CORRECTION

Correction to: Cylindrical Martingale Problems Associated with Lévy Generators

David Criens¹

Published online: 3 June 2020 © Springer Science+Business Media, LLC, part of Springer Nature 2020

Correction to: J Theor Probab (2019) 32:1306–13 https://doi.org/10.1007/s10959-018-0814-4

1 Corrections

In this note, we correct claims made in [2]:

- (i) It is claimed that the generalized martingale problem introduced in [2] allows explosion in a continuous manner. However, because the cemetery ∆ is added to B as an isolated point, explosion can only happen by a jump and is excluded by [2, Lemma 4.3]. In Sect. 2, we explain how the setup can be adjusted to include the possibility of explosion.
- (ii) In the proof of [2, Proposition 4.8], it is needed that the operator A has a non-empty resolvent set $\rho(A)$, i.e., that

 $\rho(A) \triangleq \{\lambda \in \mathbb{R} : (\lambda - A)^{-1} \text{ exists in } L(\mathbb{B}, \mathbb{B})\} \neq \emptyset.$

This assumption is missing in [2]. It is, e.g., satisfied in case A is the generator of a C_0 -semigroup; see [4, Remark 1.1.3, Proposition 1.2.1].

2 A Setup Including Explosion

2.1 Modified Setup

In the following, we explain how Ω , τ_n and τ_{Δ} have to be redefined such that the setting includes the possibility of explosion.

⊠ David Criens david.criens@tum.de

The original article can be found online at https://doi.org/10.1007/s10959-018-0814-4.

¹ Center for Mathematics, Technical University of Munich, Munich, Germany

For a function $\omega \colon \mathbb{R}_+ \to \mathbb{B}_\Delta$, we define

$$\tau_{\Delta}(\omega) \stackrel{\Delta}{=} \inf(t \in \mathbb{R}_+ \colon \omega(t) = \Delta),$$

where, as always, $\inf(\emptyset) \triangleq \infty$. Let Ω to be the space of all right continuous functions $\omega \colon \mathbb{R}_+ \to \mathbb{B}_\Delta$ which are càdlàg on $[0, \tau_\Delta(\omega))$ and satisfy $\omega(t) = \Delta$ for all $t \ge \tau_\Delta(\omega)$. The difference in comparison with the setting in [2] is that $\omega \in \{\tau_\Delta < \infty\}$ might not have a left limit at $\tau_\Delta(\omega)$.

Denote by X the coordinate process, i.e., $X_t(\omega) = \omega(t)$ for all $\omega \in \Omega$ and $t \in \mathbb{R}_+$, and denote by $\mathcal{F} \triangleq \sigma(X_t, t \in \mathbb{R}_+)$ the σ -field generated by X. The proof of the following is given in Sect. 2.2.

Lemma 1 There exists a metric d_{Ω} on Ω such that (Ω, d_{Ω}) is separable and complete and \mathcal{F} is the corresponding Borel σ -field.

Let $\mathbf{F} = (\mathcal{F}_t)_{t\geq 0}$ be the filtration generated by X, i.e. $\mathcal{F}_t \triangleq \sigma(X_s, s \in [0, t])$ for $t \in \mathbb{R}_+$. Note that τ_Δ is an \mathbf{F} -stopping time, because $\{\tau_\Delta \leq t\} = \{X_t = \Delta\} \in \mathcal{F}_t$. For $\Gamma \subseteq \mathbb{B}$, we define

$$\tau(\Gamma) \triangleq \inf \left(t < \tau_{\Delta} \colon X_t \in \Gamma \text{ or } X_{t-} \in \Gamma \right) \land \tau_{\Delta}.$$

The proof of the following is given in Sect. 2.3.

Lemma 2 (i) If $\Gamma \subseteq \mathbb{B}$ is closed, then $\tau(\Gamma)$ is an **F**-stopping time. (ii) If $\Gamma_1 \subseteq \Gamma_2 \subseteq \Gamma_3 \subseteq \cdots$ is an increasing sequence of open sets in \mathbb{B} such that $\bigcup_{n \in \mathbb{N}} \Gamma_n = \mathbb{B}$, then $\tau(\mathbb{B} \setminus \Gamma_n) \nearrow \tau_\Delta$ as $n \to \infty$.

