiplying correction matrix [ Wp ] is used to obtain an estimate of the

experimental pressure distribution {aCpe} from the theoretical distribution
from

{ACpe} = [ Wp J {_Cpt} (2)

The subscript p refers to modification of the pressure distribution. The

experimental force distribution is usually not known from the test data but

only the integrated force and moment coefficients {Ce} are measured. An

integration matrix IS] relates the experimental force distribution to the

measured force coefficients through;

lO



{Ce} : [S] {aCpe} (3)

Combiningequations (1) - (3) yields

{Ce} = [S] F Wp] [A] {w} (4)

which is the equation to be solved for the correction matrix F WpJ given
all the remaining terms in the equation. The remaining terms are all known:

{Ce} and {w} are obtained from the test data, and [S] and [A] are knownfrom

the mathematical model and the theoretical aerodynamic analysis of the con-

figuration. In general, equation (4) is underdetermined, i.e., there are

manymore unknownsthan equations. The methodof least squares provides a

solution. Werequire that changes in the theoretical load distribution shall

be as uniform as possible or, in least-squares terminology, the weighted sum

of the squares of the deviations shall be a minimum, where the deviation

{_p} is defined as the difference between the correction factors _nd unity.

{Ep} = {Wp - I} (5)

We denote the weighting function by Tp; it will be discussed below. The

weighted least-squares condition then becomes

Tp Ep2 {¢p}H= rTpJ {¢p}

(6)

= a minimum

where H denotes a Hermitian (complex conjugate) transpose. The Lagrange

multipliers may be introduced by defining the error functional

fp = (I/2) {¢p}H FTpj {Cp} (7)

and rewriting the measured generalized force coefficients (the constraints) as

II



{C e} = [S] F1 + _pJ {aCpt}

: [S] {ACpt} + IS] FACptJ {Cp}

The term [S] {ACp }. is just the theoretical integrated pressures which are

the theoretical c_efficients, {Ct}. Thus

{Ct} = IS] {ACpt} (8)

Introducing also the following

[Sp] = [S] FACpt ] (9)

,{aCe} =

gives finally

{ACe } :

{Ce} - {Ct}

[Sp] {_p} (I0)

The variation of the error functional f is
P

afp : {_p}H [TpJ {a_p} (II)

and the variations of the incremental constraints, AC e, given by equation (10)

are

{aAC e} = [Sp] {aEp} (12)

= 0

The condition for the minimum subject to the constraints is then a linear

combination of equations (ll) and (12) set to zero in which the linear factors

12



are the Lagrangemultipliers Lp,

afp + {_p}H {aaCe} = 0 (13)

Substituting equations (ll) and (12) into equation (13) yields

({Cp}H FTpJ+ {_p}H [Sp]) {6Cp} = 0

Since the variation {_Cp} is arbitrary,

{Ep}H rTp] + {_p}H [Sp] = 0

or, after Hermitian transposition.

FTpj {_p}+ [Sp]H {_p} = 0 (14)

The simultaneous solution of equations (5), (lO) and (14) yields the desired

solution. The simultaneous solution leads first to the Lagrange'multipliers

and then to Cp as follows:

{kp} =-([Sp] rTpj -I [Sp]H) "l {AC e} (15)

(¢p} =-FTp] -I [Sp]H {Xp} (16)

and the correction factors are then

{Wp} = {I}+ {_p} (17)

The premultiplying correction factors are written in a diagonal format for

use in subsequent aeroelastic analyses as in equation (2).

The above results can be restated in summary form as follows:

Solution of ÷ {ACe } : [Sp] {_p} (18)

13



subject to -_ _ _Tp : min. (19)

([_p][_jH)-I {ACe} (20)is + {_} : [_p]H v

[_p] : [Sp] r TVTp-pj-I (21)where

and (Ep} = {_} / _ (22)

The weighting function Tp is arbitrary; the only requirement on it is

that it should be positive. However, engineering judgment provides some

guidance: if only a single constraint, e.g., the lift curve slope, is avail-

able, one would prefer all the correction factors to be simply the ratio of

its experimental value to its theoretical estimate. Accordingly, the recomm-

ended choice for the weighting function for the premultiplier is

{Tp} = I[A] {I} I (23)

However, other choices may be deserving of further investigation_

Multiple Modes. - We next consider multiple experimental downwash modes.

The derivation will be presented using two modes {wl} and {w2}. For these

two modes, the theoretical pressure distributions are

(ACpt I} : [A] {WI}

{aCpt 2} = [A] {w2}

so the incremental experimental force coefficients aCel and aCe2 become

{aCel} = {Ce}- IS] FaCpt l] {Wp}

{Ce}- [Spi ] {Wp} (24)

14



{ACe2}
: {Ce}- [S] FACpt2] {Wp}

{Ce}- [Sp2] {Wp} (Continued)(24)

These two equations may be combined into one set as follows:

where

{aC e } : [Sp] {_p}

( ACe l

{aCe} : i
ACe2

(25)

and

[Sp] = [Spl I Sp2]
J

If again we impose the minimization condition

(26)

E_ Tp = min (27)

then the solution is identical to equation (20) since equations (25) and

(27) are identical to (18) and (19).

Postmultiplying Correction Factor Matrix. - Now we consider the post-

multiplying correction matrix. It is only necessary to consider a single

downwash mode; the multiple mode case can be generalized by reference to

equations (25) and (26). Since the postmultiplier modifies the downwash mode

it defines an effective experimental downwash given by

{we} : [WwJ{w}

in which the subscript w refers to modification of the downwash. Our new

estimate of the experimental pressure distribution becomes:

15



{aC } = [A] {we}
Pe

= [A] [Ww] {w} (28)

The experimental generalized forces or force coefficients are again given by

equation (3) which with equation (28) becomes

{Ce} : [s][A]F]+_wJ {w}

= [S] {&Cpt} + IS] [A] rw] {_w } (29)

And again noting that [S] {aCpt}

Isw]

gives

{Ce} - {Ct}

or since {Ce} - {Ct}

= {Ct} and introducing

: [s][A]rw]

: ISw] {_w}

= {ACe}

(3O)

{aCe} : [Sw] {Ew} (31)

Again the minimization condition is imposed,

2 Tw = min. (32)Ew

The solution for cw is then identical to equation (20) since equations (3])

and (32) are identical to equations (18) and (19). Again the correction

factors are calculated from ¢ as follows:
W

{Ww} : {I} + {_w } (33)

16



The weighting function Tw is also arbitrary. However, the considerations

that led to the recommendation of equation (23), in the premultiplying case,

also lead to

{T w} : I {I} T [A]I (34)

which is to say that the weighting function is the lift coefficient induced

by a unit downwash at each lifting element. Equation (34) is the recommended

choice for the weighting function in the postmultiplying case, although other

choices may still warrant further investigation.

For multiple modes, say two, equations (31) and (32) provide the following:

{aCel} : [Swl] {_w} (35)

{aCe2} = [Sw2] {_w } (36)

•

Ew Tw : min (37)

Again equations (35) and (36) can be combined into one as follows:

{Ace} : [s w] {Ew} (38)

where

{ACe}

aCel )

:laCe2 I

and where

I Sw2] (39)Isw] : [swl1

Equations (38) and (37) are now identical to equations (18) and (19) respect-

ive]y and thus the solution is the same as before, i.e., equation (20).

17



Modifications to the Basic Method

In someinstances correction factors becomeunrealistic. In order to

correct this situation when it occurs or to minimize the probability of its

occurrence initially, various modifications can be introduced. Three such

modifications are discussed here, i.e., estimates, correction factor modes

and limits. Estimates are like constraints except that the "constraining

power" can be varied. Correction factor modes constrain the distribution of

correction factors such that the final distribution is a superposition of a

limited set of well behaved, user input mode shapes. The "limit" feature

constrains the correction factors (or any subset of them) to be above a given

minimum and below a given maximum.

Estimates. - In some instances data will be available in the form of

estimates. These estimates can be based on past data, data from related

configurations, two-dimensional data, empirical methods, or just past exper-

ience. In any case they do not have equal weight with the experimental data

considered so far. Consider the case where some experimental data are avail-

ab|e, leading to {ACe}, then the usua] equation applies to these data:

{ACe} = [Sa] {Ea}

where the subscript "a" stands for either p or w. If estimates exist, leading

to {aCg}, then it is desirable to minimize the difference between these esti-
mates and the modified theoretical values. Let this difference be termed

{Eg}, then:

{aCg} = [Sg] {Ca } + {_g}

where {aCg} = {Cg - Ct} and Sg is analogous to Sa with the exception that

it refers to the estimates Cg and not the constraints Ce. Thus we wish to

minimize both {ca} and {Cg} together and this is done as follows:

18



: Sa:_ I_ _g"
Sg !

This equation can then be solved in the usual manner producing the following

result:

_T_2a + _ E_ : min

If it is desired to give the Eg values more or less weight in the minimization

scheme, then the Eg values must be weighted.

TE_ + _ (wT _g)2 = min. (40)

The equations for the constraints then become

I Cel[Sa:O
; Cg Sg, wT

(41)

where

{_wT } : [wT] {Eg} (42)

and where the values wT are the weights assigned to the errors _g. If the

estimates are of high quality then the weights will be large. In the limit

as wT ÷ = , aCg becomes a constraint instead of an estimate and equation (41)

reduces to the form of equation (18). Equation (41) can also be cast into

the same form as equation (18) for the general case, i.e., wT finite, as

follows:

{aCe} : [s-I{c} (43)

with

19



{_Ce}

Sa]O

Sgll

(45)

{_} = . _

cWT _

(46)

Equation (40) can be written in terms of ¢ as:

_T* E2 : min (47)

where

T = IT for constraints

-_) for estimates

Thus equation (43) and (47) are formally identical to equation (18) and (19)

and thus have the same solution, i.e., equation (20).

Currently the term _ is obtained from a term a where

l _ l-a
wT

a

(48)

%
10-4 < a < 1.0

where a is called the constraining power of the estimate Cg.

20



Correction Factor Modes. - The correction factors can be expressed in

terms of a set of modes _ as follows:

{_} = [¢] {_} (49)

Placing equation (49) into (43) gives

{Ace}: [_][_]{_}

: is]{_} (50)

where

Is] : [_][_] (51)

If the minimization process is applied to _ as usual

-2
_ : min (52)

Here the weight T is missing since it is usually not used with modes. Equa-

tions (50) and (52) are then identical to equations (18) and (19) and thus

have the same solution, i.e., equation (20). A similar expression exists for

the postmultiplying correction factors. This approach allows a bias based

on experience and past tests and physical reasoning, to be built into the

correction factors. When estimates are considered equation (50) must be

altered since the CwT are not fitted with correction factor modes. Thus

{_} = - - = - (53)

I oI

and thus

21



and then the solution proceeds as before.

Limits. - If certain basic properties of the weight factors are known,

they could be limited to fall within a given set of bounds. If for instance

the sign of an incremental weight factor is known to be positive, then it

could be constrained to be positive. Also, for practical reasons, the maxi-

mum value of the weight factors should be limited and thus the incremental

weight factors are constrained to lie below this maximum. In general, the

weight factors can be constrained to lie between a maximum and a minimum.

- < <_- (55)Emi n -- 6max

Notice that the generalized incremental correction factors, _, are the

ones limited in the solution and not the actual ones, E. The values of

are the coefficients of the correction factor modes, 4, and not the increment-

al correction factors themselves.

The basic procedure would be to set any generalized incremeDtal weight

factor to its maximum or minimum value if it exceeded these limits. This

would require a multistep operation: (1) solving for the factors, (2)

checking and setting those that exceeded the limits to the limit values, and

(3) resolving. Before this can be done a capability must exist for assigning

weight factors special values. This is easily accomplished as follows:

= [ ul d] __u_I (56)
{aC e }

where [_] is defined in equation (51). The subscript u indicates those

factors that are undesignated and d indicates those that are designated.

equation can be solved for {_u } in terms of the known quantities:

This

{aCe} - ISd] {_d } = ISu] {_u }
(57)

Equation (57) effectively eliminates the designated factors from the minimi-

22



zation process. This equation can then be solved in the usual manner for

{_u } since {_d} is given. Specifically

iACemodl = [Su] {_u ) (58)

where

I AC 1 : {Ace} - [Sd] {_d} (59)emod

The minimization scheme is then

T* =_u2 min (60)

Equations (58) and (60) are now formally identical to equations (18) and (19)

and thus the solution is identical to equation (20). In the computer program
Z

the final _ array that are modified or have reached their limits, is called e.

23



A NewPostmultiplying Correction Factor Matrix

The postmultiplying correction factor matrix developed in a previous

section has been applied successfully to wings operating in pitch. Problems

arise however when control surface modes are used. The discussion to be

presented in the "Correlation Studies" section describes some of these prob-

lems. As a result of these, a new postmultiplying correction factor matrix

was developed and it is derived here.

Viscous effects on airfoils can be thought of in terms of a displacement

thickness added to the airfoil. The difference between the upper and lower

surface displacement thicknesses produces a "decambering" of the airfoil or

a change in the downwash w.

we = w + aw (61)

The changes in downwash, 6w, exist over the entire airfoil or wing and not

just in the region where w is non zero. These changes are a function of

the pressure distribution on the airfoil. Usually the displacement thickness

at a point is an integral function of the pressure distribution upstream of

that point. If the general case of correction factor mode shapes is assumed

then the downwash correction aw can be expressed as:

{6w} : [¢] {ae} (62)

where {ae} is proportional to the integrated press_)res, F_].

{6e} : (63)

where [_] is given in terms of an integration matrix [N] and the pressures

{_Cp}.

({} : IN] {aCp} (64)
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Combining equations (63) with (62) and using the result to obtain the

corrected pressures leads to

{ACpe} : [A] {we}

= [A]{w+[+] (65)

The constraints {Ce} are obtained by integrating {aCpe} as follows:

{Ce} = [S] {ACpe}

: [S] {ACpt} + [Sp*] {Ew}

where

(66)

[Sp*] : [S] [A] [+] r_J

Noting that {ACe} = {Ce} - {Ct} equation (65) can be written as:

(67)

{Ace} : [Sp*] {Cw} (68)

Equation (68) has a form identical to that of equation (18) except [Sp] is

replaced by [Sp*] and thus has the same solution, i.e., equation (20). Once

found, {Cw } can be placed into the expression for {ACpe}, in equation (65),
and the desired modified pressure found.

Currently in the computer program the matrix [N] is simply either the

identity matrix or the matrix [¢]T. The identity matrix implies that the

correction to the downwash is proportional to the local lifting pressure. In

addition the above derivation is good for only one mode and thus the multiple

mode option can not be used with the new postmultiplier. The new postmultiplier

can be extended to multiple modes by simply replacing

{ACe} wi I___].) (69)

e2
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and

LSp_j

but this has not yet been tried.

(70)
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Transonic Effects Using Local Mach Number

Empirical modification of theory is most meaningful if the theory quali-

tatively matches experimental data. If the theory misses an important feature

of the data the modified theory will also usually miss it. Transonic effects

fall in this category. The classic lifting surface theory makes no provision

for transonic effects and it is the purpose of this section to investigate

some simple modifications to help remedy this situation.

Direct Application of Local Mach Number. - Several methods based on the

steady local Mach Number distribution have been tried and the results are

discussed in later sections.

One of these methods, discussed in the Introduction, consists of making

a simple substitution of a local Mach Number distribution in place of its free

stream value both in the kernel function and in the boundary conditions and

pressure equation (see refs 7 and lO). The local Mach Number distribution

is taken from steady flow results. For the kernel function, appIdcation of

a Mach Number distribution that lies somewhere in between the surface values

and the free stream value was used. Tijdeman and Zwaan (ref. lO) suggest a

local Mach Number distribution that lies half way in between the actual local

and the free stream values. The reason for this is that acoustic signals

propagate to the surface along various paths out in the fluid and thus propa-

gate at some average between the surface value and free stream value. For

the kernel, the local receiving point value of Mach Number and the free stream

values were averaged and used in place of the free stream value.

For the normalwash boundary condition and pressure evaluation the local

Mach Number on the surface was used. Specifically, if M2(x) is the local

surface steady Mach Number distribution then the normalwash boundary condition

w is (see ref. lO):

w M2(x) Bh + i m
U- - M _x U-- h (71)

oo _ Oo
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The second order Bernoulli Equation for steady flow is (see ref. 7):

M x)AC : aCp [l + B2 ( l)]
Pso

(72)

where ACp and ACps° are the first and second order pressures respectively.

This method did not prove to be all that was hoped for and thus a second

method was investigated.

A New Transonic Effects Method. - In this section a derivation of the

newly developed Douglas transonic effects method is presented. The basic

method was conceived under the McDonnell-Douglas IRAD program however its

implementation in two-dimensions and its application to the airfoil-control

surface problem was done under the current contract.

The lifting surface method is based on the following expression for the

potential of a doublet, Cd:

( ei_t ei_[M=(x-_)-R] 1

= B_ i R i (73)
@d

where

,,,M®

132U=

R = _/(x-_+ 82 r2

and n is the direction normal to the lifting surface.

be rewritten as:

I ei"'(t-T) !

¢d
= @_ 1 R

where

M

= = [R - M®(x-_)]
82U=

This expression can

(74)

(75)
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It can be shown that T has a physical significance. The term • is the

acoustic time delay between the sending and receiving points. That is, T is

the time it takes an acoustic signal, originating at the point _, n, _ to

reach the point x, y, z as the acoustic pulse washes downstream.

This statement can be illustrated by the example of figure I.

U® _-- _"

\i

Wave front

Figure l

A signal is emitted at (C, n, _) at time T = 0. At time T the wave front,

traveling at the speed of sound, a , has reached the receiving point at

(x, y, z). During this time the wave center has travelled a distance U _.

Using the right triangle relations gives:

r2 + (_ - x + U® T)2 = a_ 2 (76)

Solving for T using the solution for a quadratic equation gives:

Moo

,-9- (M®(c - x) + R)

which is exactly what is given in equation 75.
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Thus T in the expression for ¢d has physical significance and it is the

acoustic time delay between the sending and receiving points in a fluid moving

with uniform velocity. This physical insight can form the basis of a correct-

ion factor for the theory. For instance if the wave is in a flow field whose

velocity varies in the longitudinal direction then the distance d travelled by

the wave center is not U T but is:

Td : U(t) dt (77)

0

If we consider U(t) to be made up of U® + aU(t) then d also can be so split.

d : U®T + _d (78)

T

6d =_0 6U(t)dt
(79)

The wave center velocity U is being discussed, however this is not the velocit}

of the fluid particle located at the wave center as is the case for a

uniform flow. The velocity U actually reflects the wave front speed and

location and is the speed of an imagined wave center for the wave that strikes

the receiving point. The wave front speed varies around the circumference of

the wave, but the most important part of the wave is that part that strikes

the receiving point. Thus the velocity U(t) is the time history of the wave

center corresponding to that part of the wave that strikes the receiving

point (x, y, z). As an approximation to the location of this part of the

wave, it is assumed that it lies along a line connecting the receiving and

sending points (shown dotted in figure 2). Thus 6U is the difference between

the local velocity and the free stream velocity along the dotted line. If a
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u(x)

1
a

,

_ U  +ad

/

1 R

Figure 2

coordinate R is defined lying along this line then the integral in time of

equation (79) can be converted into a space integral in R as follows:

R dt dR6d = 6U(R) dR

0

where R is defined below equation (73) and where _-_ is the speed with which

the wave front moves along the radial coordinate.

dR + U(R)i) • iRdt - (a i a

The unit vectors ia, i and iR are defined in figure 2.

For example, in the two-dimensional analysis for coplanar surfaces:
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Thus

6d
dt dx

= _U -__
dx

X

dx U(x)
_]_ = a -

6d = /x M(X)l-'M(x)U®/a dR

(8O)

(81)

where M(x) is the local Mach Number distribution. As an approximation set

UJa = U®/a® = M®.

