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Summary. The governing equation derived by England & McKenzie for the 
deformation of a thin viscous shell contains an error. We give the correct 
derivation here and correct those figures where the change makes a visible 
difference. The correct results differ quantitatively from those of England & 
McKenzie but their conclusions are not affected. 

1 Formulation 

We make the same assumptions as are discussed in sections 2.1 and 2.2 of England & 
McKenzie (1982), namely that the continental lithosphere can be approximated by a viscous 
shell whose thickness is small compared with the width of loads placed upon it and whose 
upper and lower surfaces are free of tractions. 
vertical gradients of deviatoric stress and vertical 
nents so that 

and 

- P,, = P,, = P,, - e l ,  = 0. 

Under these conditions we may neglect 
variations of horizontal velocity compo- 

rii are elements of the deviatoric stress tensor and Pji elements of the strain rate  tensor;^ 
andy  are horizontal coordinates and z is vertical upwards. 

We further assume that the long-term and large strain rheology of the lithosphere is 
governed by the steady flow of one or more strength-controlling layers within the litho- 
sphere whose rheology may be approximated by a flow law of the kind: 

7.. I1 = B E ( " / n - ' )  f . i j (3 1 
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5 24 

(England & McKenzie 1982, section 2 and appendix A). E is the second invariant of the 
strain rate tensor: 

P. England and D. McKenzie 

E = (6 . .  11 &.)”’ 11 (4) 

with the convention of summation over repeated subscripts. The strain rate tensor is defined 
by : 

where ui are velocity components. The incompressibility requirement and the above assump- 
tions lead to an expression for E that involves only horizontal derivatives of velocity: 

E = 4 2  (6iX + gjY -k P i y  -f P x x  € y y ) .  (6)  

In describing the flow of rocks at geological strain rates we may neglect momentum terms 
and the Navier-Stokes equation becomes 

where a = (0, 0, 1) and we define the stress tensor, u, by 

Under the conditions we have assumed, the vertical component of equation (7) becomes 

If we assume that the crustal thickness variations are in local isostatic equilibrium, the 
vertical stress has no horizontal gradient below the depth of compensation, and in particular 
we may choose uzz to be equal to -Po at the level z = 0, the base of the lithosphere. The 
normal stress on the upper surface of the lithosphere is zero; we shall assume that the top of 
lithosphere having no continental crust is at a level z = L ;  in isostatic equilibrium, the top of 
lithosphere having crustal thickness s is at z = L + h where 

. 

h = s ( 1 - P c IP m 1 (10) 

where pc and pm are crust and mantle density, respectively. Equation (9) gives: 

= 7zz - P = g  pdz + f ( x ,  Y )  !: 
and the boundary and isostasy conditions give 
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As we have assumed that vertical gradients of the deviatoric stresses are negligible (equation 
1) we may write the horizontal component of equation (7) as 

where the bars denote vertical averages over the thickness of the lithosphere. The vertically 
averaged pressure may be calculated using equations (1 1) and (1 2) 

p = f Z Z  +Po - __ 
L + h  

With the assumption of isostatic equilibrium equation (14) becomes, after some algebra 

for h < L .  Substituting the expression for Fii and p from equations (3) and (1 5) gives: 

Using the same non-dimensionalization as England & McKeizie (1’982): 

(xf, s f, = (x, s)/L; u r  = u/u,; t l = t u o / L  

and dropping primes, equation (16) may be written 

V’U = -3 V(V. u) + 2( 1 - 1 In) E-’ [VE . i t (V . u) V E ]  + 2 Ar E(’- SVS (1 7) 

where i is the horizontal strain rate tensor whose elements are & p  and all operators refer 
to horizontal derivatives only. This replaces equation (16) of England & McKenzie. The 
means of solution area, mutatis mutandis, those of appendix B of England & McKenzie. 