We define

$$\tau_n \triangleq \inf \left(t < \tau_\Delta \colon \|X_t\| \ge n \text{ or } \|X_{t-1}\| \ge n \right) \land \tau_\Delta \land n, \quad n \in \mathbb{N}.$$

By Lemma 2, $(\tau_n)_{n \in \mathbb{N}}$ is a sequence of **F**-stopping times satisfying $\tau_n \nearrow \tau_{\Delta}$ as $n \to \infty$. In this modified setting, the GMP can be defined as in [2] and all results from [2] hold. In Sect. 3, we comment on necessary changes in the proofs.

2.2 Proof of Lemma 1

We adapt the proof of [1, Lemma A.7]. Define

$$\Omega^{\star} \triangleq \left(D(\mathbb{R}_+, \mathbb{B}) \times (0, \infty] \right) \cup \left(\{ \omega_{\Delta} \} \times \{ 0 \} \right),$$

where $\omega_{\Delta}(t) = \Delta$ for all $t \in \mathbb{R}_+$. For $z \in [0, \infty]$ and $t \in \mathbb{R}_+$, we define

$$\phi_{z}(t) \triangleq \begin{cases} t, & z = \infty, \\ z(1 - e^{-t}), & z \in (0, \infty), \\ 0, & z = 0, \end{cases}$$
$$\phi_{z}^{-1}(t) \triangleq \begin{cases} t, & z = \infty, \\ -\log\left(1 - \frac{t}{z}\right) \mathbf{1}_{\{t < z\}}, & z \in (0, \infty), \\ 0, & z = 0. \end{cases}$$

Moreover, we define $\iota \colon \Omega \to \Omega^*$ by

$$\iota(\omega) \triangleq (\omega \circ \phi_{\tau_{\Lambda}(\omega)}, \tau_{\Delta}(\omega)).$$

Lemma 3 ι is a bijection.

Proof To check the injectivity, let $\omega, \alpha \in \Omega$ be such that $\iota(\omega) = \iota(\alpha)$. In case $\tau_{\Delta}(\omega) = \tau_{\Delta}(\alpha) \in \{0, \infty\}$, we clearly have $\omega = \alpha$. In case $0 < \tau_{\Delta}(\omega) = \tau_{\Delta}(\alpha) < \infty$, we can deduce from the first coordinates of $\iota(\omega)$ and $\iota(\alpha)$ that $\omega = \alpha$ on $[0, \tau_{\Delta}(\omega)) = [0, \tau_{\Delta}(\alpha))$, which implies $\omega = \alpha$.

To check the surjectivity, note that $\iota(\omega_{\Delta}) = (\omega_{\Delta}, 0)$ and that $\iota(\omega \circ \phi_t^{-1} \mathbf{1}_{[0,t)} + \Delta \mathbf{1}_{[t,\infty)}) = (\omega, t)$ for all $(\omega, t) \in D(\mathbb{R}_+, \mathbb{B}) \times (0, \infty]$.

Let d_D be the Skorokhod metric on $D(\mathbb{R}_+, \mathbb{B}_\Delta)$ and let $d_{[0,\infty]}$ be the arctan metric on $[0,\infty]$. We define

$$d_{D \times [0,\infty]}((\omega, t), (\alpha, s)) \triangleq d_D(\omega, \alpha) + d_{[0,\infty]}(t, s)$$

for $(\omega, t), (\alpha, s) \in D(\mathbb{R}_+, \mathbb{B}_\Delta) \times [0, \infty]$, and set

$$d_{\Omega^{\star}} \triangleq d_{D \times [0,\infty]} \Big|_{\Omega^{\star} \times \Omega^{\star}}.$$

We note that (Ω^*, d_{Ω^*}) is separable and complete, because it is a G_δ subspace of $(D(\mathbb{R}_+, \mathbb{B}_\Delta) \times [0, \infty], d_{D \times [0, \infty]})$. Due to Lemma 3, we can equip Ω with the metric

$$d_{\Omega}(\omega, \alpha) \stackrel{\Delta}{=} d_{\Omega^{\star}}(\iota(\omega), \iota(\alpha))$$

= $d_{D}(\omega \circ \phi_{\tau_{\Delta}(\omega)}, \alpha \circ \phi_{\tau_{\Delta}(\alpha)}) + d_{[0,\infty]}(\tau_{\Delta}(\omega), \tau_{\Delta}(\alpha))$

for $\omega, \alpha \in \Omega$. In this case, ι is an isometry and (Ω, d_{Ω}) is separable and complete. In the following, we equip Ω with the topology induced by the metric d_{Ω} .