The time _ can now be calculated using the right-triangle relations and

the quadratic formula solution.

[U _ + 6d + _ - x]2+ r2 = a_ 2

_u
Solving for T gives:

M

T = "C--T {M®(_ - _) + R} (82)

where

2_ _ B2r2R - (_ - x)2 + (83)

x = x - 6d (84)

It is immediately evident that _ has exactly the same form as T (see

equation (75)) except that x is replaced, in the expression for T, by x - 6d

in the expression for 3. In essence then the receiving and sending points

32



have increased their separation (in the x-direction) as far as the acoustic

time delay T is concerned. Is there any reason to carry this increase in

distance to other parts of the potential function, specifically, to the radius

term in the denominator? Itseems so. First, this radial distance is

already modified in the expression for T, see equation (82). Secondit is

knownthat transonic effects exist in steady flow (_ = O) where T has no
B

effect; i.e., Cd = Tn (I/R). Thus it seems appropriate to add -_d to all

x - C terms. Thus

'b

Cd(X - C, y - n, z - {, m, M ) = Cd(X - C - ad, y - n, z - _, m, M®)

'b

where Cd is the potential modified for transonic effects.

This method has been implemented for the two-dimensional case and the

results are discussed subsequently.

(85)

One variation of this method that is possible is to use an average Mach

Number between sending and receiving points and define aU as thB difference

between the local value of velocity and this average. Thus the term M is

replaced with M where

X

(86)

This method has also been tried and results using this variation are also

discussed subsequently.

A final consideration is the determination of the local Mach Number

distribution, M(x). Tijdeman and Zwaan (ref. I0) note that the local surface

Mach Number distribution should not be used but that some average between

it and the free stream Mach Number should be used. This is because the

signal arriving at a point has traveled both in the vicinity of the airfoil

and out in the flow field. The recommendation of Tijdeman and Zwaan has

been adopted in the present method.
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Other work by Tijdeman and Bergh (ref. II) can also be brought to bear

on this work. Specifically a fully two-dimensional acoustic solution of a

source pulse located at the control surface hinge was calculated for the

case of a nonuniform flow field. This solution produced the exact time lag
%

from the hinge line to all other points on the airfoil. The equivalent

distance x, and also R, from the hinge line to the receiving point can then

be calculated using this information and the equation relating _ to x. Thus

_2 2 B2 r2- X : U= -

If acoustic solutions were obtained for all other sending points then all

the necesary x for this theory would be available. This method would be

accurate, however it would require many expensive acoustic solutions. It

appears that each of these solgtions requires a computing effort comparable

to a direct solution, by finite difference, of the original problem. This

conclusion however, remains to be seen and further study is required.
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CORRELATIONSTUDIES

Local MachNumberStudies

Several methods of accounting for local steady MachNumbervariations

in the oscillatory lifting surface theory have been studied for the two-

dimensional case. A mathematical description of these methods has been

presented in the Theoretical Developmentsection. The cases considered

here are for a two-dimensional symmetric airfoil (NACA65A006)with an oscill-

ating 25%chord flap. The local MachNumbervariations over the airfoil at

zero angle of attack are given in reference If.

The first and simplest of the methods studied involves simply making a

direct substitution of the steady local MachNumberin place of its free

stream value. In general, this approach does not produce substantial changes

in the pressures from their classical values.

In figure 3 the symbols marked by triangles indicate the p_essures

calculated using the local MachNumberin the downwashboundary condition.

The pressures are reduced from their classical values (indicated by dots and

a dashed line) as expected, but not by very much.

The circles indicate the pressures calculated using the local Mach

Numberin the downwashas well as in the kernel function. In the kernel

function the average between the local receiving point MachNumberand the

free stream value is used. The pressures again are generally reduced but not

by any substantial amount.

The use of local Mach Number in the second order Bernoulli equation

(Ashley, ref. 7) also produces very little change, in figure 5 this change

is observed as the difference between the circles and triangles. This change

is about the same order of magnitude as the other changes except it is gener-

ally in the opposite direction.

The second method studied is new and is described in the Theoretical
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Developmentsection. The basic idea of this method is to transform the

longitudinal distance between sending and receiving points depending on the

time it takes an acoustic signal to travel that distance. A variation of

this method is simply to replace the free stream MachNumber,M , by M , an

integrated average of the MachNumberdistribution betweensending element

and receiving point defined in equation (86).

On the face of it the new methodgives the best correlation whenM and

not M®is used. Figure 4 presents a comparison between the two methods at

a MachNumberof 0.875. Near the leading edge the basic method designated

"Present Method (M®)" and indicated by triangles produces the best agreement

betweenexperiment and calculation. Near the position of the steady shock

wave however the peak pressure is better predicted by the variation of the

basic method designated "Present Method (M®) and indicated by circles. The

location of the calculated peak is slightly forward of the experimentally

observed peak. Either method, however, is better than the classic theory

(indicated by dots) for predicting pressures as comparisons with experimental

data shown.

Twofeatures of the experimental pressure distribution illustrate trans-

onic effects. Oneof these is the reduced leading edge pressure levels, and

a second is the bumpor peak in pressure near the location of the steady shock

wave location. The newmethodqualitatively reproduces these features.

Howeverthere is reason to suspect that the basic version of the newmethod

(triangle) under-predicts the leading edge pressure. The reason for this

lies in the fact that, even though the calculated and experimental pressures

agree near the leading edge, viscous effects have not yet been accounted for

and these effects reduce the calculated loads even further. A drop in the

leading edge loading caused by application of viscous effects to the (M)

variation of the basic method (circles), renders this methodmore acceptable

than before. Howeverthese effects are not large enoughto bring the calcu-

lated pressures in line with the experimental values (see fig. 38). Further

study is required in this area to decide which method is best or to discover

other more accurate variations of the basic method.
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The application of the new transonic method to a lower Mach Number,

(0.85), is shown in figure 5. The agreement is good near the leading edge

but only a slight indication of the shock bump is given by the theory. Also

shown in this figure is the effect of local Mach Number on the Bernoulli

equation (see equation (72)). The difference between the circles and triangles

indicates this effect.

All applications thus far have been for the steady case. Figure 6

presents a comparison of the Present Method (new transonic theory) for the
\

_ _c - 0.059.
case of the control surface oscillating at a reduced frequency kr 2U

Also shown in this figure is a calculation done using the Traci et al method

(ref. 12) and a calculation done using the classic theory. The finite

element theory of Traci et al predicts the bump at the shock wave fairly

accurately however is not as good as the Present Method elsewhere. One part

of the pressure distribution that does not seem to be predicted by any of

the theories is the depth of the dip in pressure behind the shock.

Figure 7 presents a comparison similar to that in Figure 6 but at a

lower Mach Number (0.85) Also instead of in phase (Real) and out _f

phase (Imaginary) parts given, amplitude _Cp = _/(Re_Cp) 2 + (ImACp) 2 and

phase angle = tan "l (ImaCp/ReaCp) are presented. Again, as in the steady

case the bump at the shock is barely noticeable in the Present Method and of

course absent altogether in the classic theory.

Figure 8 presents a comparison of the Present Method, classic theory

and experimental data for a case similar to that presented in figure 7

except that the Mach Number is 0.875 and the reduced frequency, kr = 0.176.

Again pressure amplitude and phase angle are shown. The two variations of

the Present Method are in better agreement with the experimentally obtained

pressure amplitudes than is the classic theory. However the same can not be

said of the phase angles. The Present Method follows the experimental phase

angle curve from about the 40% chord on to the trailing edge. However none

of the theories follows the curve forward of that point. Tijdeman and Bergh

(ref. ll) present a modified phase angle curve based on a full two-dimensional
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acoustic solution of a pulse located at the control surface leading edge'

(see section on NewTransonic Effects Method). This approach gives very good

agreementwith the experimental phase angle data (see figure 31 of reference

ll). The correction was applied only to the phase angles and not the pressure

amplitudes. The calculated phase angle was simply corrected using the

additional time lag over and above that experienced in uniform flow. This

additional phase lag was not used internal to the theory but applied after

the theoretical calculation was completed. The section of this report

entitled "A NewTransonic Effects Method" describes howthis acoustic type

of information can be used internally with the theory so that the pressure

amplitudes are also effected. This approach has not yet been tried.

A possible explanation of the phase angle differences between theory

and experiment might be due to the fact that signal fronts, which emanated

from the control surface, do not exactly travel normal to the flow as assumed

in the Present Method. Tijdeman and Bergh have shownthat the wave fronts

are actually inclined to the flow to a considerable degree, within the super-

sonic zone. This being the case the wave fronts impinge on th_forward part

of the airfoil (forward of the shock wave) with very little longitudinal time

delay. This would explain the flattening of the phase angle curve in front

of the shock.

Thus far detailed pressure distributions have been discussed. Attention

is now focused on the forces and momentsthese pressures produce. Figures

9 through 12 present comparisons of the present methodwith the classic

theory and experimental data. In figure 9 the Traci, Farr, Albano theory

is also plotted. This figure shows that the Present Method (M®) is in better

agreementwith the data than is the classic method. As expected the Present

Method and classic theory tend to coalesce at low MachNumbers, out of the

transonic region. The transonic peak lift, predicted by the Present Method,

occurs earlier, as MachNumberis increased, than does the experimental data.

Also the dip occurring after this peak is not nearly as deep as shownby

the experimental data.

Both theories show values of lift coefficient that are higher than the
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experimental values. This is due to reduced flap effectivity caused by

the viscous boundary layers.

Figure lO presents a comparison similar to the previous figure except

that pitching and hinge momentcoefficients are considered. Of particular

note is the over prediction of hinge momentby both theories. Again this is

due to viscous effects on the flap.

The last two figures have dealt with force and momentcoefficients in

steady flow for an airfoil with a deflected flap. Figures II and 12 present

the samedata for the oscillatory case. (The reduced frequency varies from

0.098 at M®= 0.5 to 0.057 at M®= 0.901 in the_e figures.) Generally speaking

the same trends and conclusions hold for these figures as for the previous

two figures.
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Subsonic Cases

Oscillatinq Wing with Control Surface. - Extensive low speed wind

tunnel measurements of static and oscillatory pressure data have been made by

Hertrich (refs. 14 and 15) on straight and swept wings with a full span con-

trol surface. The wings had no taper and the control surface had a 30% chord;

two aspect ratios, 2.5 and 3.1, were tested by changing the exposed span in

the tunnel. The swept wings had a sweep angle of 250 . A later oscillatory

test of the swept wing was made by Forshing, Triebstein, and Wagener (ref.

16) in which the full span control surface was split approximately in half

(the inboard flap had 46.59% of the span( and the aspect ratio was set at

2.94.

The pressure data from the first tests (refs. 14 and 15) were integrated

by Hertrich to obtain lift and moment coefficients and the static values for

the swept wing with aspect ratio 3.1 have been used here as constraints to

determine correction factors. The static values corrected for wind-tunnel

wall interference are: lift curve slope CL = L/qs = 3.13 per radian,

pitching moment curve slope Cm = M/qSE_ = 0.148 per radian, flap lift effect-

iveness CLa = L/qSa = 1.95 per_radian, flap pitching moment effectiveness

Cma = M/qSE6 = -0.432 per radian, and the flap hinge moment coefficient

Cha = H/qSE6 = -0.0350 cos 250 = -0.03172 per radian where the sweep correct-

ion is added to give the moment about the hinge axis; the reference area is

S = 0.564 m2, the reference chord is E = 0.6 m, and the pitch axis is located

at 61.5% of the root chord.

Rolling moment coefficients were not derived from the pressure data and

neither was the hinge moment due to angle of attack Ch . The available data

permitted a maximum of five constraints, and two sets of constraints were

investigated; the first set used two constraints from the angle of attack

data, CL and Cm , and the second set used all five constraints. The use

of the flap rotation data alone without the angle of attack data was not

considered.
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The theoretical basis for the correction factors is the Doublet-Lattice

Method (DLM)of reference 17. The idealization of the lifting surface consists

of llO boxes resulting from II strips and lO equal chordwise divisions. The

chordwise division on each strip result in 7 boxes on the primary surface and

3 boxes on the control surface. The strip widths _Yi are chosen so that the

strip centerlines fall along the lines of pressure taps. The span of 0.940 m

is divided into the following strip widths from root to tip: Ay I = O.llO m,

Ay2 = 0.080 m, _Y3 = 0.075 m, Ay4 = _Y5 = AY6 = AY7 = AY9 = AYIo = 0.090 m,

and AYll = 0.045 m. The pressure stations correspond to the strips as

follows: pressure station VII is on Strip I, VI on Strip 4, V on 6, IV on 8,

Ill on 9, and finally station II is on Strip lO. Pressure station I is too

close to the tip to permit a meaningful calculation.

The theoretical pressure distributions are compared to the experimental

measurements in figures 13 through 24. The theoretical estimates of the five

constraint parameters are: C L = 3.207462. Cm = 0.179494, CL = 2.131577,

Cm = -0.463554, and Ch = -0.057784. Three additional parameters are also

of_interest. These are_the locations of the spanwise aerodynamic centers for

angle of attack, ya/s, and for flap deflection, y6/s, and the hinge moment

coefficient for angle of attack,Ch " Their theoretical estimates are

y_/s = 0.452071, y_/s = 0.464614 and Ch = -0.021034.

A typical set of correction factors is shown in table I; it is for a

premultiplying matrix and is based on five constraints. The factors are

listed in order from leading edge to trailing edge on each strip beginning at

the root; factors I to I0 are on Strip l, and factors 101 to llO are on Strip

If. The first seven factors on each strip apply to the primary surface and

the last three apply to the control surface. The general trends seen in

table I are a spanwise increase in factors from root to tip and a chordwise

increase toward the hinge line. The minimum correction factor in table I

is a 0.255873 for Box No. 10 and the maximum factor is 2.00893 for Box No. I08.
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CCRI_=rT ICN r_CTO_S

TABLE I

** PPEMLLTIPLIEP CASE

l

?
tO
L3
16
L9
22
25
28
3L
3_
37
40
43
46
49

52
55
58
6L
64
67
70
7B
76
79

82
85
88
9!
94
97

LO0
L03
106
109

O. 848278E+00 0.0 2
0.885935E+CC C.O 5
0.705167E*00 C.C E
0.255e?3E+CO C.C 11
0.907865E÷0C C.C 14
C. 899734E+00 C.O 17
0.4305-_3E+00 C.C 20
C.970260E+0C C.C 23
0.9494_8E4CC C°Q 26
0.510927E+00 C.O 2£
O,.q2e E28E,OO C.C 72
0.981803E*C0 C.C 35
0.958[£3=+C0 C.C 38
0.366155E+0C C.C 41
O. 19052JE+Jl C._ 44
0.I04067E_01 O,O 47
O.SqII£6E+CO C,O 5C
J.l )I_83_÷01 0.0 53
O. 1082CgE+OI C.C 56
C.840227_+CC C.O 5g
O. I02803E+OI C.3 62
O. I tO650F+Cl ¢.0 65
O. 117262E+01 C.O 68
0.428853E+GO G.3 71
O.II2173E+Cl O.C 74
O. 120438F+0 1 C. 0 77
0.726251_+0C O.C 8C
O. 1 l ] I03E +0 1 O. C 83
O. 1219tlE+O1 O.C 86
O. 1292£6E*6 l 0 • ) 8£
O. lt35£3E+O1 O.C g2
O. 122676E+Ot C.C £5
O. I46760E+3| C.G _8
0.407IO?E+OO C.O lOt
O.t21_£gE+c[ C.O IC4
O. IBB6CgE+Ot "_.O I07
Q. g4£436E+CO 0o0 llO

O. e63_80E+O0 0.0 3
C.884442E+CC 0.0 6
0.351261E+C0 0.0 9
Q.elTO65E+OQ 0.0 12
O._16395E÷GO 9.0 15
C.e45436E+O0 0.0 18

C.2_866E+C0 0.0 21
G.S35662E+O0 0.0 24
£.g3_44£E+CQ 0.0 27

0._75718E+00 0.0 30
c.g5ccG3E+CO O.O 33
C._8_6C2E+C0 0.0 36
C.6C?£?2E+GO 0.0 39
C._6C566E+CC 0.0 42
C.IC2273E÷C[ 0.0 45
0.I02777E+01 0.0 48
C.4CC£2CF÷00 0.0 51
0.IC4356E+CI 0.0 54
O.1CqSO£E+OI 0.0 57
C.e46761£+00 O.C 60
C.105634E+Jl 0.0 63
0.112847E+0[ 0.0 66
0._6558CE+C0 0.0 &9
C.[06328E+01 0.0 72
G.lI4814F+OI 0.0 75
C.12514gF÷Ol 0.0 78
C.41C725E+0C 0.0 81
O.116048E+Ot 0.0 84
C.126123E+Ct O.O 87

C.74_826E+00 0.0 90
O.l[6805F+Ot 0.0 q3
O.I263ggE+OI 0.0 96
O.tSq2llE÷Ot O.O g9
O.Ii6B43E+OI 0.0 102
C.125326E+01 0.0 lO_
O.15q604E+DI 0.0 108
0.615306_+00 0.0

0.877532E+00 0.0
O.863395E+CC 0.0
0.377085E+C0 0.0
0.894144E+C0 0.0
o,g|6132E*03 3,3
0.4_t832E+O0 0.0

o.got404E÷O0 0.0
0.946287E+03 0.0
0.Sg72g[E÷O0 0.0
0.330467E+00 0.0
O,96795_E+QO 0.0
o.g86787E+00 0.0
0.530440E+00 0.0
0.984268E+09 O.O
0.103556E÷0l 0.0
0.721StSE+O0 0.0
C.993722E+03 0.3
0.106452E+C! 0.0
O.[OggO4E+OI 0.0
0._24058E+0C 0.0
0.108254E+01 0.0
O.tl4gSBE÷O1 0.0
0.6926£7_+03 9.3
O.lO9351E+Ct 0.0
0,117424E÷C1 0.0

S:t,o76tE,ot o.oIOQQ3OE+OI 0.0
O.II8864E÷OI 0.0
O.t3_366E÷Ol 0.0
0.379618E÷C0 0.0
O.[IgTIgE÷O[ 0.0
0.132572E÷Cl 0.0
O.TgIgSOE÷CO 0.0
O.IIgI85E+OI 0.0
0.t30061_+C1 0.0
3.230893F+_1 O.O

Type of Number
Correction of
Matrix Constraints

None 0

Pre- 2

Pre- 5

Post- 2

Post- 5

TABLE II

9 Is 96/s Ch
(X

Ch a

0.452071 0.464614 -0.021034 -0.057784

0.456751 0.469814 -0.021746 -0.059959

0.484939 0.522318 -O.OlOll7 -0.031721

0.453096 0.465632 -0.022409 -0.057711

0.469176 0.491720 +0.013014 -0.031721
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The modified static pressure distributions for angle of attack are shown

in figures 13 and 14, and for flap deflection are in figures 15 and 16.

Perusal of these figures indicates the following results. For the angle of

attack loading, both the premultiplying and postmultiplying corrections move

the theoretical results slightly away from the experimental data, the post-

multiplier causing a little greater change. The effect of five constraints

is greater than that of two. For the flap loading, both the pre- and post-

multipliers based on two constraints have small effect. The corrections

based on five constraints improve the correlations on the control surface but

increase the discrepancies on the wing. The postmultiplier causes a much

larger change and, although the data show a pressure reversal near the trail-

ing edge, the postmultiplier exaggerates this reversal to the extent that the

sign of the hinge momentis reversed Table II shows the effects of the

four correction matrices on the aerodynamic centers and hinge moments. All

of the correction matrices resulted in an outboard shift of the aerodynamic

centers, the largest shift coming from the 5-constraint premultiplier.
• °

Two constraints did not improve the hinge moment predictionC and the 5-

constraint postmultiplier lead to an unreasonable prediction of Cn . The

effect of additional constraints based on estimates is a topic deserving

further investigation.

