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In this erratum first we amend the stability study of some proper biharmonic
maps ¢, : T? — S? (Theorem 3.2 of [1]). We also correct the proof of a
claim in Example 3.5 of [1], showing that biharmonic maps do not satisfy the
classical Sampson’s maximum principle for harmonic maps.

1. Equivariant biharmonic maps and applications

We use the notation of Example 3.1 of [1]. Theorem 3.2 of [1] is not correct
and must be replaced by

Theorem 1.1. Let ¢, : T? — S? be a proper biharmonic map as in equation
(3.8)(ii) of [1]. Then ¢, is an unstable critical point.

Proof. Tt suffices to prove that ¢, is unstable with respect to equivariant
variations. To this purpose, we compute the second variation of the reduced
bienergy functional (we denote by a* the constant function oo = 7/4):
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By taking V' = 1, we conclude from the last equality that (.~ is unstable, as
required to end the proof. The case a = 37/4 is analogous. 0

As a consequence of Theorem 1.1, Remark 3.3 of [1] should be deleted.

Next, we use the notation of Example 3.5 of [1]. The claim of Example
3.5 of [1], stating that biharmonic maps do not verify Sampson’s maximum
principle for harmonic maps, is correct. However, in order to prove it, we use
the function

a(r) = re VAr reR (1.1)

instead of the one which appeared in (3.21) of [1]. Indeed, the function in
(1.1) admits a strictly positive interior mazimum point at ro = (1/v/X) > 0.
Thus, the image through ¢, of an open set S™ X (ro — €,7¢ + €) is contained
in the concave side of S = 0By, (0) provided that ¢ > 0 is small.
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