We now prove that $\mathcal{F} = \mathcal{B}(\Omega)$. By the definition of the metric d_{Ω} , the maps

$$\Omega \ni \omega \mapsto \omega \circ \phi_{\tau_{\Lambda}(\omega)} \in D(\mathbb{R}_{+}, \mathbb{B}_{\Delta}), \quad \Omega \ni \omega \mapsto \tau_{\Delta}(\omega) \in [0, \infty]$$

are continuous. For fixed $t \in \mathbb{R}_+$, the map $[0, \infty] \ni z \mapsto \phi_z^{-1}(t) \in \mathbb{R}_+$ is Borel and, consequently, also

$$\Omega \ni \omega \mapsto \phi_{\tau_\Delta(\omega)}^{-1}(t) \in \mathbb{R}_+$$

is Borel. Because right continuous adapted processes are progressively measurable, the map

$$D(\mathbb{R}_+, \mathbb{B}_\Delta) \times \mathbb{R}_+ \ni (\omega, t) \mapsto \omega(t) \triangleq Y(\omega, t) \in \mathbb{B}_\Delta$$

is Borel. We conclude that for every $t \in \mathbb{R}_+$ the map

$$\Omega \ni \omega \mapsto \omega(t) = Y(\omega \circ \phi_{\tau_{\Delta}(\omega)}, \phi_{\tau_{\Delta}(\omega)}^{-1}(t)) \mathbf{1}_{\{t < \tau_{\Delta}(\omega)\}} + \Delta \mathbf{1}_{\{t \ge \tau_{\Delta}(\omega)\}} \in \Omega$$

is Borel. This implies that $\mathcal{F} \subseteq \mathcal{B}(\Omega)$.

Note that ι is $\mathcal{F}/\mathcal{B}(\Omega^*)$ measurable. Let $f : \Omega \to \mathbb{R}$ be a Borel function. Because ι is an isometry, the inverse map $\iota^{-1} : \Omega^* \to \Omega$ is continuous and therefore Borel. We conclude that

$$\Omega \ni \omega \mapsto f(\omega) = ((f \circ \iota^{-1}) \circ \iota)(\omega) \in \mathbb{R}$$

is $\mathcal{F}/\mathcal{B}(\mathbb{R})$ measurable as composition of the $\mathcal{B}(\Omega^*)/\mathcal{B}(\mathbb{R})$ measurable map $f \circ \iota^{-1}$ and the $\mathcal{F}/\mathcal{B}(\Omega^*)$ measurable map ι . This implies $\mathcal{B}(\Omega) \subseteq \mathcal{F}$ and the proof is complete. \Box

2.3 Proof of Lemma 2

(i). We have to show that $\{\tau(\Gamma) \leq t\} \in \mathcal{F}_t$ for all $t \in \mathbb{R}_+$. For $x \in \mathbb{B}$, we define $d(x, \Gamma) \triangleq \inf_{y \in \Gamma} ||x - y||$ and set

$$\Gamma_n \triangleq \left\{ x \in \mathbb{B} \colon d(x, \Gamma) < \frac{1}{n} \right\}.$$

Moreover, on $\{t < \tau_{\Delta}\}$ we set

$$F_t \triangleq \operatorname{cl}_{\mathbb{B}}(\{X_s : s \in [0, t]\}) = \{X_s, X_{s-} : s \in [0, t]\} \subseteq \mathbb{B}.$$

Because $x \mapsto d(x, \Gamma)$ is Lipschitz continuous, the set Γ_n is open, and because Γ is closed, $\Gamma = \{x \in \mathbb{B} : d(x, \Gamma) = 0\}$. Define $\tau \triangleq \sup_{n \in \mathbb{N}} \tau(\Gamma_n)$. Because $\Gamma \subseteq \Gamma_n$, it is clear that $\tau \leq \tau(\Gamma)$. Next, we show that $\tau \geq \tau(\Gamma)$. We claim that this inequality follows if we show that

$$\forall t \in \mathbb{R}_+ \colon \bigcap_{n \in \mathbb{N}} \{F_t \cap \Gamma_n \neq \emptyset\} \subseteq \{F_t \cap \Gamma \neq \emptyset\} \text{ on } \{t < \tau_\Delta\}.$$
(2.1)