We can anticipate similar discrepancies when the correction factors

derived from static data are applied to the oscillatory cases, and, indeed,

they are shown in figures 17 through 20 for the angle of attack oscillating

at kr = 0.622, and in figures 21 through 24 for the flap oscillating at

kr = 0.752. The theoretical loading for the oscillating angle of attack is

not changed significantly by either the premultiplier or the postmultiplier

based on two constraints and both the real and imaginary parts are affected

about the same. In some regions the theory is shifted toward the data and in

others the theory is moved away from the data. The effects of five constraints

are more extreme. The 5-constraint premultiplier improves the correlation

for the real part but only improves the agreement for the imaginary part on

the control surface while diverging on the wing. The 5-constraint postmultiplier
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is substantially worse in correcting the real part but is no worse than the

premultiplier in modifying the imaginary part. Again, the theoretical load

distribution from the oscillating control surface is not changedsignificantly

by either the 2-constraint pre- or postmultipliers. However, someimprovement

is noted with the 5-constraint corrections although it is only slight. As

in the static case, an outboard shift in loading occurs with all correction

matrices and for both modesof motion.

The above applications of correction matrices have achieved very limited,

if any, success. The lack of improvement in the most elementary case, however,

is rather puzzling. This was the case of the static loading at angle of attack

for which the correction factors were derived using the two constraints of

lift and pitching moment. The pitching moment constraint was expected to

shift the theoretical chordwise center of pressure in such a manner that the

predicted pressure distribution would be closer to the experimental data. Two

explanations for the lack of improvement appear possible. The first is that

the theoretical loading.in the leading edge region differs so much from the

data that it dominates the correction factor calculation and resuqts in a

distorted loading. The second possibility is that the limited number of

pressure taps near the leading edge prevented an accurate evaluation of the

leading edge contribution to the pitching moment. A strain gage measurement

of pitching moment would have shed some light on this possible difference.

A number of options were not pursued with these data which may have sho_n

better correlation. First, only one configuration was studied here, the

swept wing with aspect ratio 3.1; as noted above, straight wings with two

aspect ratios and a swept wing with another aspect ratio were also tested.

Next, only the reported integrated loads were used as constraints: the two

angle of attack coefficients and the three additional control surface coeff-

icients. The three control surface coefficients were not used as constraints

by themselves, nor were additional constraints used based on estimates of

rolling or bending moments. The new postmultiplying matrix was also not

investigated. Finally, it would have been interesting to apply complex

correction factors derived from the oscillatory angle of attack data at
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k r : 0.622 to the oscillatory control surface data at kr : 0.752; however,

this would have required integration of the published oscillatory pressure

data to obtain the complex constraint coefficients.

Win9 With and Without Leadin9 Edge Droop. - Trailing edge control surfaces

are studied in several other sections of this report. In this section, an

attempt is made to study leading edge control surfaces. Usable data for such

devices is very scarce. Several references have been investigated; however,

only reference 18 proved in any way useful. The leading edge device described

in this reference is a wing droop of 6°. The droop was applied to the first

19% of the wing chord along its entire span (see fig. 25). The idealization

shown in this figure is for the Doublet Lattice Method (DLM). The fuselage

was simplified as simply a wing extension to the centerline.

A steady case at M = 0.80 is considered and the uncorrected calculated

results using the DLM for a = 40 , (no droop) agree very well with the experi-

mental data (see fig. 25). bnly a lateral shift in the center of pressure

seems evident. Correction factors were developed for this case tbo correct

this slight deviation in the theory. The constraints used are lift, pitching

moment and bending moment coefficients. These coefficients were summed on

strips outboard of the station y/(b/2) = 0.II and are defined as:

L A = 1.28

CL - qA ' C2root

= M , c/c = .815 (moment taken about X/Croot = 1.0)
CM qA_ root

B : 1.6 (moment taken about x-axis)
CB = q--A--b72'b/2/Croot

For the various modes the coefficients are:
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Pitch _ = 4o _ = lO° 6o Droop

CL .2282 .5356 -.02]5

CM -.0233 -.065 -.008

CB .0563 0.128 -.00536

A premultiplier and a postmultiplier (new type) were tried with equally

good results on the span loading. Figure 26 illustrates the effect of the

correction factors on the spanwise distribution of aerodynamic center. The

correction factors increased the accuracy of the aerodynamic center inboard,

but decreased it outboard.

The single modeapplication of both pre- and postmultipliers, also

produces good results for leading edge droop span loadings (fig. 27). Notice

that the unmodified results are approximately half of the experimental values.

The experimenta'l data were difficult to read on the plots (open squares).

Thus, the pressure distributions were integrated to produce the darkened

squares. The pressure distributions themselves were difficult to integrate

accurately since there were down loads at the nose and uploads near the bend

in the chord, such that the total loads were small. If the correction factors

possessed only a slight variation in the chordwise direction, the balance of

integrated load could shift drastically as a percent of the total.

The flow field near the wing changesat approximately _ = 8o. Here the

flow is to a large extent separated from the upper outboard surface. A

comparison of uncorrected theory and experimental data, for the case of

a = lO°, no wing droop, in figure 28, showsa loss of lift outboard of the

40%semi-span. Application of both pre- and postmu]tip]iers (New), using

CL, CM and CB (bending momentat the centerline), showa much improved pre-
diction of span loading. Also, shownin this figure is the application of the

premultiplier correction factors, obtained at _ = 40 to the e = lO° case

(diamond symbols). The span loads are improved which showsthat data obtained

at one angle of attack can be profltably applied to other angles of attack.

The corrections generated at _ = 40 are not as large as those generated at
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= I0° because flow separation exist in the latter case. However, both

corrections are in the samedirection. Therefore, application of correction

factors for _ = 40 improves the results for the lO° case. In general, the

reverse may not hold; i.e., the correction factors obtained at _ = lO° (or

larger angles) maybe too large and an excessive correction may result leaving

the corrected data further from the experimental data than there were originally.

It does seemsafe, however, to apply correction factors obtained at one angle

of attack to other nearby angles if the flow is qualitatively similar (e.g.,

no great changes in flow pattern).
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Transonic Cases

In this section applications of the correction factor technique are

madeto the samecases considered in the "Local MachNumberStudies" section.

Specifically a two-dimensional symmetric airfoil (NACA65A006)with an oscill-

ating 25%chord flap is used.

Figure 29 illustrates the difference in results obtained when the classic

theory (subsonic compressible) and the new transonic theory (Present Method

(M)) are corrected. A premultiplying set of correction factors were obtained

using three constraints; lift, moment (I/4 chord) and control surface hinge-

moment (3/4 chord). Each theory was corrected to the proper experimental

constraints, i.e.,

ca = 4.93 M® = .875

cml = -I.57 kr = 0.0
/4

Ch3/4 = -0.053 •

where the characteristic length is the chord and the downwash over the control

surface is unity. The classic theory does not have the bulge in pressure,

near the compression (or shock) region for the steady flow as does the experi-

mental data and applying correction factors will not make it appear. Thus

correction factors can not make a qualitative feature appear where none existed

before. The corrected classic theory does not compare well with the experi-

mental data and the correction factors themselves, (l + e), show fairly

large deviations from unity especially near the leading and trailing edges.

The Present Method (M®) however possesses a qualitative similarity with

the experimental data and thus it is a better candidate for correction.

Figure 29 shows such a correction. The bulge in pressure as calculated by

the present method is amplified as it should be. The loading on the flap

however is reduced, again as it should be, however the shape of the flap load

is distorted. The correction factors themselves are better behaved for the
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Present Method, (M®), showing large deviations from unity only on the flap

surface.

Figure 30 presents the results of applying the premultiplying correction

factors, obtained for the steady case, to an unsteady case. That is, the

correction factors shown at the bottom of figure 29 are applied to the

oscillatory results of the Present Method (M) and the classic theory

(kr = mE/2U® = 0.059). Since the correction factors are real they do not

effect the phase angles of the pressures but only the amplitudes, IaCpl. Also

shown in the figure is a pressure distribution corrected using factors based

on the complex lift moment (I/4 chord) and hinge moment obtained for the

unsteady case. Specifically

c_ = 3.5 - i 1.18 M = 0.875

cml/4 = -I.66 + i 0.07 kr = 0.059

- 0.057 - i 0.016
Ch3/4 l"

- o

The correction factors obtained in this manner produce pressures_that are

close to those obtained using the steady correction factors (except near the

flap) even though the constraints in lift are considerably different in the

two cases. There is one slight anomaly in the phase angle for the complex

constraint case (k r = 0.059) and it exists on the last two pressure points on

the flap. The phase angle there is quite large however these angles do not

have a large effect since the amplitude of pressures is very small there.

The question arises; to what extent can static correction factors be

applied with accuracy to the oscillatory case? Figures 31 and 32 illustrate

the effect of static correction factors on lift, moment and hinge moment

coefficient versus reduced frequency for a Mach Number of 0.85. Considering

first the lift coefficient it is noticed that the accuracy of the imaginary

part is increased up to kr = 0.2. Beyond this point application of correction

factors decreases the accuracy of the theory. For the real part of the lift

the corrected theory iS more accurate only-below a reduced frequency of 0.06.

For the pitching moment and hinge moment the cross over point is roughly

49



kr = O.l. On the average then the static correction factors are useful up,

to about a reduced frequency of O.l. Beyondthis point it is better to use

the original theory.

It is probably true that the accuracy of extrapolating correction factors

versus reduced frequency dependson MachNumber. Figure 33 gives an indication

that as MachNumberis reduced the accuracy increases. Specifically, static

correction factors have been applied to the oscillatory case (kr = 0.098) with

very good results. Both amplitude and phase angle are improved.

The theory used in figures 31, 32 and 33 is a variation of the new

transonic method presented previously. Specifically the variation utilizes

an average local MachNumber(M) in place of the free stream MachNumber,

M . Figures 31 and 32 showthe application of two separate types of correct-

ion factors; a premultiplier type, the type used in figures 29 and 30, and a

postmultiplier type. The postmultiplier is actually an additive viscous type

of correction. It can be seen that this correction does not extrapolate to

higher frequencies aswell as the premultiplier type (as far as the lift

coefficient is concerned). As the frequency is increased the experimental

data approach the unmodified theory. One interpretation of this fact is that

as the frequency is increased viscous effects are reduced.

The postmultiplying correction factor (designated as "NewPost") used

in figures 31 and 32 is the new postmultiplying correction factor discussed

in the Theoretical Developmentsection. The reason a new type of postmultiplier

was needed is because the original one seemedto fail whencontrol surfaces are

considered. Postmultipliers correct the downwashmatrix. Whenall downwash

values are non zero, e.g., wing pitch, the method seemsto work. However,

whenthis is not the case, e.g., control surface deflections, the method

fails entirely. The corrected downwashvalues are either large and erratic

themselves or they cause large and erratic pressures due to the modified

downwash.

It was hoped that the introduction of correction factor modeshapes would

smoothout the corrected downwashand produce accurate results. This did not
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happen. Even though smooth, well behaved functions were used the results were

unrealistic. Although not tried, it seems that limiting the maximum and minimum

values of the correction factors probably would not help very much either.

This failure of the postmultiplying correction factors led to an interest-

ing investigation and subsequent development of the "New Postmultiplier".

The investigation consisted in finding out what downwash in the theory would

produce the experimental pressure distribution. Specifically the theoretical

influence coefficient matrix was multiplied by the vector of experimental

pressures to produce a vector of downwash values.

Figure 34 shows the results of this type of analysis (designated as

Experimental) for a steady subsonic case (M = 0.5). Also shown is the

theoretical downwash, i.e., unity over the flap. One thing is noticed immed-

iately, there is a change in downwash ahead of the flap even though it is

theoretically zero there. This downwash change is like a negative pitch of

the entire airfoil. Figure 35 shows the camber (designated M = 0.5) associat-

ed with the downwash given in figure 34 and indeed it is like a _egative or

nose down pitch. This fact suggests that an additive type of correction

factor, whereby all downwash values are changed, is necessary. This resulted

in the development of the "New Postmultiplier" as described in the Theoretical

Development section. This name is somewhat of a misnomer since the correction

factor is additive and not multiplicative although the correction factors

are proportional to the theoretical pressures.

The results of applying the new postmultiplying correction factors are

also shown in figure 34. Again lift, moment (c/4) and hinge moment (c3/4)

coefficient were used as the constraints

ca = 3.2

cml/4 = -.70

Ch3/4 = -.0528

The corrected values of downwash (circular symbols) agree well with the experi-

mentally deduced downwash. The disagreements at the leading edge of the air-
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foil and ahead of the flap are due to the fact that downwashis a sensitive

function of pressure and slight variations cause large variations in downwash.

With this in mind the agreement is very good especially over the flap itself.

Applying this corrected downwashto the theory produces the results given

in figure 36 for the pressure distribution. The results of the NewPostmulti-

plier agree very well with the experimental pressures. For reference, correct-

ions by a premultiplier are also shownand these are also very good. The

uncorrected theory is also presented for reference.

At the low MachNumbersused in the last few figures (M = 0.5) transonic

effects are not present and any differences between theory and experiment are,

in all probability, due to viscous effects. Figure 35 has shownthat viscous

effects modify not only the downwashover the flap but also over the forward

part of the airfoil as well. This comesabout due to the fact that the de-

flected flap causes an induced upwashover the forward portion of the airfoil

which in turn generates, a difference in boundary layer displacement thickness

on the upper and lower surfaces. This difference in displacemen_thicknesses

causes an effective nose downpitch.

It stands to reason that the correction factors generated at M®= 0.5

could be used to increase the accuracy of the theory at all MachNumberssince

viscous effects are present at all MachNumbers. Figure 35 showsthe effective

cambers at M®= 0.5 and M = 0.875 using the (M) variation of the newtransonic

theory. Notice that the transonic camber can be thought of as composedof two

pieces; one viscous piece very similar to that found at M®= 0.5 and one trans-

onic piece with the shape of a bump. This indicates that the accuracy of the

corrected camber (or downwash)at transonic MachNumberscan be increased if

the subsonic (M = 0.5) results are knownand used since it represents one

part of the correction.

Figures 37, 38, 39 and 40 give examples of applying correction factors

obtained at M®= 0.5 to other MachNumbersfor both pressures and aerodynamic

coefficients. Specifically figures 37 and 38 present the results for Mach

Numbersof 0.85 and 0.875 respectively. Up to three separate corrected
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pressure distributions are shownin each figure. One is the result of applying

a premultiplying correction factor matrix to the (M®)variation of the new

transonic method. A second is the result of applying a new postmultiplier to

the sametheory; and third is the result of applying a new postmultiplier to

the (M) variation of the new transonic method. The last pressure distribution

is seen to be the most accurate and a definite improvementover the unmodified

(M) theory (see fig. 4).

Figures 39 and 40 give a clear picture of the effect of applying

corrections obtained at M = 0.5 to other Mach Numbers. Figure 39 presents

the lift coefficients associated with corrected and uncorrected pressure distri-

butions. Two types of corrections are used; both pre- and postmultiplier

(New). The theory used is the (M) variation of the new transonic method.

Figure 40 presents similar results for the pitching moment and hinge moment

coefficients. The corrections developed at M = 0.5 greatly improve the theory

as far as the lift coefficent is concerned. The pitching moment is not changed

much because it was very close to the data to begin with. The hinge moment

also is not changed much. •

Figures 39 and 40 show that corrections obtained at low Mach Numbers

can be applied to the theories to improve accuracy at higher Mach Numbers.

Figure 41 presents the results of correcting the theory with both a post-

multiplier (New) and a premultiplier. First the theory is corrected using a

new postmultiplier obtained at M = 0.5. This represents a viscous type of

correction. A premultiplier is then applied to the previously corrected

results to account for transonic effects. This process produces a pressure

distribution that approaches the data more closely than any of the others when

it is combined with the (M®) variation of the new transonic method.
m

Figure 42 presents typical correction factors for the steady two-dimen-

sional cases considered in this section. The theory used is the Present

Method (M®). There is a greater change in premultiplying correction factors

between M® = 0.85 and 0.875 than there is between M® = 0.5 and 0.85.
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Supersonic Case

The arrow wing, shownin figure 43, has been chosen to illustrate the

application of the correction factor technique to the supersonic case. The

Douglas Supersonic Doublet Method (SDM)(ref. 20) has been used to determine the

theoretical loads. The box idealization used is also shownin the figure.

Notice that the tip of the wing has been clipped to reduce the numberof boxes.

Twomodesare considered; (1) pitch (a = 40) and (2) camber. The wing is

operating at a MachNumberof 2.05 and a reduced frequency of zero.

Figure 43 presents a comparison of uncorrected theory (dotted line),

corrected theory and experimental data. The experimental values lie below

the theoretical (uncorrected) values over the entire span.

Four different methods of correcting the theory were tried. A pre- and

postmultiplier (New} were applied using the pitch modeonly and the results are

very encouraging. The only real difference between the theory, corrected in

this manner, and the experimental data appears at the wing tip. _ multiple

modecase was tried using the pitch and cambermodesand the results are good

but not as good as the previous two corrections. The fourth method is the

application, to the pitch case, of a premultiplier correction factor matrix

that was derived for the cambercase. Thus a correction factor derived for

one mode (camber) is applied to another mode(pitch}. The results are not

very accurate on the inboard part of the wing but agree as well as the other

methods on the outboard part. The constraints used are summarizedas follows:

Pitch _ = 4° Camber

CL 0.1213 0.1297

CM -0.035 -0.022

CB 0.025 0.02196
L A

cL : 2 - 0.28
Croot

Cm M - := -- C/Croot 0.665

qA_ Moment about X/Croot = 0.68
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B (b/2)/Croot = 0.564CB = qAb/2
B _ Momentabout x-axis

A similar set of corrections were applied to the camber case and the

results are shown in figure 44. Specifically pre- and postmultiplying correct-

ion factors were obtained using the cambermode. In addition a multiple

mode(pitch, camber) premultiplying correction factor matrix was derived

using six constraints; i.e., CL, CM, CB for both modes. All three of these

corrections give approximately the samegood results except right at the

wing tip.

Twoother types of correction factors are applied to the theory and these

refer to applying the correction factors derived for pitch to the cambermode.

On the inboard portion of the wing these correction factors over-correct the

theory, but are accurate on the outboard portion of the wing. On the inboard

portions of the wing the correction factors movethe corrected theory further

from the data than it'was originally in its uncorrected state.

Figure 45 illustrates how correction factors modify the pressure distri-

bution over the wing (in pitch) using a premultiplier. It seemsthat the

reduction in lift due to the correction factors is taken out at the trailing

edge rather than the leading edge as the experimental pressures would indicate.

This fact might be explained if the experimental pitching momentwere inaccurate.

The postmultiplier does not directly modify the pressures but modifies

the downwash. Modified downwashcan be expressed in terms of modified camber.

It is of interest to know how the postmultiplier (New) modifies the wing

camber and figure 46 presents such a modification. The camber is reduced, by

the correction factors, over most of the wing just as expected, since the

boundary layer and separation regions act to reduce the effective wing camber.

The postmultiplier, then, acts in a way that is consistent with physical

processes.
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RECOIw_4ENDATIONSFORDATAACQUISITION

Most of the data utilized in this study were pressure data, and the

correction factors were derived using constraints that were obtained in some

instances from integrations of the pressures. Certain errors are associated

with integrations of pressures to obtain generalized forces, arising primarily

from the limited numberof pressure pickup points on a practical model. The

forces and momentsshould be measureddirectly in addition to the pressures.

Control surface hinge momentsshould be measuredand so should roiling moments,

i.e., root bending moments, because of the importance of the spanwise aero-

dynamic center location. For swept surfaces it would be desirable to measure

not only pitching and rolling momentsin the streamwise coordinate system but

also root bending momentand torque about someswept coordinate system, e.g.,

the 25%or 50%chord lines.