2 Results 

The term in V ( r Z 2 )  (equation 16) which was missing from the formulation of England & 
McKenzie (1982) is a pressure gradient acting away from the region of most intense com- 
pression. Consequently the solutions shown here exhibit a more diffuse deformation than 
those of England & McKenzie. Figs 1-10 show the correct solutions, corresponding to figs 
2-7 and 9-12 of England & McKenzie. The greatest difference is seen at low Argand 
number and plots of velocity, principal stress principal strain rate are included for Ar = 0, 
n = 1 ,  3 and 5 (Figs 1-3); for non-zero Argand number, these plots do not show visible 
differences from the incorrect ones. Figs 4-6 show the crustal thickness as a function of 
time for these conditions. 
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Figure. 1. Replaces fig. 2 of England & McKenzie (1982). In this and all subsequent figures, the velocity, 
differential stress and strain rates, when displayed, are shown at spacings of 2L (that is at  every second 
point in x and y for a 3 2 x 3 2  grid). Contours are drawn by a standard contouring routine that uses 
values from all the mesh points. This figure illustrates the velocity, strain rate and differential stress fields 
for a Newtonian fluid subject to the boundary conditions shown in fig. 1 of England & McKenzie (1 982) 
with Ar = 0. (a) Isotropic strain rate field [contours of the instantaneous rate of thickening or thinning: 
- ( C x x  + e Y y ) ]  for the flow field. The contours are from - 6  X to 10'lss-' in stepsof2 X10-16s-1 .  
(b) Directions and magnitudes of the principal horizonal deviatoric stresses produced by the flow; the bar 
below the figure shows the size of the symbol for the stress with the greatest magnitude. When Ar = 0 
the absolute value of the stress is arbitrary, and Figs 1, 2 and 3 depict the relative magnitudes of the 
principal stresses. The origins of the symbols lie on the mesh points; thick lines indicate negative stress 
(compression) and thin lines indicate positive stress (tension). (c) Directions and magnitudes of principal 
shear strain rates for the flow; the bar below the figure shows the size of the symbol for the maximum 
strain rate (9.1 X s-'). The centres of the symbols lie on the mesh points; thick lines correspond to 
dextral shear, and the thin lines to sinistral shear. (d) Velocity vectors for the flow at individual mesh 
points, the origins for the vectors being at these points. The maximum velocity, shown by the bar below 
the figure is 50 mm y1-I. 

With non-zero Argand number, the lower compressional strain rates relative to those of 
England & McKenzie mean that it takes longer for crustal thickness to build up, but the 
same behaviour is exhibited as in the original figures: for a given Argand number there is an 
effective limit to the crustal thickness that a given flow can support; here it is reached after 
32Myr in most cases whereas it is reached earlier in the incorrect formulation, so plots of 
crustal thickness and P,, are shown at intervals up to 40 Myr for n = 3 ,  Ar = 1 , 3 ,  10 and 30. 
The maximum crustal thickness reached in these cases is 120 km (Ar = l), 85 km (Ar = 3), 
60 km (Ar = 10) and 50 km (Ar = 30) at 40Myr (Figs 7-10), compared to 120 ,80 ,55  and 
45 km, respectively, after 32 Myr (England & McKenzie, figs 9-12). 

The other main difference lies in the decreased prominence of regions of net extension; 
these only occur for Argand numbers of 3-10 (Figs 8 and 9), but once the maximum 
supportable crustal thickness has been attained there is still a broad region where P,, is low 
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Figure 2. Replaces fg. 3 of England & McKenzie (1982). As for Fig. 1, except that the solutions are for 
a non-Newtonian power-law fluid with n = 3 and Ar = 0. (a) The strain rate contours are - 2  X 10-16s-1  
(2x10-16s-l) 2 x 1 0 - 1 s s - '  . (c) The maximum principal shear strain rate is 1.3 X IO-"s-'. 

a 1 
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Figure 3. Replaces fi. 4 of England & McKenzie (1982). As Fig. 2 except that n is 5 and Ar is zero. 
(a) The strain rate contours are 0 (2 X lO-''s-') 2.4 X lO-"s-'. (c) The maximum principal shear strain 
rate is l . S X I O - l s s - ' .  
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a C 

b d 

Figure 4. Replaces fig. 5 of.England & McKenzie (1982). Plots of crustal thickness as a function of time 
for the flow field of rip. 1. Contours are at intervals of 5 km thickness; the thickness of crust entering 
over the influx boundary is 35 km. The 35 km contours are labelled. (a) Time is 7.9 Myr; contours are 
from 35 km in steps of 5 km to 40 km. (b) Time is 15.7 Myr; crustal thickness 30 (5) 45 km. (c) Time is 
23.6 Myr; crustal thickness 30 (5) 45 km. (d) Time is 31.7 Myr; crustal thickness 30 (5) 50km. 