We explain this: In case $\tau \ge \tau_{\Delta}$, we have $\tau = \tau(\Gamma) = \tau_{\Delta}$. Take $\omega \in \{\tau < \tau_{\Delta}\}$ and let $\varepsilon > 0$ be such that $\varepsilon < \tau_{\Delta}(\omega) - \tau(\omega)$ in case $\tau_{\Delta}(\omega) < \infty$. For each $n \in \mathbb{N}$, we find a $t_n \in [\tau(\Gamma_n)(\omega), \tau(\Gamma_n)(\omega) + \varepsilon)$ such that $F_{t_n}(\omega) \cap \Gamma_n \neq \emptyset$. Note that $t \triangleq \sup_{n \in \mathbb{N}} t_n \le t_n \le t_n$.

 $\tau(\omega) + \varepsilon < \tau_{\Delta}(\omega)$ and that $F_t(\omega) \cap \Gamma_n \neq \emptyset$ for all $n \in \mathbb{N}$. Consequently, in case (2.1) holds we have $F_t(\omega) \cap \Gamma \neq \emptyset$, which implies $\tau(\Gamma)(\omega) \leq t \leq \tau(\omega) + \varepsilon$. We conclude that $\tau \geq \tau(\Gamma)$ as claimed. We proceed showing (2.1). Fix $t \in \mathbb{R}_+$. Because on $\{t < \tau_{\Delta}\}$

$$\bigcap_{n\in\mathbb{N}} \{F_t \cap \Gamma_n \neq \emptyset\} \subseteq \big\{ \inf_{x\in F_t} d(x, \Gamma) = 0 \big\},\$$

it suffices to show that on $\{t < \tau_{\Delta}\}$

$$\left\{\inf_{x\in F_t} d(x,\,\Gamma)=0\right\}\subseteq \{F_t\cap\Gamma\neq\emptyset\}.$$

Take $\omega \in \{t < \tau_{\Delta}\}$. Because $\{\omega(\cdot \wedge t)\}$ is compact in $D(\mathbb{R}_+, \mathbb{B}), F_t(\omega)$ is compact in \mathbb{B} by [4, Problem 16, p. 152]. Consequently, due to its continuity, the function $x \mapsto d(x, \Gamma)$ attains its infimum on $F_t(\omega)$. Thus, because $\Gamma = \{x \in \mathbb{B} : d(x, \Gamma) = 0\}$, if $\inf_{x \in F_t(\omega)} d(x, \Gamma) = 0$, we have $F_t(\omega) \cap \Gamma \neq \emptyset$. We conclude that (2.1) holds and hence that $\tau = \tau(\Gamma)$.

From the equality $\tau = \tau(\Gamma)$, we deduce that for all $t \in \mathbb{R}_+$

$$\{\tau(\Gamma) \le t\} = \bigcap_{n \in \mathbb{N}} \{\tau(\Gamma_n) \le t\}.$$
(2.2)

Fix $t \in \mathbb{R}_+$ and set $\mathbb{Q}_+^t \triangleq ([0, t) \cap \mathbb{Q}_+) \cup \{t\}$. We note that

$$\{\tau(\Gamma_{n+1}) \le t < \tau_{\Delta}\} = \bigcap_{m \in \mathbb{N}} \{\tau(\Gamma_{n+1}) < t + \frac{1}{m} \le \tau_{\Delta}\}$$
$$\supseteq \left(\bigcup_{s \in \mathbb{Q}_{+}^{t}} \{X_{s} \in \Gamma_{n+1}\}\right) \cap \{t < \tau_{\Delta}\}.$$
(2.3)

Because Γ_{n+1} is open, we have

$$\tau(\Gamma_{n+1}) = \inf \left(t < \tau_{\Delta} \colon X_t \in \Gamma_{n+1} \right) \wedge \tau_{\Delta}.$$