Two significant deficiencies were observed in available experimental

data besides the absence of combined pressure and force data. One was a lack

of any systematic variation in reduced frequency in covering the range from

steady flow to high frequency, i.e., kr of order unity. The correction factors

are frequency dependent, and it is not reliable to use factors derived from

low frequency data to predict pressure distributions at high frequencies. The

second deficient area is the effect of Reynolds number. An important source

of discrepancy between theory and test is the neglect of viscosity in the

theory. When extensions of oscillatory lifting surface theory are made to

account for viscous effects, data will be needed to verify the accuracy of the

improved theory. However, these data are also needed to determine the accuracy

with which correction factors derived from data at one Reynolds number can be

used to predict pressures at another Reynolds number. This is particularly

important for trailing edge control surfaces.

A number of suggestions can be made for future wind tunnel tests in

addition to those indicated above. Leading edge control surfaces should be

tested; spoilers might also be considered, Very little data are available for

these configurations. Models should be designed so that components can be
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tested in their principal modesof motion. Completemodels usually have

moveable control surfaces but a moveablefin, horizontal tail, and engine

pylon should also be considered to distinguish betweencomponentloads and

interference loads. More oscillatory transonic data are needed. In two-

dimensions, pitch data should be measuredin addition to control surface data;

in three-dimensions, data on both straight and swept wings are required.
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C(,NCLUDING REMARKS

CONCLUSIONS

The basic conclusions arrived at as a result of the calculations and

correlations presented are outlined as follows:

(1) One Set of Correction Factors Is Not Good For All Modes

Application of correction factors, determined from one mode, to other

modes has not met with much success. Specifically, correction factors obtained

using a pitch mode can not be applied to pressures due to control surface

deflections. The converse is also true. In addition, application of correction

factors, obtained using a pitch mode, to pressures due to a camber mode (and

vice versa) have not proved to be very accurate either. Bergh and Zwaan,

reference 6, on the other hand have concluded that correction factors calcu-

lated using a pitch mode can be applied to a roll mode. These two modes,

however, are similar. One of them has a constant angle-of-attack along the

span while the other has a linearly varying angle-of-attack along the span.

Further study is required to find out what types of correction factors

are required for the various modes encountered in flutter and other dynamic

aeroelastic analyses. The practical method of implementing such a correction

procedure also requires further study.

The fact that one set of correction factors can not be applied to all

modes has certain implications for testing procedures. It may be that more

rigid body types of modes will be required (e.g., pylon yaw, wing alone pitch,

tail alone pitch, outer wing pitch, inner wing pitch, fuselage alone pitch,

etc.) than are now considered.

A second approach to the problem of obtaining one set of correction

factors for both a pitch and a control surface mode was attempted using the

"multiple mode" capability of the program. This capability allows the theory

to be constrained to produce the correct lift and moment coefficient, etc.,

for each of several modes. The resulting span loading and/or pressures were

not improved for either the pitch or control surface modes.
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Evenwithin a single modeproblems can occur for different amplitudes.

For instance high angle-of-attack flow fields can be basically different

(separated) from those at low angles-of-attack. Howevercorrection factors

obtained at low angles-of-attack can result in improved predictions for all

angles-of-attack. The basic reason being that the viscous corrections, although

smaller for the unseparated case, are still in the samedirection as that for

the separated case.

(2) A Bending Moment Constraint Is Needed For Swept Wings

Lift and pitching moment constraints are not enough for the swept wing

case. A bending moment constraint is also required so that the loading is

not shifted outboard to accommodate an aft shift in aerodynamic center of

pressure. Without the constraint on the bending moment the correction factors

will cause the wing loading to be moved toward the wing tip instead of moving

the load aft along the chordline.

(3) Correction Factors Can Be Extrapolated More Accurately To Other Mach

Numbers Than To Other Frequencies

When correction factors are determined at low Mach Numbers they are

caused primarily by viscous effects. Since viscous effects exist at all Mach

Numbers an increase in accuracy will result if the low Mach Number correction

factors are applied to the high Mach Number cases.

Extrapolation in frequency has not been as successful as extrapolation

in Mach Number. For the two dimensional case studied it seems that extra-

polation further than Akr = O.l (based on the half chord and a Mach Number of

0.85) will lead to a decrease in accuracy as kr is increased. It is believed

that extrapolation in reduced frequency is more accurate at lower Mach Numbers.

It appears that as the frequency is increased the viscous effects are

reduced. This is an important fact and if steady wind tunnel results are to

be used for correcting data then a good estimate of the reduction in the

viscous effect must be known. One way to accomplish this without testing

every configuration is to test a representative sample of configurations over
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a range of frequencies and construct general trends to be used in conjunction

with steady data to estimate the frequency effect on correction factors.

(4) _ua]itative Features Missing From The Theory Can Not Be Generated By

Correction Factors

Correction factors tend to produce quantitative changes to the theory and

not qualitative ones. For instance, in transonic flow, the bulge in pressure

at the shock location cannot be induced with correction factors if one did not

exist in the basic theory.

(5) Downwash Correction Factors Must Be Additive, Not Multiplicative

It was found that postmultCplying correction factors did not work for

control surface modes (they did work for pitch modes however). That is, scaling

the downwash to reproduce the imposed experimental constraints (CL, CM, etc.)

led to unusable results. Smoothing of the results was obtained by introducing

correction factor modesi however, the levels of correction were still unreal-
L

istic. An ana|ysis was performed to see what downwash was required to produce

the experimental pressures and it became evident that the downwash had to be

corrected everywhere and not just on the control surface. This suggested an

additive downwash correction. A new method was developed and executed

successfully.

Downwash correction factors essentially reflect the physical fact that

viscous effects tend to change the effective airfoil camber (and thus the

downwash). The camber is changed over the entire airfoi|.

(6) Premultiplying And (New) Postmultiply!ng Correction Factors Are EquallX

Accurate

In the cases studied the accuracy of the corrected theory is improved

equally well (approximately) by either type of correction factor matrix.

The downwash correcting factors (New Postmultipliers) are physically more mean-

ingful if interpreted as viscous corrections while premultipliers are more

meaningfully intepreted as compressbility corrections.
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Since transonic experimental data reflect both viscous and compressibility

effects a very accurate way to obtain correction factors, if data permit, is

to combine pre- and postmultipliers together. First a postmultiplier (New)

is developed at low MachNumberwhere viscous effects dominate. This correct-

ion is then applied to the transonic case. The modified theory is then

corrected further for transonic effects using a premultiplier. Correction

factors produced in this way are more accurate than most.

(7) New Transonic Method Useful But Requires Further Investigation

Various methods of applying local Mach Number were tried. Simple proced-

ures based on the substitution of the local steady Mach Number (or some average

between surface and free stream) for the freestream value in the boundary

conditions, kernel, and pressure equations have been tried. The results have

only shown minor changes and have not even given qualitatively good results.

A new method was developed at Douglas (under the McDonnell Douglas IRAD

program) and is based on a transformation of the distance between sending and

receiving points based on acoustic travel t_me between the two p_nts. Th_s

method was implemented for the two-dimensional case and correlated in the

present study. The results are encouraging since the predicted pressures are

qualitatively similar to the experimental data. That is, the new method

predicts a bump in the pressure which is centered at the shock wave location

and predicts a lowering of the pressure forward of the shock wave. This bump,

however, is forward of the experimentally observed bump, and is usually smaller

in amplitude.

The theoretically determined phase angles of the pressures are not in

good agreement with the experimental data forward of the 40 percent point

(for the case of a control surface rotation). One possible reason for this

is the fact that the wave fronts emanating from points on the flap tend to

move up and over the shock wave and arrive at the forward portions of the

airfoil in nearly a horizontal configuration. On the other hand, in the theory,

the paths of the wave fronts are assumed to be normal to the free stream

flow with the wave fronts vertical, and this difference causes the phase angles

to be greater for the theory than for the data. Further investigation of this
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discrepancy and its solution is required. It maybe possible to use a more

exact phase lag time computation in the theory, such as the one used by Tijdeman

and Bergh in reference If.

Whentrying to decide which theory is best it is important to account for

viscous effects. Without such a correction the new transonic method, designated

as (M), seemsbest. However, whenviscous effects are accounted for, the

variation designated (M®) is best.

With the current method of computation the new transonic method is

probably not reliable past M = 0.90. This may not be too restrictive since

most wings are swept which reduces the normal MachNumbersto values lower

than 0.90.

(8) Overview of Conclusions

The concept of correcting theoretical pressure or load distributions so

that they reflect associated experimental data works well with the correction

factor technique, especially if the proper experimental data are available

(e.g. bending moments.) It was hoped however that a set of correction factors,

once developed, would be applicable to a wide variety of other cases. The

range of applicability however has not been as wide as hoped for. Success in

extrapolating correction factors was obtained for Mach Number and to a limited

extent for frequency. Attempts to apply correction factors to dissimilar mode

shapes however has not met with much success. Therefore more than one set

of correction factors is required. The use of several sets of correction factors

to correct oscillatory aerodynamic generalized forces for use in dynamic

aeroelastic analyses requires further investigation.

Also concluded from the present analysis is that correction factors can

not change the character of the load distribution. If a fundamental feature

is missing from the theoretical loading then the correction factors will not

make it appear. Thus theoretical methods must possess at least qualitative

accuracy.
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Recommendationsfor Further Studies

Further studies maybe profitably pursued in several areas. The successes

and failures of the correction factor technique, presented here, furnish a

guide to such studies.

First, it seemsadvisable to exercise more of the various options in

the present method and include more types of force data (integrated from pressure

data) for someof the cases treated in this report. For instance such a case

would be the Hertrich wing (refs. 14, 15). It would also be desirable to

obtain newdata similar to that obtained by Hertrich, in which both force and

pressure data are available. It would be interesting to compareforce data

with integrated pressure data.

Second, it is now clear that one set of correction factors is not suffi-

cient for all deflection modes. Thus a method for including multiple sets of

correction factors into the determination of generalized oscillatory aerodynamic

forces for various modesis required. This methodmay require special testing

procedures wherebyeach major componentor subcomponentis systematically given

a rigid body rotation.

Third, the studies on viscous effects initiated in this report should

be continued. Specifically the technique of determining theoretical camber

lines that reproduce experimental pressure distributions seemsvaluable and

could lead to a semiempirical method for viscous effects _hen combinedwith

boundary layer theory.

Fourth, the new transonic methodillustrated in this report should be

refined and extended. Initially the two-dimensional capability should be

refined in the areas of; l) pressure phase angle and, 2) unsteady shock wave

motion. Subsequentto this a three-dimensional method should be developed.

In addition, an investigation should be undertaken to explore the

possibility of developing a semiempirical transonic method. The local steady

Mach Number can be used as an adjustable parameter so as to produce the

pressure distribution changes necessary to satisfy experimental constraints

(lift moment etc.).
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CORRECTIONFACTORCOMPUTERPROGRAM

Introduction

As described in the Theoretical DevelopmentSection this method generates

a set of correction factors that can be applied to a set of data (e.g., theo-

retical pressure) such that the data satisfies certain imposed (e.g., experi-

mental) constraints.

For convenience this data will be referred to as pressure data since this

is the most commonapplication. Howeverthe correction factor procedure is

not restricted to pressures and can be applied to other data sets (e.g., span

loads, etc.).

For this procedure it is assumedthat one or more theoretical pressure

distributions, aCp., (j = I, numberof pressure modes)are input. Associated
with these pressures are: an areadistribution, _A, a set of coordinates,

(x, y, z), and a dihedral angle distribution _ which are input via cards,

tape or both. As an option the aerodynamic influence coefficien_matrix,

[A] = [D] -l, along with one or more normalwashdistributions, wj, can be input

in place of aCp.; and as a matter of fact these must be input for postmulti-
plier correctio_ matrices (i.e., correction factor matrices for the normal-

wash).

Constraint data (experimental data) are input as force or momentco-

efficients. If a force coefficient, Ce, is considered it is defined as

Ce 1 b _= T _ AA ACp n • ia (force coef.) (87)
C

a

where c is a constant used to convert the dimensional sum into a coefficient

form. For example if Ce = CL then c is equal to the reference__area. The limits

of the sum are also input to the program. The unit vector ia
is in the

direction of an input axis. A set of axes are input for use in the constraining

and monitoring features of the program. Each axis can be input in one of two
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ways; (I) a point and a direction or (2) by two points.

is calculated as follows:

m

The unit vector ia

i = i cosm + j cosB + k cosy (88)
a

The unit vector-_ is in the direction of the lifting pressure which is given

in terms of the dihedral angle of the lifting surface.

-_ k-_cos_) (89)n = _(-siny) +

where j and k are unit vectors in the y and z directions respectively and

where a right handed system is employed where z is up, y is out the starboard

wing and x is aft.

If a moment coefficient, Ce, is considered then it is defined as follows:

Ce l b:.._ • I a •[ AA Cp (_ x n-_ -_ (mement coef ) (90)
c a •

where

r : (x - {(1))i + (y- n(1))j + (z - _(1))k (91)

and where 6(I), n(1), {(I) are the coordinates of the first end point of the

axis considered and where i a is its direction. The constant _ for the case

of CM has the dimensions of volume.

The program has various other capabilities and one of these is its

ability to monitor the corrected or uncorrected pressures. The integrations

performed in equations (87) and (90) can be performed using data without reference

to constraints. Thus if span loads are desired for data that has been corrected

(or uncorrected) then the proper summations are activated in the program in

a manner similar to that for constraining the data.

The program also has the capability to use correction factor modes. That
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is, the actual correction factors {E} are related to a set of modal coordinates

{_} as follows:

{E} = [@] {_} (92)

The modal matrix, @, is either input directly by cards or certain built in

modes can be activated.

The program has the capability to limit the excursion of any or all

correction factors. The upper and lower bounds are simply input for the corr-

ection factors that are to be limited. If correction factor modes are used

then the limits are placed on the modal coordinates, E, and not on the

correction factors themselves.

In addition to limits, a factor a is input for each constraint to

aindicate its "constraining power" The term a ranges from 0 to l.O. If _

is l.O the constraint, has full power and is lOOpercent effective as a con-

straint. If _ is 0 then the constraining power is zero and the _constraint"

has no effect. For values of a anywhere in between the constraint is said

to be an estimate.

Finally, the program can be used to apply previously obtained correction

factors to input pressure distributions. The program can also be used simply

to monitor existing data without any constraints.

One nomenclature problem which might cause confusion is the fact that

the normalwash w is called W in the program, while the correction factors W

are called CF.
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Program Input

The following table provides an overview of the card input data grouped

according to their functions in the program. The layout of the input sheets

and a detailed description of each input item are also given following the

table.

Overview of Input Data

ITEMS CARD WHEN COMMENTS
i NO. NEEDED

AlwaysCONTROL

DATA

GEOMETRY
AND
PRESSURES

AXI S DATA

CONSTRAINT

DATA

MONITOR

DATA

LIMITS

DATA

l , -2J

3, 4

5,6

7, 8

13, 14

15, 16

17

If

FLAGP=3

Always

If

NC_O

If

NM_N _ 0

If

NELIMS#O

Header card, control dimensions

and control flags.

Geometry data is input on one card

per i, i=l, NP (NP=number of pressures).

Pressures are input either 6 real

numbers per card (when FLAGI=I), or 3

complex numbers per card (when

FLAGI=O). Repeat pressur_ input per

pressure mode, symmetric modes first,

antisymmetric modes (if any) last.

Axis data, 2 cards per i,

i=l, NAXIS (NAXIS=number of input axes)

Constraint data is input in a minimum

of four cards per i, i=l, NC

(NC=number of constraints)

Monitor data is input in a minimum

of four cards per i,

i=l, NM_N (NM_N= the number of monitored

aerodynamic parameters)

Minimum and maximum limit values on c;

repeat per i, i=l, NELIMS

(NELIMS=number of min. and max. limiting

value pairs)
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ITEMS CARD WHEN COF_MENTS
NO. NEEDED

CORRECTION

FACTOR

MODES

DOWNWASH

DATA

If

NEM _ 0

22, 23 If

FLAGW=I

Correction factor modes may be input

according to two options depending on the

flag TYPE (see detail description of data)

either in cards 18, 19 and 21, or in cards

18, 20 and 21. Repeat per i, i = l, NEM

(NEM=number of correction factor modes)

Downwash data is input in a minimum of two

cards per mode (see detail description of

data). Input symmetric modes first,

antisjnnmetric modes (if any) last.

Computer program requires less than 200K OCTAL storage.
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.Input Sheets

W

F-
,=C
r_

r-.

r-.

5
Z

=E

m_

L_
o
m_

CONTROL DATA GEOMETRY
AND

AXIS
DATA

CONSTRAINT
DATA

J
LU

W.

Z

Z

W

-r
U
Z

n_

Z

0

Z

Z

0

UJ
uJ

Z

Z

LU

_J

U

J
_J

Z

1-

U
Z

O.

U
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F-

CONSTRAINT

DATA
MONITOR

DATA

e ! C_)RRECTI(BN !

LIMITS FACTOR M_DES

C_

.J

E
Z

0

Z

uJ

I"

U

Z

n

n-

Z

0

Z

W

Z

0

7O

:E

.J

0

U

v

Z

/

_n

1"

U

Z

n

0

Z

0

3:

(J

Z

3
n

>-

.i

v

n_

0
LI.

0

U

0



LIJ

I-"

C_ (:;
Z

:E

(.3

0

0-

FACT_)R

ILl

Z

C3

-r-

0_

co i

,-I---I
.c .

"_ i J

t'----'-4

_"I__J

l.IJ

u,J

Cg

Z

u.J

U

.J

_J

Z

T

U

Z

Q.

O

LL

O

I--

U

i:1

O
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Description of Input Data

Control Data

These data items are required for all cases. They consist of a header,

control numbers, flags, and tape (or scratch unit) numbers.

CARD ITEM MNEMONIC DESCRIPTION
i

I l Header HEADER Alpha-numeric description of case in card

I columns l through 60

2 NP NP

2 NC

NEM_DES

NELIMS

NMONITOR

NAXIS

FLAGB

FLAGP

NC

NEM

NELIMS

NM_)N

NAXIS

FLAGB,

IFB

FLAGP,

IFP

Number of aCp elements, where ACp may represent

any type of quantity (NP _ 350)

Number of constraints to be applied to the

ACp values (NC _ 35)

Number of correction factor modes if any (NEM _ lO0)

'Number of input cards giving the minimum and

maximum values of _ (NELIMS < lO0),

Number of sets of monitoring data used to

integrate aCp into aerodynamic parameters (NMON _ 35'

Number of axes input for use in integrating the

aCp data into forces and moments for constraint

and monitoring purposes (NAXIS < 25)

FLAGB=O, correction matrix calculation

FLAGB=I, monitor data only

FLAGB=2, apply input correction factor matrices

to input pressure distribution

FLAGP=O, geometry data and ACp are input from

tapes; calculate premultiplying correction

factors. (See Tape Description section for format)

FLAGP:I, geometry data and D-I (inverle aero matrix

are input from tapes, W (normalwash) input either

from tape or on cards (see FLAGW below), calculate

post-multiplying correction factors
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CARD ITEM MNEMONIC, DESCRIPTION

3

3 I

FLAGT

FLAGW

FLAGI

IPRINT

FLAGT

FLAGW

FLAGI

IPRINT

FLAGP=2, input as for FLAGP=I; but calculate

pre-multiplying correction factors

FLAGP=3, geometry data and aCp input on cards;

calculate pre-multiplying correction factors

FLAGP=4, geometry data and D-l input from tapes,

W input either from tape or on cards; calculate

modified post-multiplying correction factors

FLAGT=O, weights for minimization process are

absolute values of forces for unit deflections

FLAGT=I, weights are unity

FLAGW=O, normalwash matrix, W, is input from

tape, if needed

FLAGW=I, normalwash matrix, W, is input on

cards •

FLAGI=O, ACp values are input as complex

numbers (either from tape or on cards)

FLAGI=I, ACp values are input as real numbers

(i.e. not complex)

Detail print flag;

IPRINT = l, print rows of the

SAI matrix, and rows of the

SAN matrix (if any)

IPRINT = O, bypass printing

of same

* Cap. W is normalwash in the computer program wllere correction factors are
called CF. 73



CARD

4

ITEM MNEMONICS DESCRIPTION

TS

TA

NMSYM

NMASYM

Number of symmetric pressure modes

(NMSYM, NMASYM < lO)

Number of antisymmetric pressure modes

Note that all data items in cards 2 through

4 are input as integers, right-justified

in their respective fields of ten card

columns each (format llO) as shown on the

input sheets.