a C 

b d 

Figure 5. Plots of crustal thickness as a function of time for the flow fields of Fig. 3. As Fig. 4. (a) Time is 
7.9 Myr; crustal thickness contours are 35 (5) 45 km. (b) Time is 15.8 Myr; crustal thickness 35 ( 5 )  55 km. 
(c) Time is 23.8 Myr; crustal thickness 35 (5) 60 km. (d) Time is 31.7 Myr; crustal thickness 35 ( 5 )  70 km. 
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a 

b d 

Figure 6. Plots of crustal thickness as a function of time for the flow fields of Fig. 4. As Fig. 5. (a) Time is 
7.9 Myr; crustal thickness contours are 35 (5) 50 km. (b) Time is 15.8 Myr; crustal thickness 35 (5) 6 0  km. 
(c) Time is 23.8 Myr; crustal thickness 35 (5) 70 km. (d) Time is 31.8 Myr; crustal thickness 35 (5) 80 km. 

a C e 

b d f h j 

Figure 7. Replaces fig. 9 of England & McKenzie (1982). Contours of crustal thickness and isotropic 
strain rate for the boundary conditions of England & McKenzie (1982, fig. l), with n = 3,Ar = 1. The crustal 
thickness is contoured at 5 km intervals and the strain rate at intervals of 2 X l0-l6s-' .  In this and subse- 
quent figures, maxima and minima in the contoured variables are indicated by addition and subtraction 
signs, when necessary. (a) Time is 7.9 Myr; crustal thickness contours are from 35 km in steps of 5 km to 
45 km. (b) Time is 7.9Myr; isotropic strain rate contoursare from -2X10- '6s-1  in steps of 2 X  lO-"s-' 
to 1.6X10-15s-1. (c) Time is 15.8Myr; crustal thickness 35(5) 65 km. (d) Time is 15.8Myr; isotropic 
strain rate -2  X 1.4 X ~ O - ' ' S - ~ .  (e) Time is 23.7 Myr; crustal thickness 35 (5) 85 km. 
(f)  Time is 23.7 Myr; isotropic strain rate - 2  x lo- ' '  (2 X lo-'') 1.2 X 1 0-" S C ' .  (g) Time is 31.6 Myr; 
crustal thickness 35 (5) 105 km. (h) Time is 31.6 Myr; isotropic strain rate - 4  X (2 X 
10-15s-'. (i) Time is 39.4 Myr; crustal thickness 35 (5) 120 km. (j) Time is 39.4 Myr; isotropic strain rate 

(2 X 

- 4 X lo-'' (2 X lo-'') 8 X 1 0 - ' ' ~ - ~ .  
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a e 

b d f h 

Figure 8. Replaces fig. 10 of England & McKenzie (1982). As Fig. 7 with n = 3 and Ar = 3. (a) Time 1s 

7.9Myr: crustal thickness contours are from 35 km in steps of 5 km to 45 km. (b) Time is 7.9 Myr; 
isotropic strain rate contours are from -2 X s" to 1.6 X 10-15s-1. ( c )  Time 
is 15.8 Myr; crustal thickness 35 (5) 60km. (d) Time is 15.8 Myr; isotropic strain rate -2 X lo-'* 
(2 X 1.2 X lo-'' SKI. (e) Time is 31.4 Myr; crustal thickness 35 (5) 80 km. (f)  Time is 31.4 Myr; 
isotropic strain rate - 4 X (2  X 8 x s- ' .  (g) Time is 39.2 Myr: crustal thickness 
35 (5) 85 km. (h) Time is 39.2 Myr; isotropic strain rate - 4 X 

s-' in steps of 2 X 

(2 X 6 X lO-''sC'. 

a C e 

b d f h 

Figure 9. Replaces fig. 11 of England & McKenzie (1982). As Fig. 7 ,  with n = 3 and Ar  = 10. (a) Time is 
7.9Myr; crustal thickness contours are from 35 km in steps of 5 km to 45 km. (b) Time is 7.9Myr; 
isotropic strain rate contours are from - 2 ~ l O - ' ' s - '  in steps of 2X10-16s-'  to 1 .2XlO- ' ' ~~ ' . ( c )T ime  
is 15.7 Myr; crustal thickness 35 (5) 50 km. (d) Time is 15.8 Myr; isotropic strain rate - 4 X 
(2 X 8 X 10-16s". (e) Time is 31.2 Myr; crustal thickness 40 (5) 55 km. (F) Time is 31.2 Myr; 
isotropic strain rate - 4.x s-' .  (9) Time is 38.0 Myr: crustal thickness 40 (5) 
60km. (h)Timeis38,9Myr;isotropic strain rate -2X1O-l6 ( 2 X 1 0 - ' 6 ) 6 X 1 0 ~ 1 6 s ~ ' .  

