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Correction of Sturm-Liouville Eigenvalue Estimates

By J. Paine

Abstract. The error in the Sturm-Liouville eigenvalue estimates obtained by replacing the

coefficient function with a piecewise constant interpolate is not uniform. In this paper we

present a method for correcting these estimates to obtain a uniform approximation of all

eigenvalues.

1. Introduction. The choice of numerical method for efficiently approximating a

sequence of eigenvalues {Xk}"k=i of the regular Sturm-Liouville problem,

(1.1) —u + qu = Xu,    u = uix),    ' =-j-,       jcE[0, 7r],

(1.2) oii(0) + ¿8ii(0) = 0,

(1.3) yui-n) + Súiir) = 0,

depends on the desired accuracy of the estimates and also upon the number of

eigenvalues needed. When a large number of uniformly accurate eigenvalue esti-

mates are required, it is known [7] that standard methods such as [1], [4] or [6]

encounter difficulties in efficiently estimating the higher eigenvalues because the

corresponding eigenfunctions are highly oscillatory.

One method which has proved useful in approximating a sequence of eigenvalues

(see, e.g., [2], [5], [8]) consists of choosing a partition AN = {0 = x0 < xx < ••• <xN

= w) of [0,77] (usually uniform) and then finding the eigenvalues {Afc}™=1 of the

Sturm-Liouville problem

(1.4) — ü + qu = Xu,       xE[0,tt],

(1.5) au(0) + ßu(0) = 0,

(1.6) yu(tr) + 811(77) =0,

obtained from (1.1)-(1.3) by replacing q by a piecewise polynomial interpolate q on

The order of convergence of this method has been analyzed in [5] for piecewise

constant interpolation and in [8] for general polynomial interpolation. The behavior

of the error as a function of k has been analyzed in [7], where it was shown that,

when Ayy is uniform and q is obtained using midpoint interpolation, the eigenvalue

estimates satisfy

(1.7) \Xk-Xk\<Ch2,       k=l,2,...,[N/2],

where h = -n/N and C is a constant bounded independently of k and h. For values
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of k greater than [N/2] there is a component of the error which grows rapidly as k

approaches multiples of N and

|XA-ÄJ<Cft,       fc= 1,2,3,...,

is the best bound that is valid for all values of k.

In this paper we present a simple modification of the above method which

evaluates and removes the nonuniform component of the error in Xk and hence

yields uniform estimates of all eigenvalues.

2. Derivation of the Correction. We restrict attention to approximating problems

of the form (1.4)—(1.6), where q is defined by

qix) = q(xi+x/2),       x E [x„ xi+x], I = 0,1.JV.- 1,

on the uniform partition A^ of [0, tt] and xi+x/2 = \ix¡ + xi+x). We further assume

that the eigenfunction ûk of (1.4)—(1.6), corresponding to the eigenvalue Xk, is

normalized so that
,.77

ll"J2=IKIl2= !    and        ukukdx>0.
Jo

In order to derive the required correction factor and to establish the uniformity of

the error in the corrected eigenvalue estimates, we firstly state some results derived

in [7].

Lemma 2.1. Let q E C2[0, tt], / E C' [0, -n] and q be the midpoint interpolate of q on

the uniform partition äN of[0, it]. Then

\[ (q-<l)fdx
KO

T{ill?'llcoll/'llco+ill?"ILII/ll»}A2

Lemma 2.2. Let the conditions of Lemma 2.1 be satisfied and define

{■mmk\\k+x9 -i™nk\\k+x -Xk

Then

a r71

4p~l\\q- q

(2.1)

xk~xk-     il~ q)uldx ~"L
1 2 3

p-Vll2»,

»yilfl-4IL<ip

Lemma 2.2 indicates that there are two (not independent) principal components

which comprise the error | Xk — Xk | . The first, 4p_11| q — q \\ ̂ , is due to approximat-

ing q with a piecewise constant interpolate and is independent of k. The second,

\j£iq — q)u2kdx\ , is the error in evaluating \^qu\dx using product midpoint

quadrature, and obviously depends on k. To examine this dependence we note [3, p.

336] that uk = vk + 0(/c_1), where vk = Aksinifnkx + <pk) is the eigenfunction of

(1.1)—(1.3) with q = 0, corresponding to the eigenvalue nk ana" normalized in the

same manner as ûk. This asymptotic result used in conjunction with Lemma 2.1

gives

(2.2) \f(q - q)u2k dx\ <\f(q - q)v\ dx
KO KO

+ Ch2
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On noting that Jnk = k + Oil), a further application of Lemma 2.2 with f = v\

yields

J.7T

\   iq-qWkdx
KO

< C2kh2

and hence, from (2.1) and (2.2),

(2.3) \Xk - Xk\ *s Cxh2 + C2kh2,

where C, and C2 depend only on q.