* Right justified means input ending in the last (or right-most) card

column of the field.
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Geometry and Pressure Data

Data items defining the geometry of a case are usually available on

tape; similarly, pressure data (if needed; see item FLAGP under Control

Data) are usually input from tape. However, if this is not the case, these

data items may be input from cards by specifying FLAGP:3, as shown below.

CARD ITEM MNEMONICS DESCRIPTION

5 x i

5 Yi

5 z i

5 Yi

5 AAi

ACp

X

Y

Z

GMA

DELA

DCP

The following two cards are input only if

FLAGP=3.

x, y, z coordinates of pressure point i

Dihedral angle of pressure point i

Area of box over which the pressure acts.

Repeat card 5 for all points, i:l, NP

Array of the aCp values (lifting pressures)

either 3 complex numbers per card (when

FLAGI=O), or 6 real numbers per card (when

FLAGI=I; see Contr61 Data)

The format used for cards 5 and 6 is 6FIO.O.

75



Axis Data

The following data items are required for all cases. These input data

are used to describe an axis in space. Axes can be described by either two

endpoints or by one endpoint and a set of direction cosines. These axes

are used in the integration of the pressures into force or moment coefficients.

Forces are resolved in the direction of the axis, while moments are taken

about the axis.

CARD

7

ITEM MNEMONIC DESCRIPTION

Axis

number

Axis

type

nl

_2/cos_

n2/COSB

_2/cosy

IAX

IFA

XIl

ETAI
• o

ZETAI

XI2

ETA2

ZETA2

Axis number

IFA=O, axis endpoints are input

IFA=I, a point and direction cosines

are input

Axis endpoint coordinates

Second axis endpoint coordinates if IFA=O;

direction cosines if IFA=I

Card 7 format is 6IlO;

card 8 format is 6FlO.O
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Constraint Data

The correction factors modify the theoretical values of aCp by a

minimum amount so that specified forces and moments are reproduced. For

example, if the total lift is known experimentally, then several data items

must be input specifying the actual value of the lift coefficient and

describing the way the ACp values are to be integrated to obtain this co-
efficient. The lift coefficient is then called a constraint on the

theoretical data.

CARD

9

I0

lO

lO

lO

ITEM MNEMONIC "- DESCRIPTION

Axis

number

F-M

Flag

Press.

mode

nj
a

c

JAX

IFF

NDI

MI

AIT

CIT

Number of the axis to be used for calculating

theconstraint force or moment

IFF=O, the constraint, Ce , is a force

in the direction of the axis;

IFF=I, the constraint, Ce , is a moment

about the axis (right-hand-rule).

Card format is 6110

a:l, symmetric pressure mode to be used;

6:-I, antisymmetric pressure mode to be used

Pressure mode number to be used with

constraint Ce

Constraining effectiveness of Ce ;

O<a<l.

If _ = l, Ca is a constraint;

if _ < l, Ce is only an estimate, and the

resulting weighted (corrected) theory will

only approximately reproduce Ce . If _=0,

then Ce will not affect data.

Constant used to nondimensionalize integrated

data.

If Ce

if :Ce

is a force, c = Area;

is a moment, _ = Area x length.
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CARD

10

11

12

ITEM i MNEMONIC DESCRIPTION-

Ce CIE Experimental (or any other) constraint on

the data. Card format is 2110, 4FlO.O.

LIMII,

LIMI2

-l

LIMI(1)

LIMI(2)

-l

Identification of a range of aCp values
(or boxes) from LIMII to LIMI2 defining

the limits of integration for the pressures.

There maybe as manysets of ranges input

as needed. Card format is 6110.

The number-l ; end indicator for the

sets of data LIMII, LIMI2

Cards 9 through 12 are repeated for all

constraints, i.e. NCtimes.

78



Monitor Data

The following data are input only if the control data item NMOrIITOR

has a value different from zero. These data are used for the integration

of the aCp values into some meaningful parameters as a check on the effect

of the correction factors on theory, whenever FLAGB = O. Since often it

is desirable to monitor the unmodified data as well, the setting FLAGB = I

is designed to integrate the aCp values into parameters without calculating

the correction factors. Another monitoring option can be activated by the

setting FLAGB = 2; in this case the correction factors are input from tape

(FTI6) saved in a previous run and the weighted aCp values are integrated

into parameters as specified bY the monitor data.

CARD ITEM MNEMONIC DESCRIPTION

13

13

14

14

14

14

14

Axis

number

F-M flag

Press.

mode

a

c

LABEL

NAX

IFN

NDN

MN

ANT

CNT

LABEL

Axis number used in the integration of the

ACp values into forces and moments

IFN=O, parameter to be determined is a

force

IFN=I, parameter to be determined is a

moment.

Card format is 6110.

a=l, symmetric pressure mode used

a:-l, antisymmetric pressure mode used

Pressure mode number

Not used

Constant used to nondimensionalize

integrated data

Alphameric identifier of the integrated

parameter (ten characters long)

Card format is 2110, 2FlO.O, lOAl
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CARD ITEM MNEMONIC DESCRIPTION

15

16

LIMNI,

LIMN2

-l

LIMN(1)

LIMN(2)

-l

Identification of a range of aCp values

defining the limits of integration for

the pressures. There may be as many sets

of ranges input as needed.

Card format is 6110.

The number -l; end indicator for the

sets of data LIMNI, LIMN2

Cards 13 through 16 are repeated for

all parameters, i.e., NM_NITOR times
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Limits Data

It is sometimes desirable to place a restriction on the range of values

of E by specifying a minimum and a maximum bound on _. In this case the

control data item NELIMS is input as the number of c limit pairs to be supplied,

which are input as shown below. Note that this input (card 17) is omitted

when NELIMS = O.

CARD

17

17

ITEM MNEMONIC DESCRIPTION

LIMEI

LIM_2

LIMK(1)

LIMK(2)

EBMIN

A range of boxes, or aCp elements,

over which a limit is placed on

The minimum

value allowed for c
Emin

_max
EBMAX The maximum

Card format is 2110, 4FlO.O

Card 17 is repeated for all sets of
L

ranges, i.e., NELIMS times.
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Correction Factor Modes Data

In many instances it is desirable to restrict the incremental correction

factors {c} to a linear combination of a set of modes, {_} = [¢] {_g}. The

mode shapes [¢] can be input directly per box, and per mode, or the mode

shapes may be selected from a set of functions. This set of data is input

only if the control data item NEM is different from zero.

CARD

18

18

18

18

18

19

19

19

19

ITEM

MODE
NUMBER

TYPE

J

¢(J)

J+l

¢(J+l)

,MNEMON_I,C ]

M_DEN_

ITYPE

NL

AL

BL

J

PHI(J)

J+l

PHI (J+l)

DESCRIPTION

Weight factor mode number

TYPE=I, use (x-a) n

TYPE=2, use (y-a) n

TYPE=3, use (z-a) n

TYPE=4, use exp[b(x-a) n]

TYPE=5, use exp [b(y-a) n]

TYPE=6, use exp [b(z-a) n]

ii as

i mode
I equation

)

If TYPE = O, the ¢ values are input in

card 19, and the following 3 items are

not used

Constants used in the mode equation

Card format is 2II0, 4FIO.O

Card 19 is input only if TYPE = O.

Box (or element) number for which the

¢(J) applies

The modal value of the J-th value of

]

Another set of c-data

Card format is 2(110, 2FIO.O).

Repeat as needed, 2 sets of data per

card. Note that only the non-zero element

need be input.
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CARD ITEM MNEMONIC DESCRIPTION

20

21

LIMLI

LIML2

-l

LIML(1)

LIML(2)

-l

Omit card 20 if TYPE= O.

Rangeof boxes or E's over which

the current E-modeapplies. There

may be as manysets of ranges input

as needed.

Card format is 6110.

The number-l; end indicator of

data set for the current E-mode

(M_DEN_)

Repeat cards 18 through 21 for all

c modes, i.e., NEM times.
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Normalwash Data

If the normalwash matrix [W] is needed (see control data FLAGP),

and it is not available on tape, the control flag FLAGW must be input as

I, and then the normalwash values are card input as shown below.

CARD ITEM MNEMONIC DESCRIPTION

22

22

22

22

23

M_DE

LIMWI

LIMW2

W

-I

M@DE(j)

IDELW

LIMW(1)

LIMW(2)

WIN

-l

Mode number for the current set of

W values

Symmetry flag to aid in identifying

the mode; note that a=l type values

are expected to precede the a=-l type

values

!A range of boxes over which

the W value applies

Normalwash, W, for the above range

of boxes.

Card format is 4110, 2FlO.O.

Repeat card 22 as needed.

Note that only the non zero W values

need be input.

i .

The number -l; end indicator for

the normalwash input data
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Tape Description

Program EIGC uses a minimum of four, and a maximum of twelve tapes

and/or utility (scratch) units depending on the type of the case considered.

In addition NPIT = 5 and NP_T = 6 are used throughout the program as the

system input/output units respectively. These, as well as all tapes and

utility units are defined in subroutine WEYT by means of a DATA statement

specification under their respective names. The following table gives a

summary of tape names and their use; the formats of those tapes that may

be specified as input/output units are described in subsequent tables.
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_Summary of Tape Units

NAME UNIT

NUTLI

NUTL2

NTSAIJ

NTSANJ

NTPHIJ

FtASTSB

NEWTSB

NTGE_M

NTDCP

NTAPW

NTAPDI

NEWDCP

NTAPCF

WHEN
NEEDED

Always

A1ways

If NC_O

If NM(_NPO

If NEM_O

Always

If NELIMS

#o

If FLAGP_3

Always

If FLAGP

#0,3

If FLAGI=I

and FLAGP

= 0

If FLAGB_I

USER
SUBROUTINES

WEYT, WSWA,

SDBL, EPSJ

WEYT, SDBL,

DCPT, CEMN

WEYT, SAIJ,

DELC, SDBL

WEYT, SAIJ,

CEMN

WEYT, PHIJ,

SDBL, EPSJ

WEYT, SDBL,
GINV

WEYT, M_DF,
GINV

WEYT

WEYT, DCPB

WEYT, WSWA

WEYT, DCPB,
SDBL, DCPT

WEYT, DCPB

WEYT, DCPT

DESCRIPTION OF CONTENTS

Miscellaneous intermediate

solutions

SAI matrix rows

SAN matrix rows

¢ matrix columns

S matrix rows

The modified S matrix rows

Geometry arrays; input tape

_Cp matrix columns;

either input tape or scratch

unit depending on FLAGP

W (normalwash) columns;

input tape if NTAPW = O, scratch

unit otherwise

Inverse downwash factor

matrix _D] -1

Complex _Cp columns, when

aCp is input as a real matrix

CF, the correction factor

matrix; NTAPCF is output tape

(or scratch unit) for FLAGB = 0

cases; NTAPCF is an input tape

for FLAGB = 2 cases
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Input Tape NTGE_M

RECORD WORD ITEM DESCRIPTION

l l LENGTH Length of arrays in records

2 through 6 (LENGTH = NP)

2 l - NP X x-coordinate array

3 l - NP Y y-coordinate array

4 l - NP Z z-coordinate array

5 l - NP GMA Dihedral angle (_) array

6 l - NP DELA Array of box areas

Input Tape (or Scratch Unit) NTDCP

RECORD WORD ITEM DESCRIPTION

2

I+NSYM
+NASYM

2

3

1 - NP

1 - NP

NP

NSYM

NASYM

DCP

DCP

Row dimension of the aCp matrix

(column length)

Number of aCp columns for

symmetric modes

Number of nCp columns for

antisymmetric modes

nCp column for first symmetric mode

aCp column for last antisymmetric

mode*

* Note that if NASYM = O, the ast aCp column refers to last symmetric mode
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Input Tape (or Scratch Unit) NTAPW

RECORD WORD ITEM

2

l + NSYM

+NASYM

1 - NP

1 - NP

NP

NSYM

NASYM

W

DESCRIPTION

Row dimension of the W

(normalwash) matrix

Numbers of W columns for

symmetric modes

Number of W columns for

antisymmetric modes

W column for first symmetric

mode

• , ,,,

W column for last anti-

symmetric mode (if any)
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Input.Tape ,NTAPDI

i RECORD WORD i ITEM DESCRIPTION

l

2

3

l - NP

NP

NP

NCQL2

DI

Row dimension of matrix DI

Column dimension of matrix DI

NCOL2 = NP if both symmetric

and antisymmetric DI matrices are

on tape; NC_L2 = 0 otherwise

First row of DI, the inverse

downwash factor matrix, [D"l]

for symmetry

I + NP l - NP DI Last DI-row for symmetry

DI

DI

l - NP

l - NP

2+NP

l + 2NP

The following records may be

omitted when antisymmetric modes

are not desired,

First DI-row for antisymmetry

Last DI-row for antisymmetry
,.
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Input/Output Tape NTAPCF

RECORD

2

WORD ITEM

C@DE

LENGTH

NMSYM

NMASYM

DESCRIPTION

Alphameric identifier of tape,

4 characters in length, left justified;

C_DE = PRE, for pre-multiplier

cases, C_DE = P_ST for post-

multiplier cases

Length of array CF. LENGTH

should be equal to NP.

Number of symmetric modes for case

Number of antis_nnmetric modes for case

Note that the last two items are not

used when tape NTAPCF is an input tape

3 l - NP CF Array of the complex correction factors
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Test Cases. - The use of the program will be illustrated by two test

cases. The first will be a premultiplier and will exercise most features

of the program so that their use can be illustrated. The second test case

will illustrate the use of the mew postmultiplier, tape input, and downwash

input on cards.

The theoretical pressures are taken from a two-dimensional analysis of

an airfoil with a 25% chord flap. The new transonic procedure discussed

previously will be used for the airfoil operating at a Mach Number of 0.875

and a reduced frequency of 0.0. Figure 47 illustrates the geometry, pressures

and axes data for the airfoil for control surface rotation (Mode l) and

pitch (Mode 2). Also shown on the figure are the theoretical and experimental

values of ca, Cml/4 and Chl/4 for mode l and ca for mode 2. The experimental

values are used as the constraints. An experimental value for ca for mode 2

is not available thus an estimate is given in its place in the figure.

Test Case I. Table Ill presents the input cards for the first test case.

The number of pressures, NP, is 19; the number of constraints, NC, is 4. For

this case 19 correction factor modes, 4, will be used, thus NEM = 19. In

addition limits will be placed on the values of _. These limits will be

described by one card thus NELIMS = I. The number of axes, NAXIS, is 3.

The program is able to monitor the corrected data, and in this test case the

number of coefficients to be monitored, NMON, is 4 and they are ca, Cml/4 and

Ch3/4 for mode l and ca for mode 2. Thus the monitored coefficients should

reproduce the input constraints. This, in fact, is the case as the output

shows in Table IV.

Since correction factors are to be calculated rather than data monitored

only, FLAGB = O. Also since the geometrical data and pressure data are to be

card input and a premultiplier is to be calculated FLAGP = 3. The usual

weight factor T, (the absolute value of the force on an element) is not used, thus
__o_

FLAGT = _l. Normalwash values are not input thus FLAGW = O. Only real values

of pressure are used thus FLAGI = I; the detail print flag is input as

IPRINT = I. In this example there are two modes (call them symmetric) thus
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NMSYM= 2 and NMASYM= O. This marks the end of the control data.

The geometry data are taken from figure 47 and are given on cards

designated as type 5. The I/4-chord point of each box is input along with

its area, AA= AX. The pressures at each I/4-chord point of each box and for

each modeare taken from figure 47 and are given on cards designated as type 6.

The axis data are encountered next. IAX identifies the axis numberand

IFA identifies how it is input (whether by two points or a point and a dir-

ection). In this case a point (_tl_"", n{lJ"", _tl_)"" and direction (cos_, cosB,

cosy) are input thus IFA : I. These points and directions are taken from

figure 47 and are input on card designated as type 8.

The constraint data is next. Input are four constraints c_, Cml/4 and

Ch3/4 for mode ] and c_for mode 2 taken from the experimental values of these

parameters given on figure 47. Each constraint has a g and lO type card.

JAX identifies the axis to be used with the constraint (axis l for c_, axis

2 for Cml/4 and axis 3 "for Ch3/4 ). The flag IFA identifies the coefficient

type to be calculated whether the force type (IFA = O) or moment type (IFA = l).

The terms MI and NDI denote the mode to be used. In this case modes l and 2

are symmetric. The constraining power AIT is taken as l.O for the constraints

of mode l to ensure a full constraint. However AIT for c_ of mode 2 is taken

as .95 since this is an estimate. The nondimensionalizing constant CIT is

the chord for the c_ constraint and the chord squared for Cml/4 and Ch3/4.

The limits of integration LIMII, LIMI2 span the entire surface for c_ and

Cm]/4 (from box.l to box 19) but only range over the control surface (box 13

to box 19) for Ch3/4.

The monitor data found on card types 13, 14, 15, 16 are almost identical

to that of the constraint data because in this case c_, Cml/4 and Ch3/4 are

the parameters to be monitored. Of course they could be any quantity or

for that matter no quantities if monitoring is not desired. The only real

difference between monitor data and constraint data is that an alpha-numeric

identifier is input in place of the constraints for the monitor data.
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As an exampleof the use of limiting values on _, card type 17 is input

for this test case. Specifically it is required that

-0.7 < E < 1.5

hold for all values of _, l through 19 (LIMKI = I, LIMK2= 19).

As a simple exampleof the use of correction factor modeshapes, ¢, an

identity matrix will be used;

[_] = FIJ (ITYPE = O)

Card types 19 and 21 are used to input these modes.

The program output for this case is given in Table IV. The printed out-

put, which fits on 8 !/2 x II sheets, contains most of the input. Integration

matrices are then printed along with other intermediate steps in ,the process

of solution. At the end of the printout a summary of the geometry data,

incremental correction factors, _, and modified pressures are printed. Next

are the correction factors E + l and finally the aerodynamic parameters,

calculated using the modified pressures, that have been monitored by the

program.

Test Case 2. - Table V presents the input sheets for the second test case.

This test case is the same as the test case l with the following exceptions:

(1) the geometry and [D] -l are input from tape; (2) a new postmultiplier is

developed; (3) one mode is used with three constraints; (4) correction factor

modes are not used and (5) limits on incremental correction factors, E, are

not imposed.

For this case changes from test case l occur in the control data (cards l

through 4). First, no correction factor modes (NEM = O) are to be used.

Second, the card giving limits on E is omitted, thus NELIMS = O. Third, [D] -l

and the geometry are to be read in on tapes and the new postmultiplying
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correction factor is desired, thus FLAGP= 4. In this case normalwashvalues

are to be card read and so FLAGW= I. Also only one mode is to be used

(control surface rotation), thus NMSYM = I. The geometry data remains the

same as in test case I.

Finally the normalwash is input on card type 22. The mode is a control

surface rotation, thus W = l.O over boxes 13 through 19, i.e., LIMWI = 13,

LIMW2 = 19. The program output is given in Table VI.