(2 x 6 X 
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a C e 

b d f h 

Figure 10. Replaces fig. 1 2  of England & McKenzie (1982). As Fig. 7, with n = 3, A r  = 30. (a) Time is 
7.9Myr; crustal thickness contours are from 35 km in steps of 5km to 40km. (b) Time is 7.9Myr; 
isotropic strain rate contours are from - 4 X lO-"s-I in steps of 2 X 1 0-l6 s-' to 8 X 1 0-l6 s'. (c) Timc is 
15.6 Myr; crustal thickness contour of 40km is shown. (d) Time is 15.6Myr; isotropic strain rate 
-2  X (2 X s-'. (e) Time is 31.0 Myr; crustal thickness 40 ( 5 )  45 km. This corresponds 
closely to fig. 12(e) of England & McKenzie (1982) where the 40 km contour is incorrectly labelled as a 
35km contour. ( f )  Time is 31.0Myr; isotropic strainrate -2X1O-l6 (2X1O-l6) 6X10-'6s-1.  &)Time is 
38.7 Myr; crustal thickness 40 ( 5 )  50 km. (h) Time is 38.7 Myr; isotropic strain rate -2 X 
(2X1O-l6) 6x lO-"s- l .  

6 X 

(10-20 per cent of the original maximum value) that covers much of the area of thickest 
crust (Figs 7-10). It may also be seen that one principal strain rate in this region is exten- 
sional, comparable in magnitude to the compressional one, and is orientated approximately 
parallel to  the influx boundary (England & McKenzie, fig. 13, which is not visibly different 
from the correct figure). 

3 Conclusion 

The principal effect of the incorrect formulation of England & McKenzie was t o  diminish 
the length scale of the deformation and so, relative to  the correct formulation, to  produce 
more intense deformation near the influx boundary and less intense deformation away from 
this boundary. Because of this, the magnitudes of the crustal thickness and strain rates 
shown in Figs 1-10 of this paper differ from those in the original paper; these changes are 
not sufficient to affect the general discussion of their results made by England & McKenzie 
and, in particular, England & McKenzie's conclusions still hold: 

(a) Over a wide range of rheological parameters, the thin viscous sheet model for conti- 
nental deformation predicts that, in a continental collision such as that of India and Asia, 
thickening of the continental crust will occur over areas of linear dimension comparable with 
the width of the indenting continent. The broad zone of elevated and thickened crust 
extending more than 1500 km north of the Himalaya is consistent with such a view of conti- 
nental deformation. 
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(b) For a fixed geometry of collision, the deformation of such a sheet is governed by two 
parameters: n ,  the exponent in the power-law rheology, and Ar,  the Argand number, which 
is a measure of the tendency of the lithosphere to strain in response to buoyancy forces 
arising from crustal thickness contrasts. For any Ar > 0, there is an upper limit t o  the crustal 
thickness that can be supported by compressional boundary conditions. Initially defor- 
mation consists of compression localized round the influx boundary, but as the buoyancy 
forces due to crustal thickness contrasts increase, the influx of material can no longer be 
accommodated by continued thickening near the influx boundary; instead, the deformation 
takes the form of less intense compression spread over a wider area (Figs 7-10). Once this 
stage is reached, the principal deviatoric stresses in the region of thickest crust are compres- 
sive, approximately normal to the influx boundary, and extensional, approximately parallel 
to it. These stresses are close in magnitude, so the net rate of thickening is small in this 
region and when the Argand number is 3 or greater there is net extension in this region 
(England & McKenzie, fig. 13 and Figs 7-10). This transition in deformation style from 
intense compressive strain in the early phases to almost-plane-strain once the maximum 
supportable crustal thickness is reached is a distinctive feature of the strain history of a thin 
viscous sheet with non-zero Argand number. 

P. England and D. McKenzie 
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