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Abstract Just recently, incompleteness in the proof of the theorem appearing in the title
[published in Szabó (Ann Glob Anal Geom, to appear, 2008)] has been discovered. Without
this problematic part, the theorem is established only in the following restricted form: “A
regular Finsler metric is Berwald if and only if it satisfies the dual Landsberg condition.” The
incompleteness appears in proving that the original Landsberg condition implies the dual
one.
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Landsberg metrics are such Finsler metrics where the Berwald parallel transports are isome-
tries regarding the metrics gi j = (1/2)∂yi ∂y j L2 defined on the tangent spaces. All Berwald
metrics are Landsberg; however, the existence of non-Berwald Landsberg metrics is one of
the oldest problems in Finsler geometry. In [1], the proof of non-existence of such metrics
is based on the following idea: For a given Landsberg metric one constructs, first, a Rie-
mannian metric tensor gi j (p) by averaging the Landsberg metric tensor gi j (p, y) on the
unit balls Bp ⊂ Tp(Mn) by the measure µp = √

det (gi j )(p, y)dy1 ∧ · · · ∧ dyn , that is,
gi j (p) = ∫

Bp
gi j (p, y)µp/

∫
Bp

µp . Furthermore, since the unit balls are always invariant
under the action of Berwald parallel transports, the Berwald covariant derivative ∇k of a
Landsberg space satisfies the relations ∇k gi j = 0 and ∇kµ = 0, therefore also the relation
∇kgi j = 0 must hold. This latter identity implies, in two different ways, that the torsion free
Berwald connection must be the Levi Civita connection of the Riemannian metric gi j (p).
That is, it is linear indeed.
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Let it be mentioned, first, that this argument applies without any difficulty to linear
Berwald connections, i.e., when the metric is Berwald. In this case, the statement says that,
on Berwald manifolds, the linear Berwald connection is nothing but the Levi Civita connec-
tion of the averaged metric gi j (p). In [2,3], such Riemannian metrics are corresponded to
Berwald metrics in a completely different way, by using the holonomy groups of the linear
Berwald connections.

In a general situation, the Berwald connection is non-linear and linear coordinates
(y1, . . . , yn) defined on a fixed tangent space Tp(Mn) are transported along curves c(t)
to proper non-linear coordinates (ỹ1(t), . . . , ỹn(t)) of the other tangent spaces Tc(t)(Mn).
The proof of the theorem must assume this general situation and the desired linearity should
be established by the Landsberg property. However, this property a priory implies only that
the functions g(∂ỹi (t), ∂ỹ j (t)) and their averages do not change during parallel transports. On
the other hands, the averaged Riemann metric gi j is defined in linear coordinates and the
question arises if the same metric is defined by these two averages?

Actually, this problem appears in a simplified situation in the paper. In fact, by
Theorem 2.1, it is enough to prove that the Berwald parallel transports τpq : Tp(Mn) →
Tq(Mn) keep the g-length of the radially directed vectors. That is, L|k = 0 holds, where L
is the Finsler function belonging to g and |k means derivative with respect to the Berwald
connection. Note that the rigidity condition L|k = 0 imposed on metric gi j is very similar to
Landsberg’s original condition imposed on gi j . By this reason, it is called dual Landsberg
condition regarding radial directions.

After this simplification, the above question arises in the following form. Let c(t),
p = c(0), be a curve and X (0) ∈ Tp(Mn) a vector whose parallel extension onto c(t)
is denoted by X (t). Let Xv(0) be the vertical vector field defined by lifting X (0) in the
tangent spaces Ty(Tp(Mn)). Its parallel extension along curves (c(t), Y (t)), where Y (t) is
parallel along c(t), is denoted by X̃(t). In general, X̃(c(t), Y (t)) is the vertical lift of X (t)
only for Y (t)’s, which are proportional to X (t). In this situation, the question is if the aver-
age of g(X̃(t), X̃(t)) is equal to g(X (t), X (t))? The latter quantity is defined by averaging
g(Xv(t), Xv(t)), while, on Landsberg manifolds, the first quantity is a priory equal only
to g(X (0), X (0)). For linear connections, X̃(t) = Xv(t) holds, yielding an obvious posi-
tive answer to this question. This identity also explains why the Berwald connection of a
Berwald space is equal to the Levi Civita connection of g. Since the identity of averages does
not require the identity of functions, this answer is also possible without assuming linearity.
In fact, based on the following arguments, it is rather suggestive that the two averaging must
be equal on Landsberg manifolds.