* Remember W is downwash in this computer program
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_UTPUT LISTING - TEST CASE l

o
II

ib

IK

&

rl

Z

n_

S...b

o,

_.1

I

e_
r_

J
Z

t_

I,--

98

..J
u-

._1
C3

l--
Z
C3

0_0_

II II II II II



0000000000000000000
0000000000000000000

I -nOoooo00oo0_@OOO_

00__0000_00
J_ OooIIIOIOQOlOIIOIOO

0 0000000000000000000

X

O00CO00000000000000
eoeeeeeoeeeeeoeeeel

0 0000000000000000000

O_O0000CO0000000000
eooooeoooeooeeeeeoe

00000000_00000_0_00

C_
uU

U-

_2
LL_

Z

)-
a.

uJ

I
C_

O000000000000OOOO00

ddggddgd_gdgddddddd

OCO0000000000000000

× ggggggggggggggggggg
IIIIIII

99



OOOO OOOO

dgd& gdgd

OOOO OOOO
OOOO 00,0,%
OOOO O 0"OO
OOCO I'-_- _0"
a00"OO ,I0_(_ G0
N,O0,O _f'-O

-;Cj •...

OOOOO OOOOO
4oeee oeeeo

00000 00000

000o0 o0o0_,
000o0 0_
0000_ o._o_

eloee eoi0e

_0 _0

00000 0000_

ddgdd ddddd

n.
I-

:[

cu

I

..J

uJ

_D

:£

). Z

D
..J
C)
c.3

10(1

OOOOO I'-OOOO
C'OOOO O _ JI'-e,jct

14_ ,0 ,,T O ."?" ..4 ,f3 I_- ..-4e4

/.lgZ_ 42g_

OOOOO OOOOO

_gdgd gdddd

000_0 _0000
00000 _ 0_0_
00000 _m_
00000 __

0_ _ _O_"
oeeoe _ o_ooo

__ _ _0_



0
-- 0

_ 0

_ coo

_0 _00

O0

_ co0

xO
L.}

(DO0

000

r_

C)O0

dggF..-
m

_._
u.J .,_
x I,--
,,_ L.L,

.._..I

LL

r',"

_. ,,-.,
r'- >("

I,--

Z

U, ,,_
C

¢,,/'J
I-- _L.

0
Z

l.,l.JV)
"I- ,--,
I-,. X

000

oO
OC
oo

O0
0 u', ur_

dgd
g

101



:E 0 0 0 0

I,_ • ii • •

0 0 0 0

0 0 0 0
0 0 0 0

I 0 0 0 0
0 0 _ 0

I I

"-' 0 0
--- 4- 4. 4. ÷
(_ LU LLI LIJ ILl

"" 0 0 0 0

]E: 0 0 0 0
I 0 0 0 0

t._ 0 0 0 0

0 0 0 0
e,J ,4" .1"

godo

0 0 0 0
_'_ 0 0 0 0

0 0 0 0
_D 0 0 0 0
b-. 0 0 0 un

0 0 0 0_
I •

Z

k-

..J
..J

_J

C
IJ_

..J
UJ

_.- r_

Z "--

u_ __
c9

0
Z

LIJ _,

"I" ..-
_-- X

102

(7" (Y" O' 0"

,.-¢ ,-4 t'Q

_ ,,-4 r',J



"r
,4" -,1"

I I I

Z 0 0 0 0
-... 4- 4- 4, 4-

w-, 0 0 0 0
0 0 0 0

I 0 0 0 0
cO 0 0 0 0

0 0 0 0
N ,4" ',,I"

00 0 0

0 0 0 0
Z 0 0 0 0

0 0 0 0
0 0 0 0 0

0 0 0 0
0 0 0 0

'_222



0000 0000 0000 0000
eIQQ Oeee I@QO O@O@

0000 0000 0000 0000

0000 _0_ _ 0000
0000 00_ _ 0000

0000 0000 0000 0000

gggJ gggd dg_g gdgd
III I

00000000000000000000
oooeooeeoooeooooeooe

00000000000000000000

00000000000000000000
eeeoeeeoeeeeooeoeeeo

00000000000000000000

IIII II

00000000000000000000

dd_ddddgdddggggd&dgd

00000__ _00000

00000000000000000000

dggddg_ddg_dddd_ddd
IIII II

0

O000(:DO00000000C O000(D

dgggddgdgggggggdgdgd

]04



0000 0000 0000 0000
Q@O@ @go0 O@O@ I@@O

0000 0000 0000 0000

0000 O0_m _ 0000

0000 0000 0000 0000
O@@e co@@ @0@@ @@@O

0000 0000 0000 0000
III I

00000000000000000000
Oeoooooeeooooelooeoo

00000000000000000000

00000#_0_ _00000
00000__ _00000
_0__ _0_0_0_

00000000000000000000
e_eoooeeooeooooeoeoe

00000000000000000000
II01 II

00000000000000000000

dgddgdggggdddgggdggd

OOOCOu,_ _ O" _ 0_000

00000000000000000000

gddddddddgdgdgddgggd
IIII II

3_

C3
r_

)<

Q(
I--

Z

V)

00000000000000000000

ggggdggggodgZggdgogg

O0000_h _ _OCO00

_0_0_-_ 0_0_0

0000000000000000000_

gdgdggggggdgggdggddd
III II

I05



_._ 0

X _..-_

_E
I
I",'

I 0
Z 0
0 0
...a 0
b..,_j 0

_. m_m

j 0

Z--,

I

.el
rc
I o

Z 0
L_ 0

.J 0
,-, ..J 0

I

v

_ ch

IK

I --J

_E
Z
0 -.J

v

106



0000

O000

0
0

0
0
0

0000 0000 0000
eO00 Oleo OOO0

0000 0000 _OO0

0000 0000 0000
Oleo eeoo Oloo

0000 0000 0000

00000 00000 00000 00000 00000 00000 00000
oooee oleoo tolo9 ooooo ooooo eooeo Iooel

00000 00000 00000 00000 00000 00000 00000

0
0
0
0
0

00000 00000 00000

..... ..... gggjg00000 _0000

00000
IIIII

00000

0
o
0
o
0

o00o0 ooooo
IIOO0 O09oO

OOGO0 O_C_O

O00OO 00000 00000 00000 00000 00000 00000

ddgg& dgdgd ggddd ggddd dggdd dgddd gdddd

o
0
o
o
0
o00oo o0o0o oooco

_gggg dgggd ggddd

o
C
0
o
o

o0000 oOCOO

d2dgg ggg_g

00000 00000 00000 O000C 00000 00000 O00CO

dgogg gdggd gggdg ddgdg dgddg ggood _ggg_:

0
_ 0

0
Z 0 Z

I _ 00000

I _ _0000
G C

I _ U

Z Z Z
00000 _ 00000 _ 00000

e • • • • _ i • e o • _ , • • • •
00000 _ 00000 _ 00000

0 0 0
U U

0

0
0

0 Z
00000

eeeee

0_000
0
U

Z

00000 X 00000

00000 _ 00000
0
U

107



OC" "0

Oe... _<:,

0000 C3000 0000 0000 0000

OOC_C_ " ' " " " ' ' " " ' ' ' OC_OC_0000 0000 000'9

0000 0000 "_OC

0000 _Oc

0
0
0
0
0

O(DO0

0.--4O0

OCO0
oooo

0000

0
0
0
0
0

0000 0000 o000
DtO0 10QO e0eQ

0000 0000 00_0

0000 0000 0000 OOC

0000 0000 0000 OOC

00000 00000 00000 00000 00000 00000
oeoee oeeeo @eeoc e@0oo 0o0oe e00ee

00000 00000 00000 00000 00000 00000

00000 00000 OOC
eoeoe oeooe go

00000 00000 OOC

o00oo

gogoo
O"OOC 0

OCO00

0
0
o
o
o

00000 0o0o0 ooo0o
ooooo ooloo ooooe

OOGO0 00_00 00000

00000
oOOOO

00000

0
0
0
0
0

00000 00000 0_<
oeooo oooll ee

00000 000_0 OOC

00000 00000 00000 00000 00000 00000

gdgdd dgggd dddg_ ddgdg ddg_g dgddd
O00CO 00000 OOC

dg_d_ dgdgd _g:

0
0
o
o
C

Ooco0 000oo o0o00

..... ddddg ddggg00_00

0
c
0

c
o

000_0 00000 O_C

ddd2d dgddd gg_

O00CO OC, O00 00000 OC.,O00 00000 00000

ggggd ddg_d _ogod ogodd ogddg dooo_
00000 00000 OOC

dddog ggogg od_

0
0 0
o
o

Z o Z
00000 _ 00000

eoooo D e0eee

00000 _ O0_CO
0 C

108

Z Z Z
00000 X 00000 _ 00000

00000 _ 00000 _ 00000

0

0

0

0 Z
00000
@OOOO

000_0
0

um

Z 7
00000 _ 00000 _ OOC

oooee _ oeooe _ ee

00000 _ 00000 _ Ooc
0 0



"_ 0000 0000 0000

" . . • • _ ' • . •0000 0000

0000 0000 0000
eQe@ el@e @lOB

0000 0000 0000

_0 00000 00000 00000

•" '"""' ..... oooo_-)0 00000 (DO000

0

0

0_000
eeeee

0oo00

0
0
0
o
0

0000o oOoCO

..... gjgg.00000

00000 O00CO OOOO0

dgdg4 g_d_ gdddd

0

o
o
o
o
0

OOOCO OCO00

dgdgZ &dddd

00000 00000 00000

dggdo ooooo""""" ogogg

,--4

Z

' • D

_0 _.,I
0

0
C
0
0
0 Z

000o0 •
eoooo D

0000_
0

Z
00000 _ 00000
@e@e@ _ i@e@9

00o00 _ 0000o
C

109



000000

++÷÷+÷

000000
000000
0_0000

gggggg

r_ ,4_O" fxJ i.,ma_

Y.

I--

:E.

!

I

',.I.p
n

0000o0
+÷÷@+@

000oo0
00o000
000_00

gdgd d

L*A

T
i_.

I.L

(.3

U3

:£

,--3

C

IIi

"1-

I--

:[

C9

110

0000000
+÷÷÷+_÷

0000000
0000000
00_.0_
__C_

gdgZgdj

_C_



000000
000eeo

000000

000000

_00_

eoeooo

000000

000000
+++÷++
__'_

ddgdgd

__0
0000o0o
÷÷+++_+

_N_O0_

dg_gddd

111



0

0

0 00000 00000 00000 00000 _-,
• Seelo $0e00 0e000 oo00o/?,%

0 00000 00000 00000 00000 ".._ *

(',4
a9
0
p..
0

e,4

I

N 0_00 _0 0
0_00 _0_

0 _ _0_
0 O_N_O ON_O 00000

• '"" ggddd ggJdd0 00000

III I

gouge

0_000

0

0

0 000000 000000 000000 000000
O eeoooo eeoooo ooeeoo oeooee

O OOOOOO OOOOOO OOOOOO OOOOOO

m-
O4
"4-
f-.
O

O

e_ _O _O NO
O_OO OO_OO OOOOOO

• gdgggg gggggg ......O OOOOOO
I IIII gl

O_O_

_hNNOO

gggggd

0

g
O OOOOOO OOOOOO OOOOOO OOOOOO

g gd_dd_ ggdddg ggdgdg gdggdd

0
c_

g

_O,OO_ _,_ O_

0_00 00_00 000000

1 gggggg gggggg gggggg
I llll II

O, r'%,,t,0 c_J

(_I--_oW(DO

dggggd

Y

w

r_

u')
LU

°.i0

0 uJ

I "r

112

OOOOOO OOOOOO OOOOOO
OOOOOe _oeoeo eoe_oo

O OOOOOO OOOOOO OOOOOO

g g g

g _ _oo_o _ _

0_0 00_0 000000
l OOOOOO OSOOO$ tOeOOJ

_ 000000 _ 000000 _ 000000

Z Z III Z II
0 0 0

C)

co
I

_u
Z
O

OOOOO0

000000



_0000_
OOOOOO

I÷÷÷÷1

O_OOOO
_OO_
_O_

eooeoeo

OOOOOOO

OOOOOOO
eeoeeee

OOOOOOO

_OOO_
OOOOOO

II+++l

_NN
_O_N

_O_
__O

eeeeeee

OOOOOOO
IIII0

OOOOOOO
00BeeBe

OOOOOOO

OO

II

N_

OOOO_O
eeeeeeo

OOOOOOO

I!

OOOOOOO
eeeeeoe

0000000

000_0_
000000
+++I+I

ON_O_m

eeeeeee
OOOOOOO

X

C£

,-n

I
tU
-J
_C

O
C_

I

o4

>-
CO

.-4

4"

O
uJ ,_,

-r

000000o0

odggodod

_OOOOO
OOOOOO

I+++÷+

OO_CO

_0_

__00

dddgddgd

__0_
_N

00000000

ddddddJd

_O000N
0000000
I1++++1

00_0_0_
_0_0_
NO__

_0_0_
_0_

ddgggddg

_N

000oo000
OOOI_090

0o0o0000

_0000
0o0000
II+÷+÷

__00

ddgddddd
IIII

Q

OOOOOOOO

ddd_dddg

_O00N
OOOOOOO

II1+++!

0_0_

__N_

N NO__

gddddgdd
III1!

OOOOOOOO

gddgdddd

O0

II
_uJ

_O

OOOO_OO

dddddddg
II

_mm_4_om

oooooooo

000o0000

gddgd_gd

00_000
000000 0
+++÷÷÷ I
__,_
_0_
_O_

_N_O_

dd_ddgdd

__0_

00000000
o_ooe_oo

00000000

_ OOOO_O_
OOO OOOOOOO

tll +÷++1+1

_0_ __
_0_ __

_ _ __NO
0000_0 __0

_dddddd_ ""''""OOOOOOOO

O O
_O_ _ _O_

113



+. OOOOO
eeQoe

OOOOO

+ ..,,

OOOOO
I+III

dggdd
I III

0
t

0

0
I
0,,

o_
p..
o_

p..

0

o

0
÷
w
i_-

0
h.
N

0
I

0

mo_

_o_o

e0eee
O_OOO

I II

OOOOOO
OOOO00

OOOOOO

I IIII

( i

000_0
00000
÷+÷I÷

_0_

dgddd
Pll I

000000

ggddgd

x oOOOOO

@+II+÷

• _ __

' ggdggg
I

114

0
0
4-
Lu
,4"
CO

0

O0

Z O0

LA_LA_
..I Ld_._
CD _0

qJ • •

O0
I I I

0
@
LA_
p.-
p.-

0

O_

o

,v-
I--

_- e,4 ,-.,
OO

u- 4.@
(D w I.I._

i O,O
O _e4
,-, O,,O

_.- OO
-.oN

• •

(D OO
w I

_-_ C,,Jc_ gOU'_II_
_- ,,__'_r__" ,--10

 ddgdgd
n I I I I I
uJ

Z OOOOOO
eleoee

000000

_0_0¢
_0_
0_
_¢_0

ee0ooo

OOOOOO
II II



v)

I
g

0
..J

a.

ooooooooooooooooooo0ooo

ooeeeoeoooooeooooeoeoeo

00000000000000000000000

__000_00_

_ON_O_O00_

__00_000_
0___00_ 0

OO00QOOOOOOOOOOeOOO0000

0000000_000000000000000
I I I I I I I I I I I I I I I I I

..J
I

Z
C_

.-I

i.==s

O0000000000000000000000

 gdogdodggdgggoddddddgg

O0
O0
O0
O0

• O0
0000000000000_00000000

G GGG GGGGGG GGGG  GGGG
II

00000000000000000000000

oddggddddggdddgddggddgd

I

__O_N__O000_
_l oeoooooeo_Oeeee_oeeeeeo

0000000_000000000000000
I I I I I I I I I I I I I I I I I

• 115



0000000
• • • • @ @ •

0000000

,-.000
0000 0

l+++ t
L,LJL,I,;L,_U2 UJ

00_00 0

0",a0 ao,O
r_.o_j(_ir.,-
u% (%10',,-_ N
o,..-_ No,oo

dggogog

,,-4 ,,,4r,,,t f_,l

0000000

0000000

_00
00o0 0

lie+ I

_ N

_N_O_O
e0oeoel

0000000
III I

0

I

00000_0
OIOOBO@

0000000
I

000_
0000 0
+++ I I

ONNO

_ON 0
_00

_mO_O
ooeeeee

0000000

,0

CO
CO
_t

0

0

)<

I,-

_E

nr"

CC
I

..2
cC

0

I
t_

N

>-
C_

",t"

LU
"r

0

116

00000000

dgdddgdg

_000 0
0000 0

I÷+÷ +

_0_

dddddddg

_N

00000000

dg_ddd_

_0000_
0000000

II++++l

O0_ONO_

_O_N_

_N_O

eeeeelee
00000000

_0_

00000000

gggoddgd

_NO0 0
0000 0

I1++ +

N_ N

_0_

d_ddddd_
II I

00000000

ooeeeeeo

00000000

_000_
0000000

lll+++l

NO__
N_N_O
@O@@@@@@

00000000
IIIII

_N

00000000

&dd_ddgd

0

I

N

0
00000_00

dgdggddd
I

N__O_

00000000

ddddgddd

00000000
@@oooooo

0000000o

0000 0 0

++÷÷ + I

_0 _
_0_ _
_0_0 _

_0_0_

ddgdd_d_

00000000

ddgdgddd

_N 0000_0_
000 0000000
III ÷+++l+l

_ON _N__

o_ __N

_ _ __0
0000_0 _m__O

ddddgggd gddddddd

_O_N _ _O_N

CP
_r
I
_b
I

I--
..J

C:)

<I"

0
@

0

0

c_

O_

0
0

0

0

oo
_0



00000
ooeeo

00000

_0_
OOOOO
I+III

O_O_
_O_

gdg g
l III

0

0

,=.4

0
I
ILl
I'-
",I"
,,1"
,,-4

it%
,4"

0

0

0

0

N
O
4.

LU
N
0",

4"

N
e,j

O
I

O

mO_

_O
ioeoo

0_000
I II

000000
eeoIoe

o00000

,..-Ic_ ,0 aDcD
,_D,0 .-._ 0'0

,,t 0,000,-_

ogoodd
I I I I

000_0
00000
÷÷÷1÷

_,_

_mo_o

dggdd
lJl I

000000
OOOO00

00o000

x 00oo00
_÷II_

_0_00
_0_0_

I ooooeo

000000
!

,,-4

0

I
LlU
,0

O"
(X)

0",

O0

O0

OO
Zoo

4.÷
:D l.,ul.u
.j O,0
O en,4"
U _OaD

,,0_0

I ..-'_

c'_ OO
I

0
4.
l.u
a0

O_
l--
_n
N

d

0
I._ O0

x O0

I--

O0
u. 4.4.
C) I.uu3

I"-.,1"
Z t_u%

CD Ou'_
,-, eklC)

I,- ,.4,-4
,-,N

CD (DO

,n I

_0_0
I

III I

w

w
>
Z 000000

OOOOOO

_,0_

0_

0logo0

OOOOOO
D II II
O

117



00000000000000000000000

ggdgdggdogdddgggdgddgdg

I

oeeeeeeeeeeeeeeeeeeeeee

0000000_000000000000000
I J I I I I I I I I I I I | | | I

k--
i.-.t

ar

.-,I

I
Z
0
_J

00000000000000000000000

godggdgggggdggdggggoddg

0 000
0 000
0 000
0 000
0 000

0000000_00000_0000000

dddddddlddddgd_ddddddZd
I1|

;

00000000000000000000000

dggdggdggdgd_gogdgdgggd

I

ggggggg2gggggddg&gdgddd
I I I I 1 I I I I I I I I I I

118



O

_000
0000 0
I +++ I

0_00 0

ooeoglo

00o0000

OOOOOOO
eeee0ee

0000000

OOOO o

I1*÷ I

• o • • I • •

0000000
III I

0

I

00000_0
OOOOOOO

0000000

I

OOO_
OOOO O

+++l I

ONNO

_ON O
_OO
_N_ N

_0_0
O0tOlll

0000000

CO
,0
I/%
0'

,0

e4
I

0
l

0

Lkk.