Thus, in case $\tau(\Gamma_{n+1}) \leq t < \tau_{\Delta}$, the right continuity of X yields that $X_{\tau(\Gamma_{n+1})} \in cl_{\mathbb{B}}(\Gamma_{n+1}) \subseteq \Gamma_n$. We conclude that on $\{t < \tau_{\Delta}\}$

$$\{\tau(\Gamma_{n+1}) \le t\} \subseteq \bigcup_{s \in [0,t]} \{X_s \in \mathrm{cl}_{\mathbb{B}}(\Gamma_{n+1})\} \subseteq \bigcup_{s \in \mathbb{Q}_+^t} \{X_s \in \Gamma_n\}.$$
(2.4)

Now, (2.2), (2.3) and (2.4) imply that

$$\{\tau(\Gamma) \leq t < \tau_{\Delta}\} = \left(\bigcap_{n \in \mathbb{N}} \bigcup_{s \in \mathbb{Q}_{+}^{t}} \{X_{s} \in \Gamma_{n}\}\right) \cap \{X_{t} \neq \Delta\} \in \mathcal{F}_{t}.$$

🖄 Springer

Because

$$\{\tau(\Gamma) \le t, \tau_{\Delta} \le t\} = \{\tau_{\Delta} \le t\} = \{X_t = \Delta\} \in \mathcal{F}_t,$$

we conclude that $\tau(\Gamma)$ is a stopping time. The proof of (i) is complete.

(ii). Because $n \mapsto \tau(\mathbb{B}\backslash\Gamma_n)$ is increasing, $\tau(\mathbb{B}\backslash\Gamma_n) \nearrow \tau \triangleq \sup_{n \in \mathbb{N}} \tau(\mathbb{B}\backslash\Gamma_n)$ as $n \to \infty$. Because $\tau \leq \tau_{\Delta}$, it suffices to show that $\tau \geq \tau_{\Delta}$. For contradiction, suppose that there exists an $\omega \in \{\tau < \tau_{\Delta}\}$ and set $\omega' \triangleq \omega(\cdot \land \tau(\omega)) \in D(\mathbb{R}_+, \mathbb{B})$. Then,

$$\tau(\mathbb{B}\backslash\Gamma_n)(\omega') = \inf\left(t \in \mathbb{R}_+ : \omega'(t) \notin \Gamma_n \text{ or } \omega'(t-) \notin \Gamma_n\right) \nearrow \infty \text{ as } n \to \infty.$$

Because $\tau(\mathbb{B}\backslash\Gamma_n)$ is an **F**-stopping time by (i), so is τ and Galmarino's test (see [6, Lemma III.2.43]) implies that $\tau(\omega) = \tau(\omega') = \infty$. This is a contradiction and $\tau = \tau_{\Delta}$ follows. The proof of (ii) is complete.

3 Modifications, Corrections and Comments on Proofs

3.1 [2, Lemma 4.3]

The last conclusion in [2, Lemma 4.3] is empty: In the setting of [2], it cannot happen that $X_{\tau_{\Lambda^-}} = \Delta$.

3.2 [2, Lemmata 4.3, 4.5]

Due to the initial value and the possibility that *X* has no left limit at τ_n , some bounds in the proofs of [2, Lemmata 4.3, 4.5] are only valid on the open stochastic interval $]]0, \tau_n[]$. Because singletons have Lebesgue measure zero, the arguments require no further changes.

The last conclusion in the proof of [2, Lemma 4.5] follows from the dominated convergence theorem.

3.3 [2, Proposition 4.8]

In the proof, it has been used that $\rho(A^*) \neq \emptyset$, see [8, Lemma 4.1]. Because \mathbb{B} is separable and reflexive, its dual \mathbb{B}^* is separable and D in the proof of [2, Proposition 4.8] can be constructed more directly: The assumption $\rho(A) \neq \emptyset$ implies that $\rho(A^*) \neq \emptyset$, see [7, Theorem 5.30, p. 169]. Let $D' \subset \mathbb{B}^*$ be a countable dense subset of \mathbb{B}^* and take $\lambda \in \rho(A^*)$. Now, set $R(\lambda, A^*) \triangleq (\lambda - A^*)^{-1}$ and define $D \triangleq \{R(\lambda, A^*)x : x \in D'\} \subseteq D(A^*)$. We claim that for each $x \in D(A^*)$ there exists a sequence $(x_n)_{n \in \mathbb{N}} \subset D$ such that $x_n \to x$ and $A^*x_n \to A^*x$ in the operator norm as $n \to \infty$. To see this, take $x \in D(A^*)$ and set $y \triangleq \lambda x + A^*x$. There exists a sequence $(y_n)_{n \in \mathbb{N}} \subset D'$ such that $y_n \to y$ as $n \to \infty$. Finally, set $x_n \triangleq R(\lambda, A^*)y_n \in D$. Because $R(\lambda, A^*) \in L(\mathbb{B}^*, \mathbb{B}^*)$, we have $x_n \to R(\lambda, A^*)y = x$ as $n \to \infty$. Moreover, the triangle inequality yields that