The main source of confusion is that Finsler tensors are not tensors in the regular sense on
the tangent spaces. Generically speaking, they behave as tensors there just regarding linear
transformations. From this respect, even the characteristic equation li Gi

jkl = 0 (which is
equivalent to g jk|l = 0) of Landsberg metrics is not a regular tensor equation. On a general
Finsler manifold, the metric tensor gi j = (1/2)∂yi y j L2 is a regular tensor on each Tp(Mn),
and, on Landsberg manifolds, this tensor is invariant under the actions of Berwald parallel
transports. The partial derivatives present in gi j impose strong conditions on these transports
and also applications of simple techniques such as Fubini’s theorem combined with inte-
gration by parts are available for explicit investigation of the above integral equation. Note,
for instance, that the averaged metric g does not depend on the radius R of the balls, where
the averaging is computed. Limiting R → ∞ reveals then that g(X, X) depends on L(X)

and averages of functions involving certain derivatives of the density function regarding
the parallel vector field Xv . These arguments have been very suggestive in concluding that
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this integral equation must obviously be true. Actually, this flaw is hidden under the cover
of a short formal computation and these arguments suggest an easy direct settling of the
question. Unfortunately, it is not so! The above technique also produces non-regular ten-
sors that confuse the transformation of these explicit integral formulas from linear charts to
the non-linear ones. At the present time, I cannot completely eliminate this flaw from the
proof. Thus, the Landsberg space problem remains an open question. I am convinced that
this problem can be settled by the averaging technique only on those Landsberg manifolds
where also the Riemann volume from attached to the averaged metric is invariant under
the actions of the Berwald transports. The proof of this additional rigidity condition on a
general Landsberg manifold certainly needs new ideas. By omitting this incomplete part, the
statement is correctly established only in restricted forms that concern the dual conditions.
Yet, these statements are interesting Landsberg-type characterizations of Berwald metrics.
The complete solution of the problem requires to prove that the original Landsberg condition
implies the dual conditions.

Theorem 1 A regular Finsler metric is Berwald if and only if it satisfies the dual Landsberg
condition L|k = 0 concerning radial directions. In this case, the Berwald connection is
nothing but the Levi Civita connection of g.

If the metric is dual Landsberg, then L|k = 0 and Theorem 2.1 of [1] imply that the
Berwald connection must be the Levi Civita connection of g. Theorem 2.1 claims that the
Berwald connection is uniquely determined by the following properties: (1) The connec-
tion symbols Gi

k are 1-homogeneous and torsion free, meaning Gi
jk = ∂y j Gi

k = Gi
k j .

(2) The metric condition L |k = 0 holds. Also, the Levi Civita connections of Riemann man-
ifolds among non-linear connections are uniquely determined by these conditions. For them,
Gi

k j = �i
jk are the Christoffel symbols. Conversely, a Berwald metric is Landsberg having

linear Berwald connection. Thus, the above arguments applied to linear connections yield:
L|k = 0.

A Finsler metric satisfies the dual Landsberg condition regarding the tangent-to-indicatrix
directions if the Berwald parallel transports keep the g-length of vectors tangent to the
indicatrices. That is, g|k = 0, where g is the metric induced by g on the indicatrix. Then, we
have:

Theorem 2 A regular Finsler manifold of dimension ≥ 3 is Berwald if and only if the
Berwald parallel transports keep the g-norm of vectors tangent to the indicatrices.

By the above argument, Berwald manifolds are also dual Landsberg in this sense. Interest-
ingly enough, the proof in the opposite direction can be completed in a completely different
way, which is based on global rigidity theorems concerning smooth strictly convex bodies.
In this case, the Berwald transports, τ : Tp(Mn) → Tq(Mn), leave the Riemann metric g
induced by the Euclidean metric g on the indicatrix field invariant. That is, they are isome-
tries between two indicatrices (Ip, g) and (Iq , g) endowed with these induced metrics. By
the classical rigidity theorem, yielded for n ≥ 3, the τ must be an orthogonal transforma-
tion between the Euclidean spaces defined by g(p) and g(q). The linearity of the Berwald
connection follows by formula (5) of [1].

Acknowledgements This problem about my paper was recognized by Vladimir Matveev who asked the
question if the complications due to the non-linear Berwald parallel transports are overlooked there, and, if
they are not overlooked, then how can the paper cope with this problem? Detailed explanations are available
also in his most recent arxiv-paper: 0809.1581. The actual flaw appearing in the paper is explained above.
In my opinion, one can cope with this difficulty after developing an adequate invariance theory regarding
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non-linear transformations on the tangent spaces. This is a completely missing item in Finsler geometry. This
paper is partially supported by NSF grant DMS-0604861.
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