X

r_-

a_
I

_J
a_
D

I

>-

-r"
I--

00000000

dddgdddd

•.._0 0 o
O0 0 0

I÷ + +
LULLJ LIJ LLJ
O0 U_ 0

II_,P_- _ 0

_',_ ,4" 0
.-_0 I_ _-
O..-40 _t O,-_ OO

d_dgddd,_

.-._,..._-.toJO, g

(DO000000

gdd_ddd_

00000000
OO00000O

O00OO000

_ 0 0
O0 0 0

II + +

_0 _
o_ _
_o_0_00

ddgdddd_
I I

00000000

dggddggd

00000 0
II1++ I

O_

:_ III I

,=_._-r'.-O_N _ -'4'4I_'O_'_D_N

00o00000

ddgg_ggd

0
I

N

0
00000_00

_ddddddd
I

__0_

O0(DO00OO

ddg_gddg

N
0 0
I O

0

OOOO_O_O

gdddgg&d

00000000

ggdgddgg

O0 0 0
O0 0 0 0
++ + ÷ I

_0 0 _

dddddddd

0000_000

dddd_dd

0000_
00000 0
++÷+1 I

dddggggg

0

O_

0

0

0

0

0
f_

0

0

I 0
U

119



OOOOO
OtelU

OOOOO

NON_
OOOOO
I÷III

00000
I III

O

O

O
I
_u

0"
,,I"
O"
t--
I,-4

O

O

O

N
O
4,
Lu
P4
(7'

,-4
ed

O
I

o

O

O
N

_O_OO

gggdg
! I

OOOOOO
el011e

oooooo

_O_ _

_O_OO_
eloeeo

00000o

I o lJ

,

OOO_O
OOOOO
÷+_1+

_O_

OO_
_._@_

ggd g
III I

OOOOOO

gggdgg

x oo0000

-- ##11÷+

NO_40W
_NN_

dgd;dd
I

120

O
O
÷

u.}
i/%

,,.4
O,
0

d

N
0

4-

tu

0

o
,,t

d

l

OO u_ OO

O0 x (DO

,Y
p.

Z O0 O0
• -I- .1- u. +÷

UJl.U CD IMI.U

U OO _ CD OO

I O'N =) .-_N

O OO O OO
I I I v, I

_;_0_0

III I

uJ

ILl
>
Z oOOOOO

" dg dgZ

.._,om_,4"

_- OP--w? (_

_. O e O • O •

I-- 000000
D I I I I
O



O
.J

k-
I
o.
U.J
C_<Z

uJ

nr

0000000000000000000
oQoeeoooooeoooooeee

0000000000000000000

.

11,

C

e'-

I

u
I

_J
w
Q

U

>-

=g

I

_J

c'-.

(2

x

0000000000000000000
oeeeoeooOeeeeeo_ele

0000000000000000000

_00o0o00000_000_
___,e_O_O_

ddddddd d ddddddddd

0000000000000000000

dSd ddd dSd d ddggd

OOCO000000000000000
oooeooeoooooooooeoo

0000000000000000000

0000000000000000000
oooeoeeoooooeoeoooo

0000000000000000000

Illlllg



_ 0000000000000000000

_dgdddg_dd&dgdddddg

_0___0_0_

J

0000000000000000000
ooeeooeoooeeeeeoeoe

00000000o0000000000

_¢_0_@_000_0_
_0_0_¢_000_

__O0_O_O000_N
0__0__000_

dggddgd_ggdgdgdddgd
l f l I I I I l I I I I I I I I

A

!

I--
_J

uJ

_0000000000_000_

00__0000_00

_ddddd_Sd_ddgd_ddg_

!J3

I

l--

r_ ..,

e,,

X

O000000000OO0000000

_ddSdd&_d_ddddgdddg

0000000000000000000

godogddgdggggdddddg

0000000000000000000

dddggdgdddgodgdddg_

__0___

lllllll

122



00_000
000000

WW_WWW

_0_00

• • • • 4 •

000000

UJ

U

r,"

UJ

..J

f-

Lu
n,
¢..

COCO00
O000CO
÷@÷@÷@

0_0_0_
_0_00
_0_0_
_-_00

dd d d

L_

.M.
@

C3

u

u..

Z

I..-
u
w

ew

0
U

00_0000
0000000
÷÷÷+÷@÷

__0_
_0_0_

oeeeeee

0000000

123



J
_" 0000

._ - dggd

C

++I+

0000
0000

ooeo
00o0

II

z
I

u I

_ III



J
=[ 0000

- dddd

UJ

_ 0000
UJ +÷1 ÷

aC,O,.O_

CU"aO0

eC ,.l" O, _O

"* ggdd
t I

Z

I
u..

t-- ,..I
w

>.-

"r
4",,,1",',

,,.<¢¢_ <_'

III

t._t_)t._f,.,.)



TABLE V
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Subroutine Description

The computer program for generating correction factors (EIGC) consists

of twenty subroutines. The MAIN of this program reads and writes the header

card and reads the control dimensions for a case; the latter are used for

dimensioning most of the complex arrays that are passed into Subroutine

WEYT via the argument list. Subroutine WEYT is the actual working main

of the program, which calls all the major subroutines, supplying these with

the necessary information via their argument lists. The following is a

detailed description of all subroutines of program EIGC including their

flow charts, where app]icab]e, given in alphabetical order. The computer

program is written in the FORTRAN IV programming language.
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SUBROUTINE CEMNINPgT, IGg, MgDE, NTAPSA_ NP_ NMON_ LABEL? NUTL_

SAI_ DCPTIL_ CE)

Functional Description

This subroutine integrates the corrected pressures, ACp , into

coefficients, Ce, which are used to monitor the results (Se_ Eq. (3)).

The integration procedure is identical to that required for obtaining

the imposed constraints.

{Ce} = [S] {ACpe}

The coefficients Ce are part of the printed output.
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Description of Arqument List

NPI_T Data set number of the system output data set

IG_ l for symmetric modes

2 for antisymmetric modes

Mode number

Data set (tape) number of tape containing the

integration matrix [S.]

NP Number of rows in the ACp matrix

NMON Number of integration rows used for monitoring

LABEL Alphanumeric label describing the aerodynamic

parameters

Data set (tape) number of tape containing columns

of the weighted pressures, aCp

A row of the integration matri_ [S]

A column of the weighted pressures {AC_}
Pe

A column of the aerodynamic parameters {Ce}

M(_DE

I'ITAFSA

NUTL

SAI

DCPTIL

CE

Callin 9 Subroutine WEYT
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F]ow Chart

I Initialize

Begin loop on NM_DE

_r

/
DCPTIL from/

tape NUTL /

Begin

m m .

loop on NM_N

Read /

SAN row /
from tape/

NTAPSA /

Compute

CE = SAN
*DCPTIL

LABEL,

CE

End

End

loop on NM_N

loop on NM_DE
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SUBROUTINE DCPB(NTDCP_ NTAPW_ NTAPDI_ IG_ IFP_ IFW_ NR_W_ NC_L_

NMAX_ DCP_ C_L, W_RK)

Functional Description

This subroutine computes the theoretical pressure distribution if

it is not input. Specifically

{ACpt} = [D] "l {W}

where W is the normalwash and [D]-l is the inverse of the aerodynamic

influence coefficient matrix. This corresponds to Equation (1) where [D] -l

= [A]. ACpt is called DELCPB in this subroutine.
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Description of Argument List

NTDCP

NTAPW

NTAPDI

IG_

IFP

IFW

NRQW

NCQL

NMAX

DCP

C@L

WQRK

Tape number containing the matrix of pressure

coefficients, [AC.], in column order

Tape number containing the normalwash matrix,

[W], in column order

Tape number containing the inverse-D matrix, ([A])

[DI], in row order

I for symmetric modes,

2 for antisymmetric modes

Control flag (see input flag FLAGP).

IFP = O, 2, 3 means premultiplying correction

factors, IFP = l, 4 means post-multiplying

correction factors

Normalwash flag. IFW = 0 means normalwash

is tape input (if any),

IFW = l means normalwash is card input

Number of rows in the AC_matrix

Number of columns in the AC_matrix

Maximum number of columns in the AC_matrix
L

One column of the AC_trix (complex)

Temporary work array (complex)

The NROWx NMAX complex array containing the ACnmatrix

Callin 9 Subroutine WEYT
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Initialize;
define
NTAPE

N_

YES

r

!ead WTAPE
rom

ompute
ELCPB =

IxW

/DELCPB

col umns

_r

Read /
DELCPB from/
NTAPE into/
W_RK I
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SUBROUTINE DCPT(NP_T_ FLAGBI IG_, M_DE_ NPI NSCRCHI NUTLI NTAPDII

NTAPW i NTAPCF, X, Y, Z_ GMAI DELA_ NMAXI NEM, W,

DI i EPS_ DCPBAR_ DCPTIL_ W_RKI EB)

Functional Description

This subroutine modifies the theory with the calculated correction

factors. If a premultiplier is used the theoretical pressure, ACpt is

modified to produce the modified pressures ACpe (see eqs.(2) and (5)).

I aCpel = [l+_]IACpt }

If a postmultiplier is used then the downwash, W, is modified to produce

the corrected pressures ACp (see eqs. (5) and (28)).

IAOpe} : FD]-I Fl+cJ {W}

If the new postmultiplier is used then

IACpel : [D]-I {W + [¢] {_}}

:

{2} = [¢]T{ACpt}

(See eq. 65)

Also the correction factors, CF, are written on tape where

CF : l+e
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Description of Arguments

NP_T

FLAGB

IGIB

M_DE

NP

NSCRCH

NUTL

NTAPDI

NTAPW

NTAPCF

X

Y

Z

GMA

DELA

NMAX

NEM

150

Data set number of the system output data set

Option flag for correction matrix calculation and/or

monitoring of data

l for symmetric modes

2 for antisymmetric modes

Mode number

Number of row elements in the ACp matrix

Data set (tape) number containing the ¢ matrix in

row order (for FLAGP=4 cases only)

Data set (tape) number on which the ACpeCOlumns

are saved

Data set (tape) number containing the D-I matrix rows

(if needed) (D-I = A)

Data set (tape) number containing the W matrix columns

(if needed)

Data set (tape) number on which the matrix of correction

factors, CF, is saved in column order

x coordiantes t

y coordinates of the pressure points or the ACpt

z coordinates t

Dihedral angle array of the boxes over which the

pressures act

Array of box areas

Column dimension of the two-dimensional complex

array W_RK

Number of correction factor modes



W

DI

EPS

DCPBAR

DCPTIL

WiBRK

EB

A column of the W matrix (complex)

A row of the D-l matrix (complex), (_A] matrix)

¢ array

A column of the aCpt matrix (complex)

A column of the aC_matrix (complex)

Two_ dimensional complex array containing the aCPtmatrix

E array (E = _)

Calling Subroutine WEYT
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Initialize

:LAGB= 2

YES

ad and
te code

from tape
NTAPCF

_ad
CF from
tape
NTAPCF

Compute
EPS=CF-I.O

Begin
loop on M_DES

FLAGP=I ,4

YES

Read W
from tape
NTAPW

or

Begin
loop on NEM

ad

column
from tape
NSCRCH
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Begin loop on NP

_r

Compute
CF=l+e

AGP =

YES

N_ : 0

YES

Compute
C_L = ¢

ES

Compute

ACpe [D] "I (l+eW

Compute
AC:[D] -I

(w_+c_)

Compute I

1
e, ACpe /

End loop on NP

153



Flow Chart

Begin loop on NP

I

CF = l.O I

IaCpo = aCpt

geometry,/
_, AC_ I

Pe I

End loop on NP

_V

Write mJ

ACR col u
on _;ape
NUTL

FLAGB=I YES

CF on

tape NTAPCF

End

/

loop on M_DES

V

PrintcF ./
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SUBROUTINE DELC(NTAPE, NP_T, NC, NP, NMpDE, NMAX, CIE, DCI_ SAI, W_RK)

Functional Description

This subroutine forms the difference between the theoretical, Ct, and

the experimental (constrained) Ce_ coefficients (see Equations (9) and (lO)).

{ACe } = {Ce} - IS] {_Cpt}

It also prints out Ct ( = IS] (ACpt}) and AC.
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Description of Argument List

NTAPE

NPgT

NC

NP

NM_DE

NMAX

CIE

DCI

SAI

WORK

Tape containing rows of the integration matrix, [S] _

Data set number of the system output data set

Number of constraints applied to ACp values

Number.of row elements in the ACp matrix

Number of modes

Maximum number of columns in the two-dimensional

W_RK array

Array containing the input values

_e (experimental constraints)

The [ACe] matrix

A row of the integration matrix [_

The NP by NMAX complex array containing the ACpmatrix
t

CalIin 9 Subroutine WEYT
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Flow Chart

I Initialize I

Begin loop on NC

_r

R_d /
SAI row /
from tape/

NTSAIJ /

1
ICompute 'I
CI=SAI*DELCPB 'I

DCI=CIE-CI ]

End

r

/Print/

DCI
values

1
Print
CI
values

loop on NC

/
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SUBR(_UTINE EDBL(NP_T_ NELIMS_ NP_ NS_ LIMK_ JARR_ NSM_D_ EBMIN,

EBMAX_ EBp ELIM)

Functional Description

This subroutine compares the correction factors, _, with the input

limits _min' _max" If any _ falls outside of the limits it replaces

with the closest limit. (The values of _ are correction factors if

correction factor modes do not exist). This subroutine forms the final

correction factor array _ (see paragraph below Eq. (60)).
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Description of Argument List

NPgT

NELIMS

NP

NS

LIMK

JARR

NSM_D

EBMIN

EBMAX

EB

ELIM

Data set number of the system output data set

Number of input cards for EBMIN and EBMAX - see below

Number of row elements in the ACp matrix

NS = NP + NC when NEM < NP

NS = NEM + NC when NEM > NP

A two-dimensional array containing the first- and last box

numbers that define a range of boxes (or ACp) over which

a limit is to be placed on c

Array of the box numbers for which the e values are

modified

The number of ¢ values which are modified due to the

limits placed on these

The minimum- and maximum value allowed for the values

of c for boxes (or ACp) in the range defined by LIMK
m

Array of the calculated ¢ values

Array of the c values that were modified due to the

_min' _max restrictions

Calling Subroutine WEYT
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Flow Chart

I initialize;iK = 1

Begin loop on J=l, NS

_r

YES

I YES

_V

I JCUM=JCUM+I I

N__

ES

160

ETEMP=_mi n

JARR(J)=J I

ELIM(J)
= ETEMP

loop on NS

NSM_D=JCUM



Elow Chart

LIM

r

YES

K=K+I K=l

p
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SUBROUTINE EPSJ(NTPHIJ, NP, NEM, NS, EB, EPS, PHI}

Functional Description

m

This subroutine relates c to E, as in Equation (53).

{_} : [¢] {_}

where [¢] are correction factor modes and where

E = I _p for premultiplying correction factors

_w for postmuliplying correction factors
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Description of Argument List

NTPHIJ

NP

NEM

NS

EB

EPS

PHI

Tape number containing the ¢ matrix

Number of row elements in the ¢ matrix

Number of correction factor modes

NS = the greater of (NP+NC) and (NEM+NC)

Array of the _ values

The final _ array

A column of the matrix of weight factor mode

shapes, ¢

Callin 9 Subroutine WEYT
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Begin

I Initialize I

YES-_.

N_

i

_V

iead /

-row /

rom tape/

1
Compute

{_}:[_]{_}

loop on NEM

End loop on NEM
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SUBROUTINE GINV(NP_T, NTAPSB, NC, NS, NX, DC, EB,_B, S, SBB)

Functional Description

This subroutine provides a general inverse of the following set of

equations:

NC I {ACe} = IS] {E} INS

When NC = NS (Direct Solution)

When NC

{_}: [i]-I
{ACe }

< NS (Minimization Solution, _ 2 = min (see Eq. (20))

_u
"b

{c} : [i] H {>,}

{X} : [IS] [_]H]-I {aCe }

When NC > NS (Least Squares Solution _ ACe2 = min.)

{E} + [[_]H C_]]-I

{_} = [_]H {ACe }

{ACe }

In the above;

is] =

where [_] given in Eq. (51). The term e is given in Eq. (22).

script H indicates the Hemitian transpose.

The super-
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Description of Argument List

NPgT

NTAPSB

NC

NS

NX

DC

EB

B

S

SBB

Data set number of the system output data set

Tape number containing the S matrix

Number of constraints; number of rows in the S

matrix (SBB)

NS = the.greater of (NP+NC) and (NEM+NC);

number of columns in the S matrix

NX=NS if NEM=O, NX=NEM + NC otherwise

The complex aCearray

The complex array {E}, output of subroutine GINV

An array of intermediate solutions (complex)

A complex two-dimensional work array of dimension

NC by NC

The complex NC by NS matrix, S

Calling Subroutine

Called Subroutine

WEYT

MIS2, the standard IBM system subroutine

for solving complex matrix equations
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_1ow Chart

I
Sol ve

DC=SBB*EB

Read SBB /
from tape

/

Compute T
B=[SBB*]"

* DC

Compute T
S=[SBB*]"

* DC

Sol ve
B=S*EB

for EB

Pr,,,t/solutions/

EB ,]

i
Compute
S = SBB T

.[SBB*]"

Sol ve
DC=S*B

for B

Compute T
EB=[SBB*]"

*B
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SUBROUTINE MATM(NT_ IG_, NR_ NC_ NMAX, A, C, B)

Functional Description

Subroutine MATM is essentially a matrix multiplication routine.

It obtains the DI matrix ([A]) rows from tape NT and the W matrix from

the two-dimensional array B. The results of the matrix multiplication,

ACp , are saved in array B which is returned to the calling routine,
DCP_, via the argument list.

