CORRECTION: ON THE HOLOMORPHIC AUTOMORPHISM GROUP OF A GENERALIZED HARTOGS TRIANGLE

(Tohoku Math. J. 68 (2016), 29-45)

Akio Kodama

(Received January 19, 2016)

The purpose of this note is to correct the formulation of Theorem 1 in our previous paper [1]. In the proof of Theorem 1, Case (II), in [1] we made the erroneous claim in (3.7) that f_{w} is a linear automorphism of \mathcal{E}_{w}^{p}, provided that $p_{1} \neq 1$. In fact, this only holds for $I \geq 2$. Thus we need to consider the case $I=1$ separately. Because of this, we have to correct the formulation of Theorem 1 in [1] as follows:

THEOREM 1. Let $\mathcal{H}_{\ell, m}^{p, q}$ be a generalized Hartogs triangle in $\mathbf{C}^{|\ell|} \times \mathbf{C}^{|m|}$ with $|m|=1$. Then the holomorphic automorphism group $\operatorname{Aut}\left(\mathcal{H}_{\ell, m}^{p, q}\right)$ consists of all transformations

$$
\Phi:\left(z_{1}, \ldots, z_{I}, w\right) \longmapsto\left(\tilde{z}_{1}, \ldots, \tilde{z}_{I}, \tilde{w}\right)
$$

of the following form:
Case I. $I=1$.
(I.1) $q / p \in \mathbf{N}$: In this case, putting $r=q / p$, we have

$$
\tilde{z}_{1}=w^{r} H\left(z_{1} / w^{r}\right), \quad \tilde{w}=B w,
$$

where $H \in \operatorname{Aut}\left(B^{\ell_{1}}\right)$, where $B^{\ell_{1}}$ denotes the unit ball in $\mathbf{C}^{\ell_{1}}$, and $B \in \mathbf{C}$ with $|B|=1$.
(I.2) $q / p \notin \mathbf{N}$: In this case, we have

$$
\tilde{z}_{1}=A z_{1}, \quad \tilde{w}=B w
$$

(think of z_{1} as column vectors), where $A \in U\left(\ell_{1}\right)$, the unitary group of degree ℓ_{1}, and $B \in \mathbf{C}$ with $|B|=1$.

Case II. $I \geq 2$.
(II.1) $p_{1}=1, q \in \mathbf{N}$: In this case, we have

$$
\tilde{z}_{1}=w^{q} H\left(z_{1} / w^{q}\right), \quad \tilde{z}_{i}=\gamma_{i}\left(z_{1} / w^{q}\right) A_{i} z_{\sigma(i)}(2 \leq i \leq I), \quad \tilde{w}=B w
$$

(think of z_{i} as column vectors), where
(1) $H \in \operatorname{Aut}\left(B^{\ell_{1}}\right)$;
(2) γ_{i} are nowhere vanishing holomorphic functions on $B^{\ell_{1}}$ defined by

$$
\gamma_{i}\left(z_{1}\right)=\left(\frac{1-\|a\|^{2}}{\left(1-\left\langle z_{1}, a\right\rangle\right)^{2}}\right)^{1 / 2 p_{i}}, \quad a=H^{-1}(o) \in B^{\ell_{1}}
$$

where $\langle\cdot, \cdot\rangle$ denotes the standard Hermitian inner product on $\mathbf{C}^{\ell_{1}}$ and $o \in B^{\ell_{1}}$ is the origin of $\mathbf{C}^{\ell_{1}}$;
(3) $A_{i} \in U\left(\ell_{i}\right)$, the unitary group of degree ℓ_{i}, and $B \in \mathbf{C}$ with $|B|=1$;
(4) σ is a permutation of $\{2, \ldots, I\}$ satisfying the following: $\sigma(i)=s$ can only happen when $\left(\ell_{i}, p_{i}\right)=\left(\ell_{s}, p_{s}\right)$.
(II.2) $p_{1} \neq 1$ or $q \notin \mathbf{N}$: In this case, we have

$$
\tilde{z}_{i}=A_{i} z_{\sigma(i)} \quad(1 \leq i \leq I), \quad \tilde{w}=B w,
$$

where $A_{i} \in U\left(\ell_{i}\right), B \in \mathbf{C}$ with $|B|=1$, and σ is a permutation of $\{1, \ldots, I\}$ satisfying the condition: $\sigma(i)=s$ can only happen when $\left(\ell_{i}, p_{i}\right)=\left(\ell_{s}, p_{s}\right)$.

As is mentioned above, the assertion in the Case II of the theorem above is already verified in the proof of [1 ; Theorem 1]. Consider now the Case I, that is, $I=1$. Then, putting $r=q / p$ as in the theorem, we have

$$
\begin{aligned}
\mathcal{H}_{\ell_{1}, 1}^{p, q} & =\left\{\left(z_{1}, w\right) \in \mathbf{C}^{\ell_{1}} \times \mathbf{C} ;\left\|z_{1}\right\|^{2 p}<|w|^{2 q}<1\right\} \\
& =\left\{\left(z_{1}, w\right) \in \mathbf{C}^{\ell_{1}} \times \mathbf{C} ;\left\|z_{1}\right\|^{2}<|w|^{2 r}<1\right\}=\mathcal{H}_{\ell_{1}, 1}^{1, r}
\end{aligned}
$$

and hence $\operatorname{Aut}\left(\mathcal{H}_{\ell_{1}, 1}^{p, q}\right)=\operatorname{Aut}\left(\mathcal{H}_{\ell_{1}, 1}^{1, r}\right)$ literally. Therefore, in the case where $I=1$ and $r \in$ \mathbf{N}, every element Φ of $\operatorname{Aut}\left(\mathcal{H}_{\ell_{1}, 1}^{p, q}\right)$ has the form as in (I.1), as is shown in the first half of Subsection 3.1 in [1]. Also, the verification of the assertion in (I.2) has been already done in the second half of Subsection 3.2 in [1]; thereby, the proof of Theorem 1 is completed.

References

[1] A. Kodama, On the holomorphic automorphism group of a generalized Hartogs triangle, Tohoku Math. J. 68 (2016), 29-45.

Faculty of Mathematics and Physics
Institute of Science and Engineering
Kanazawa University
KANAZAWA 920-1192
JAPAN
E-mail address: kodama@staff.kanazawa-u.ac.jp