$$||A^*x_n - A^*x|| \le ||y_n - y|| + |\lambda| ||x_n - x|| \to 0 \text{ as } n \to \infty.$$

The claim is shown.

3.4 [2, Lemma 4.10]

Due to Lemma 1, it is not necessary to pass to $D(\mathbb{R}_+, \mathbb{B}_\Delta)$. Moreover, it can be seen more easily that Φ is Borel. Indeed, Φ is continuous.

3.5 [2, Lemma 4.11]

In the proof of *P*-a.s.

$$E^{P}\left[\left(M_{t\wedge\tau_{n}}^{f}-M_{s\wedge\tau_{n}}^{f}\right)\circ\theta_{\xi}\mathbf{1}_{\{\xi<\tau_{\Delta}\}}\big|\mathcal{F}_{s+\xi}\right]=0,$$

the variable *n* is used twice, which results in a conflict of notation. We correct the argument: Note that $\tau_{n+k} \circ \theta_{\xi} + \xi \leq \tau_{2(n+k)}$ on $\{\xi < \tau_{n+k}\}$ for all $k \in \mathbb{N}$. Set $\sigma_r \triangleq r \wedge \tau_n \circ \theta_{\xi} + \xi$. We obtain that *P*-a.s.

$$\begin{split} & E^{P} \Big[\Big(M_{t \wedge \tau_{n}}^{f} - M_{s \wedge \tau_{n}}^{f} \Big) \circ \theta_{\xi} \mathbf{1}_{\{\xi < \tau_{\Delta}\}} \big| \mathcal{F}_{s+\xi} \Big] \\ &= \lim_{k \to \infty} E^{P} \Big[\Big(M_{\sigma_{t}}^{f} - M_{\sigma_{s}}^{f} \Big) \mathbf{1}_{\{\xi < \tau_{n+k}\}} \big| \mathcal{F}_{s+\xi} \Big] \\ &= \lim_{k \to \infty} E^{P} \Big[\Big(M_{\sigma_{t} \wedge \tau_{2(n+k)}}^{f} - M_{\sigma_{s} \wedge \tau_{2(n+k)}}^{f} \Big) \mathbf{1}_{\{\xi < \tau_{n+k}\}} \big| \mathcal{F}_{s+\xi} \Big] \\ &= \lim_{k \to \infty} \Big(M_{\sigma_{t} \wedge \tau_{2(n+k)} \wedge (s+\xi)}^{f} - M_{\sigma_{s} \wedge \tau_{2(n+k)} \wedge (s+\xi)}^{f} \Big) \mathbf{1}_{\{\xi < \tau_{n+k}\}} = 0, \end{split}$$

by the optional stopping theorem.

3.6 [2, Section 4.3.2]

Because X has no left limit at τ_{Δ} , the random measure μ^X cannot be defined as in [2, Eq. 4.20]. We pass to a stopped version: Let \widehat{X} be defined as in Eq. 4.11 in [2] and set $X^n \triangleq \widehat{X}_{. \wedge \tau_n}$ and

$$\mu^{n}(\omega; dt, dx) \triangleq \sum_{s>0} \mathbf{1}_{\{\Delta X_{s}^{n}(\omega)\neq 0\}} \varepsilon_{(s,\Delta X_{s}^{n}(\omega))}(dt, dx),$$
$$\nu^{n}(\omega; dt, dx) \triangleq \mathbf{1}_{\{t \leq \tau_{n}(\omega)\}} K(X_{t}^{n}(\omega), dx) dt.$$

We have the following version of [2, Lemmata 4.17, 4.18, 4.19]:

Lemma 4 For all $n \in \mathbb{N}$ the random measure μ^n is (\mathbf{F}^P, P) -optional with \mathscr{P}^P - σ -finite Doléans measure and (\mathbf{F}^P, P) -predictable compensator v^n .