Description of Argument List

NT

IG@

NR

NC

NMAX

A

C

B

Tape number containing the inverse-D matrix

1 for sJnnmetric modes

2 for antisymmetric modes

Number of rows in the ACptmatrix

Number of columns in the aCp matrix
t

Maximum number of columns in the aCpmatrix
I:

A row of the inverse-D matrix, [A]

Complex work arty

Two-dimensional complex array in which the aCp

matrix is stored

Calling Subroutine DCPB
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SUBROUTINE M_DF(NC, NS, MASTSB_ NEWTSB_ JARR_ SqRTT t ELIM_

SBB_ DCI_ DCM_D)

Functional Description

When some of the values of _ have exceeded their limits and have

been replaced by the limit values, these new values of _ (called Ed in

Equation (56) are then considered fixed and known. However the constraints

are now not satisfied and a change in the constraint aCe , i.e., aCmod,

is calculated (see Equation (59)).
z

ACmo d = ACe - [Sd] {_d }

Since the new values of _, i.e., cd, can not influence solution further

the _ matrix=must be changed to delete the influenc_ of cd. Thus the

elements of S that give the influence of_E d, i.e., Sd, must be eliminated
m

resulting_in _u" This subroutine forms Su, or in the notation of the computer

program [Smod ].
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Description of Argument List

NC

NS

MASTSB

NEWTSB

JARR

SQRTT

ELIM

SBB

DCI

DCM_D

Number of constraints - dimension of the complex

arrays DCI and DCM_D

Dimension of the complex array SBB

Tape number containing SBB arrays (i.e., rows of the
L

matrix)

Tape number containing the modified SBB arrays (i.e.

rows of the Sn_ d matrix) Smod = _u

Array of the element numbers for which the S-values

are replaced by zeroes

- see Equations (23) and (34)

Climj, array of the modified E values

Complex array containing rows of the _ matrix

Complex array containing ACe

Complex array containing aCmo d

Callin 9 Subroutine WEYT
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Initialize I

Begin loop on NC

V

/_MARead /

BB row /

rom tape/

STSB ]

Begin loop on J=I,NS

ES

'r

Compute
SUM=[SBB]*
ELIM*SQRTT

SBBmod (J)

= 0.0

End loop on NS

F

Compute

ACmod =

AC - SUM

Write

SBBmodrOW

on tape
NEWTSB

/Print/SBBmo d

rOW

Print /
aCmod

loop on NC
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SUBROUTINE PHIJ(NPIT, NP_T, NTPHIJ, NEM, NP, K_DE, M_DES, X, Y, Z, PHI)

Functional Description

This subroutine forms the correction factor modes. If _ is input

element by element (TYPE = O) then this subroutine simply arranges the

data into arrays. If TYPE = 0 then modes are calculated as follows:

n_

(xj - a_) TYPE = l

n_

(yj - a_) 2

n_

(zj - a_) 3

exp[b_(xj - a_) n_] 4

exp[b (yj - a_) n_] 5

exp[b_(zj - a_) n_] 6

where a b n are input per mode and where Cj_ = 0 over boxes are not considered.
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Description of Argument List

NPIT

NP_T

NTPHIJ

NEM

NP

K_DE

M_DES

X

Y

Z

PHI

Data set number of the system input data set

Data set number of the system output data set

Tape number containing columns of the NP by NEM

¢ matrix

Row dimension of the ¢ matrix

Column dimension of the ¢ matrix

-] (end indicator of card input sets)

not used

xIy coordinates of the pressure points or

z of the aCp'S

Complex array containing one column of the ¢ matrix

Callin 9 Subroutine WEYT
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FIow Chart

I Initialize

I

Begin L loop
on NEM

/Read /

/control /

/ data for i

_YES_

N_

_, ,,
!ead / /Read /

_.L_. / I_.,j IIML2 /

s needed/ / as needed/

Ii rint /
ontrol

ata

I Compute I

one C-column I

as specifiedl

by TYPE

rite ¢- /

oton tape/

TPHIJ /

Pri°t /
¢ matrix /

in column/

order ,J
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End loop on NEM
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SUBROUTINE P_SN(NT, IG_)

Functional Description

This subroutine positions tapes of a certain uniform format for

reading; see Tape Description for NTDCP, NTAPW and NTAPDI.

Description of Arqument List

NT

IG¢

Tape number to be positioned for reading

l for symmetric modes, 2 for antisymmetric modes

Calling Subroutines DCPB, DCPT, MATM, SBAR
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SUBROUTINE RECD{NTAPE, A, N)

Functional Description

This subroutine reads arrays #f real numbers A of length N from tape

NTAPE one record at a time. It is used for the reading of the geometry

arrays when these are input from tape NTGE@M.

Description of Argument List

NTAPE

A

N

Tape number

Array to be read from tape

Length of array A

Callin 9 Subroutine WEYT
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SUBROUTINE SAIJ(NPIT_ NP_T_ NTSAIJ_ NTSANJ_ NC I NP I NM_N_ NAXIS_

AIT_ CIE_ X, Y, Z, CG, SG, DELA_ FLAGA_ FLAGF_

K_DE_ IPRINT_ LABEL_ SAI)

Functional Description

This subroutine sets up proper argument lists for SROW so that

integration matrices, [S], can be calculated for both constraining

and monitoring purposes.
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Description of Argument List

NPIT

NP_T

NTSAIJ

NTSANJ

NC

NP

NMQN

NAXIS

AIT

CIE

X, Y, Z

CG, SG

DELA

FLAGA

FLAGF

Data set number of the system input data set

Data set number of the system output data set

Tape number containing the integration matrix rows,

SAij, for constraints

Tape number containing the inegration matrix rows,

SAnj, for monitoring

Number of constraints

Number of aCp elements

Number of sets of the monitoring data

Number of axes

Constraining effectiveness of the experimental data, ai

Experimental (or any other) constraint on the data, Ce

Coordinates of the pressure points (boxes)

Cosine-, sine of box dihedral angles

Box areas

Axis flag

= O, axis endpoints are input

= l, direction cosines are input

Force/moment flag

= O, Ce is a force in the direction of axis

= l,C, e is a moment about axis
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K_DE

IPRINT

LABEL

SAI

= -l

Detail print flag

IPRINT= l, print SAij

and SAnj rows

IPRINT = O, bypass print

Alphameric identifier of the integrated parameters

Complex array containing a row of either one of the

integration matrices SAij or SAnj

Calling Subroutine

Called Subroutine

WEYT

SRBW
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Flow Chart

Begin

End loop

lead and /

rint /

xis data/

_TN_

_ --loop on NC

Read and /

print /

constraint/

data /

_a__0_\computes ]

SAI row /

/ rite/SAI row

on tape
NTSAIJ

on NC

____0_ YES--_

180

Begin

,)

loop on NM_N

/ eadand/print
monitor

data

Cal I SR_W_
computes )

SAN row /

/ ri e/SAN

rOW

End loop on NM_N

 rin' /AI rows

if any)

+

Print /

SAN rows

(if any)



SUBROUTINE SBAR(NTSBIJ_ NTAPDI_ NC_ NP_ NS_ FLAGP_ FLAGT_ FLAGW_

I_ IG_, SQRTT, AIW, SAI, DII. W_ DELCPB I SBI)

Functional Description

This subroutine solves for the matrix SB! where

-l

SBI = [S] F _-Tj

The matrix [S] contains all the capability of the program except modes

and limits. This capability is outlined in Eqs. (45), (26) and (9) for pre-

multipliers and (45), (39) and (30) for postmultipliers. The weights T are

defined below Equation (47).

SBI --
I _ij

0

when j = l, 2.-.NP, i = l, 2.-.NC

when j = NP + i

otherwise

where NP = number of pressure values and NC = number of constraints.

SAij

WT i

I SAij aCpj/ _ when aCp available

! _ SAi DI_j Wj/VT_j when ACpj not available

I ,b ,t, _v
(l - ai)/a i ai > 0.0001

< . 0001
1°4 -

Tj
I ,iACpt)

or

Iwl

l_.O

FLAGP k l

FLAGP : l

FLAGT = l

FLAGT = 0
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Description of Argument List

NTSBIJ Tape number containing rows of the integration matrix

without weight factor modes,

NTAPDI Tape number containing rows of the inverse-D matrix

NC Number of constraints

NP Number of aCp elements

NS Length of the SBI matrix rows

FLAGP Option flag for ACp and/or pre- or post-multiplying

correction factors

Option flag for weights

Option flag for normalwash input

An intermediate index

I for symmetric modes

2 for antisymmetric modes

= _ ; see equations

%

Constraining effectiveness ai

A row of the integration matrix $I.
lj

A row of the inverse-D matrix

A column of the normalwash matrix

A co]umn of the aCpe matrix (lifting pressure coefficients,

input, aCp, or computed as [D]-leither {W} )

A row of the integration matrix without weight factor

modes, [_] [v/_ j-I , T* = I T _ for constraints

l l__...aa for estimatesa

FLAGT

FLAGW

I

IGQ

SQRTT

AIW

SAI

DI

W

DELCPB

SBI

Callin B Subroutine SDBL
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Flow Chart

Begin

I nit!alize )

YES

I loop on NP

Read /

DI row /
from tape/

NTAPDI ./

Compute
SBI =
SAI*DI

End P

Y

I Compute I

SBI= |

SBI+W/SQRT_

Compute I

SBI=SAI* m
DELCPB/SQRT_

Remaining
SBI element
SBI=AIFIX

Compute
remaining
SBI element

SBI=(I-AIW)/AIW

Print

SBI row /
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SUBROUTINE SDBL(NSCRCH_ NUTL_ MASTSB_ NTPHIJ_ NTAPW_ NTSAIJ_

NTAPDI_ IG_ FLAGW_ FLAGP_ FLAGT_ NC_ NP I NS_

NEM_.SQRTT., AIT_ DELA_ SBB_.SBI, SAI, DI, W, PHI, DELCP)

Functional Description

m

This subroutine calculates IS] described in Equation (54}. The quantity

calculated in this routine includes estimates and thus

[_] = [SBB] = IS] I: '0]-'-|I-
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Description of Argument List

NSCRCH Tape number containing columns of the ¢ matrix

(if any)

NUTL Utility (scratch) tape number

MASTSB Tape number containing the _ matrix rows

NTPHIJ Tape number containing the ¢ matrix columns

NTAPW Tape number containing columns of the normalwash matrix

NTSAIJ Tape number containing rows of the integration matrix, SAij

NTAPDI Tape number containing rows of the inverse-D matrix

IG_ l for symmetric modes

2 for antis_nnmetric modes

FLAGW Option flag for normalwash input

FLAGP Option flag for aCp input and/or pre- or post-multiplying

corrections

FLAGT Option flag for weights

NC Number of constraints

NP Number of aCp elements

NS = max (NP+NC, NEM+NC)

NEM Number of correction factor modes

SQRTT _ , see equations

AIT Constraining effectiveness ai

DELA Box areas

SBB A row of the _ matrix (integration matrix with weight

factor modes)

SBI A row of the [2] F v_*J -l matrix

SAI A row of the S.ij elements
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DI

W

PHI

DELCPB

A row of the inverse-D matrix

A column of the normalwash matrix

A column of the ¢ matrix (weight factor mode shapes)

A column of the ACpmatrixt

Callin 9 Subroutine

Called Subroutine

WEYT

SBAR
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F1ow Chart

IInitialize; Idefine NTSBIJ_

Compute I

¢T per I

FLAGP setting]

Begin

End

loop on NC

'V

Read '/

SAij row /

from tape /

NTSAIJ I

omputes rows_

f SBI /

]o_opo_nN_C

Begin

_r

Initialize
SBB row

loop on NC

Read SBI /

row from
tape

NTSBIJ

Begin loop on NEM

r

Read I

C-column /
from tape/

NTPHIJ /

YES

Compute
SBB elements

using ¢

End loop on NEM
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Flow Chart

Compute
m

¢ col umns

olumns
n tape
SCRCH ,

Compute
SBB elements

using ¢

Compute
remaining
SBB elements

So'rite /

BB row
n tape
STSB

End loop on NC
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SUBROUTINE SR_W(FLAGA_ FLAGF_ XII I ETAI_ ZETAI_ CG I SG_ CTIL_

X_ Y_ Z_ DELA_ LIMI_ IIMAX_ I_ NP_ IR I XI2_

ETA2_ ZETA2_ SAI)

Functional Description

This subroutine constructs the integration matrix [S] described

in Equation (3) a row at a time.

Sij = SAIJ =

Aij

I Aij AAjBij AAj

for force calc.

for moment calc.

'b

[ -cosB i sinTj + cosy i cosyj]/c i

Bij = {cosa i [(Yi-ni(1))(cosyj) + (zj-{ i

_ cosB i (xj_ci(l))cos_j

(1))sin_j]

(i-cosYi(Xj-C i ))sinyj

where cos_ i, cosB i, cosy i are the direction cosines of the input axis and

where xj, yj, zj, _j are the coordinates and dihedral of the aerodynamic box

(1) (1) (1) are the coordinates of the one edge of the input axis.
and _i ni _i

SAIJ is of course zero on boxes that are not to be integrated.
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Description of Argument List

FLAGA

FLAGF

XIl

ETAI

ZETAI

CG, SG

CTIL

X, Y, Z

DELA

LIMI

IIMAX

I

NP

IR

XI2

ETA2

ZETA2

SAI

1

Axis input option flag

= O, axis endpoints are input

= l, direction cosines are input

Force/moment flag

= O, ci(e) is a force in direction of axis

= l, ci(e) is a moment about axis

Axis endpoint coordinates, _(1), n(l), {(1)

Cosine-, sine of box dihedral angles

Constant used to nondimensionalize integrated data (c)

Coordinates of the pressure points (boxes)

Box areas

First-, last box numbers for the integration of the

ACp values

Number of LIMI sets input for one constraint

Intermediate index

Number of aCp values

Row index of the Sij matrix

Second axis endpoint coordinates when FLAGF = O,

direction cosines when FLAGF = l

A row of the integration matrix S

Calling Subroutine SAIJ
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Flow Chart

I Initialize I

Compute
direction
cosines

II=l

Begin loop, J=l, NP

,r

I °l

Defi!e
LIMI,
LIM2

I Compute
ABIJ for
forces

SAI =
ABIJ*DELA

Compute
ABIJ for

moments

I II=l

End loop on NP
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SUBROUTINE WEYT(NP_ NC_ NEM, NELIMS_ NM_N_ NAXIS, NMIN, NMAX, NS,

NPIT, NP_T_ W, DI, DCP, EPS, PHI, SAI_ DCPTIL,

DELCPB_ C_L_ CIE_ DCM_D, EBMIN_ EBMAX_ EB, ELIMp

SBB, SBI t S, SBMAT_ DCl, W_RK)

Functional Description

This subroutine is the core of the correction factor method. All logic

for the method is established here. This subroutine uses input to decide

what is to be done and sets up the argument lists for and executes the

calls to all required subroutines. The following flow charts document the

logic flow of this subroutine. This subroutine sets up the logic for

various forms of input data and various types of calculations. The input

data ranges over geometry, pressures, downwashes, aerodynamic influence

matrices, previously generated correction factors, integration matrix data,

etc. This data can enter the program by cards, tapes or both.

TKere are three basic computational branches; (1) correction factor

calculation, (2) monitoring of data (integration of pressures into aerodynamic

parameters) and (3) application of previously generated correction factors

to pressure distributions. Within branch (I) there exists a choice of what

type of correction factors to generate, premultiplier, postmuliplier and

new postmultiplier. Also a choice as to the type of weighting to be used

(i.e. the T) is available. The program also tests to see if limits are placed

on the correction factors and if modes are used. The constraining power

is always input since a constraint is simply a = l.O.
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Description of Argument List

NP

NC

NEM

NELIMS

NM_N

NAXIS

NMIN

NMAX

NS

NPIT

NP_T

W

DI

DCP

EPS

PHI

SAI

DCPTIL

DELCPB

Number of aCp elements

Number of constraints

Number of correction factor modes

Number of input cards for the

EBMIN, EBMAX pairs

Number of sets of monitoring data

Number of axes for use in the inegration of the

ACptvalues

= max (l, NELIMS)

= max (NC, NMIN, I0)

= max (NP+NC, NEM+NC)

Data set number of the system input data set

Data set number of the system output data set

A column of the normalwash matrix

A row of the inverse-D matrix , (A matrix)

A column of the theoretical aC_matrix

Incremental weight factors array, c

A column of the weight factor mode shape matrix, ¢

Integration matrix row array , [S]. SAN = [S] for monitoring

A column of pressures modified by weight matrix, ACE

A column of the unmodified lifting pressure coefficients, ACpt

(either input, ACp.t or computed as [D] -! {W})
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CI_L

CIE

DCM_}D

EBMIN, EBMAX

EB

ELIM

SBB

SBI

S

SBMAT

DCI

WI_RK

Complex array for intermediate use

Array of the experimental constraints, Cei

Array of the modified ACevalues

Minimum-, maximum values allowed for the E array to take

M

¢ array (incremental weight factors) (E = ¢_)

Array of the modified E values

A row of the _ matrix

A row of the [2] F_/-T_ ]-l matrix

A two-dimensional complex work array of dimension NC by NC

matrix of maximum dimension NC by NS

Array of the ACevalues

A two-dimensional complex array of dimension NP by

NMAX in which the ACptmatrix is stored

Calling Subroutine

Called Subroutines

MAIN

CEMN, DCPB, DCPT, DELC, EDBL, EPSJ,

GINV, M_DF, PHIJ, RECD, SAIJ, SDBL,

WSWA
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Flow Charts (Read in geometry and pressures)

Read /
control flags/

and print /

N_

geometry
from tape

(ES

Read /

real AC.=aCn /

from ta_e vt/

NTDCP /

Move aC_ I

into complex I

array I

/Writecomplex AC
on tape

I NTDCP =NEWDCP

ead /
eometry /

rom card_

nd print/

ES--

_r

/Read real/ _ead com- /
ACp from/ Alex aC

. /romca_d_
cards /

I Move ACp into Icomplex array I

complex

aCp

ACp on tape I
___L I
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Flow Charts (Calculation , of S, ¢, W)

Save arrays

CG = cos_ i

SG = sin_ i

Rewind

NTSAIJ,
NTSANJ

,all

computes
SAI, SAN
matrices

IMS=O

_ad
E-] imits
from

YES

YES

EM=O

CcalI PHIJ'_
omputes
¢ matrix

or

:LAGP=3

YES

Cal I WSWA\

reads W \

from cards _
saves on /

_ape /

I 'NM_DE:NMSY",

Rewind
NTAPCF
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Flow Charts (Basic method)

.2 /CallSOB,\
_/ Computes /\ssa

4r ,r _

Iwritethe / /Write the /

/word "PRE"/ /word "P_ST'I
/on tape / / on tape /

/NTAPCF / _ NTAPCF /

Write /

NP,NMSYM, /

NMASYM on /

tape NTAPCF/

,_ , '

I InitializeELIMarray I _ I_

all GINV \

omputes \

eneraliz_
_nverse /

I ComputeEB=EB/SQRTT

omputes

LIM

N_
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Flow Charts (Accounting for limits)

_a11 M_DF_

_computes

ACmod

.11GINv\
omputes \

enera] i zed/

_nv_ /

 al, E sJ\
omputes EJ

:all DCPT

computes
DCPTIL

I _--_" I

_NTAPE=NTPHIJ i

N_

all CEMN

computes
CE

_:2

_YM=O

JN_

IGI_=2

NM_DE =
NMASYM

YES

END
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SUBROUTINE WSWAINPIT_ NP_T_ .NUTLI,_NTAPW, K(}DE, NP, NCJ_L,

NMAX_ NMSYM_ NMASYM_ W)

Functional Description

Subroutine WSWA is called from WEYT only if the input flag FLAGW = I.

It reads and prints the mode number and symmetry flag identifying the mode,

the range of boxes over which the input W value applies, and the normalwash,

W for this range of boxes. This card input is repeated for all ranges as

needed, but only the non-zero W values are required as input. The complete

W matrix is assembled from the input and is saved on tape NTAPW in column

order.
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Description of Argument List

NPIT

NP@T

NUTLI

NTAPW

K_DE

NP

NCI_L

NMAX

NMSYM

NMASYM

W

Data set number of the system input data set

Data set number of the system output data set

Utility (scratch) tape number

Tape number containing columns of the W matrix

: -I

Number of row elements in the W matrix

Number of columns in the W matrix

Maximum number of columns in the W matrix

Number of symmetric modes

Number of antisJnnmetric modes

Two-dimensional complex array containing the W matrix

Callinq Subroutine WEYT
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Flow Chart

!ead /

ard input/

nd print/

I Initialize;

accumulate

modes NSYM,
NASYM

rite'W /
ol umns _/

n scratch/
ape I

Write NP, /

NSYM, NASYM/
on tape I

NTAPW /

Copy W col-s/

from scratch/
tape onto /

NTAPW /

/
Print

col umns
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SUBROUTINE ZER_UT(W_RK, LENGTH, L_P, ITAPE)

Functional Description

This subroutine initializes a complex array W_RK of length LENGTH

to zeroes. In addition to this, when the argument ITAPE # O, the complex

zeroes stored in W_RK are written on tape ITAPE as many times as specified

by the argument L_P.

Description of Argument List

W_RK

LENGTH

LO_P

ITAPE

Complex array to be initialized to zeroes

Length of the complex array WBRK

Number of times the array W_RK is to be written on

tape ITAPE (only if ITAPE # O)

Tape number on which the array W_RK is saved

LB_P-times (if any)

Callin 9 Subroutines EPSJ, MAIN, MATM, SDBL
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