Examining this dependence on q further, we see that if q is a rapidly varying

function, then the smallest value of TV which will make the component 4p_11| q — q || ̂

sufficiently small to give the desired accuracy in the eigenvalue estimates will

probably be large enough so that (1.7) will guarantee uniformity of the error for the

eigenvalues required. However, if q is only slowly varying or if a particularly long

sequence of eigenvalues are required, then this value of N may not be large enough

in order to apply (1.7), and the growth exhibited in (2.3) may become apparent in

the estimates.

In the latter case one could simply take N to be at least twice the number of

eigenvalues required, however, if we can (uniformly) estimate the component of the

error which grows with k, then a potentially more efficient approach would be to

correct the eigenvalues using this information and hence obtain uniform estimates.

Returning to (2.1), we see that the component of the error that grows with k

depends on uk (the exact eigenfunction) and so cannot be estimated directly. But if

we use (2.2), (2.1) can be replaced by

(2.4) Ch2,       k=l,2,3,....

Since q, q and vk are known functions, we could now apply a standard quadrature

rule to evaluate jgiq — q)v\dx, except that we would still face the problem of

uniformly estimating the integral because of its dependence on vk. However, if we

note that

\qix) - qixi + l/2) - qhix)\ < Ch2,        x E [xt, xi+l],

where   qhix) = /r'(x - x,+ ,/2)(<7,+ 1  - q.)   and   q, - q(x/),   then   obviously

ll <7 - q - M « *» Ch2 and hence

fiq- q)v2kdx\ <\( qhv\dx\ + \f iq - q - qh)v2kdx\
J0 I      KO I       Ko I

\  Wl dx\ + \\q - q - qh\\J\vk\\2 <  /  qhvk dx  + Ch .
J0 I KO

Since qh is a piecewise linear polynomial and vk is a trigonometric function, the

integral /J7 qhv\ dx can now be evaluated exactly, and we have

(2.5)

/ qhv\ dx = irA2k\ / qhdx-  / ?Acos2i>A x + <pk) dx
Jo ¿     Wo •'o

1 ,   J sir¡4ikh       cos4ikh] NX . .     , »

2 [  nkh ^k"   J i=olk

since /0" qh dx = 0.
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In summary then we have

Theorem 2.1. Let the conditions of Lemmas 2.1 and 2.2 be satisfied. Then,

\Xk-Xk\<Ch2,       k= 1,2,3,...,

where
— tit

(2.6) Xk = Xk+  /  qhv\ dx
Jo

and C is bounded independently of k and h.

Proof. This result follows directly from (2.4) and (2.5).

3. A Numerical Example. To illustrate the improvement of the eigenvalue esti-

mates which can be obtained by using the corrected estimates (2.6), we calculated

{Xk}f=i for the eigenvalue problem

(3.1) - ü + exu = Xu,       x E [0,1], w(0) =0 = w(l),

with TV = 16. The error in these estimates is plotted against k in Figure 3.1 and

clearly shows both the uniformity of the error for k < N/2 and also the growth as k

approaches multiples of TV. If we now use (2.6) to generate the corrected estimates,

then the error, shown in Figure 3.2, is obviously superior to the error in the

uncorrected estimates and can be seen to achieve the desired uniformity.
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Figure 3.1

Eigenvalue error for (3.1) obtained by approximating the differential equation

The reason for the anomalous behavior of the error for k = 16 and 32 (i.e.

multiples of N) is not clear, though it should be noted that this behavior is not in

conflict with the bound given in Theorem 2.1.
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Figure 3.2

Eigenvalue error in using (2.6) to correct the eigenvalue estimates

4. Conclusion. In approximating Sturm-Liouville eigenvalues, the growth of the

error with k often reflects the increasingly oscillatory behavior of the eigenfunctions

rather than any difficulty caused by the particular coefficient function. In this paper

we have identified, and shown how to remove, this nonuniform component of the

error for one particular method for approximating eigenvalues. Thus, for any given

Sturm-Liouville eigenvalue problem, the difficulty in obtaining acceptable estimates

of a sequence of eigenvalues using this corrected method will be solely due to the

characteristics of the coefficient function rather than the number of eigenvalues

required.

This method of correcting the eigenvalue estimates by evaluating and removing

the dominant ^-dependent component of the error should also be applicable to the

more general methods given in [8], where q is approximated by a piecewise

polynomial of degree n > 1. Though in this case the remaining error terms will still

depend on k, and hence the effect of the correction will be to reduce the rate of

growth of the error rather than to eliminate it altogether.
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