Because the proofs of [2, Lemmata 4.17, 4.18] contain typos and the proof of [2, Lemma 4.19] requires some minor modification, as the set $Z_1 \times Z_2$ has not all claimed properties, we give a proof:

Proof Due to [3, Theorem IV.88B, Remark below], the set $\{\Delta X^n \neq 0\}$ is \mathbf{F}^P -thin. Hence, [6, II.1.15] yields that μ^n is \mathbf{F}^P -optional. It follows as in [9, Example 2, pp. 160] that $M_{\mu^n}^P$ is \mathscr{P}^P - σ -finite. Next, we show that ν^n is \mathbf{F}^P -predictable with \mathscr{P}^P - σ -finite Doléons measure $M_{\nu^n}^P$. For $m \in \mathbb{N}$ we set $G_m \triangleq \{x \in \mathbb{B} : ||x|| \ge \frac{1}{m}\} \cup \{0\}$. Let W be a nonnegative $\mathscr{P}^P \otimes \mathscr{B}(\mathbb{B})$ -measurable function which is bounded by a constant c > 0. Because P-a.s.

$$W\mathbf{1}_{\llbracket 0,\tau_m \rrbracket}\mathbf{1}_{G_m}\star v_{\infty}^n \le cm \sup_{\|x\|\le m} K(x, \{z\in\mathbb{B}\colon \|z\|\ge \frac{1}{m}\}) < \infty,$$

we conclude that $M_{v^n}^P$ is \mathscr{P}^P - σ -finite. Furthermore, the process

$$W \star \nu^n = \lim_{m \to \infty} W \mathbf{1}_{[0, \tau_m]} \mathbf{1}_{G_m} \star \nu'$$

is \mathbf{F}^{P} -predictable as the pointwise limit of an \mathbf{F}^{P} -predictable process. We conclude that v^{n} is an \mathbf{F}^{P} -predictable random measure.

It remains to show that ν^n is the (\mathbf{F}^P, P) -predictable compensator of μ^n . Let \mathcal{Z}_1 be the collection of sets $A \times \{0\}$ for $A \in \mathcal{F}_0^P$ and $\llbracket 0, \xi \rrbracket$ for all \mathbf{F}^P -stopping times ξ , and let \mathcal{Z}_2 be the collection of all sets

$$G \triangleq \{x \in \mathbb{B} \colon (\langle x, y_1^* \rangle, \dots, \langle x, y_d^* \rangle) \in A\} \in \mathcal{B}(\mathbb{B}),$$
(3.1)

for $A \in \mathcal{B}(\mathbb{R}^d)$, $y_1^*, \ldots, y_d^* \in D(A^*)$ and $d \in \mathbb{N}$. Note that $M_{\mu^n}^P(A \times \{0\} \times G) = M_{\nu^n}^P(A \times \{0\} \times G) = 0$ for all $A \in \mathcal{F}_0^P$ and $G \in \mathcal{B}(\mathbb{B})$. Fix an \mathbf{F}^P -stopping time ξ and the cylindrical set G given by (3.1). Denote $Y^n \triangleq (\langle X^n, y_1^* \rangle, \ldots, \langle X^n, y_d^* \rangle)$. By [2, Lemma 4.7], we obtain

$$E^{P}\left[\mathbf{1}_{\llbracket 0,\xi \rrbracket \times G} \star \mu_{\infty}^{n}\right] = E^{P}\left[\mathbf{1}_{\llbracket 0,\xi \rrbracket \times A} \star \mu_{\infty}^{Y^{n}}\right] = E^{P}\left[\mathbf{1}_{\llbracket 0,\xi \rrbracket \times G} \star \nu_{\infty}^{n}\right],$$

which implies $M_{\mu^n}^P = M_{\nu^n}^P$ on $\mathcal{Z}_1 \times \mathcal{Z}_2$. Take a norming sequence $(x_m^*)_{m \in \mathbb{N}} \subset \mathbb{B}^*$ of unit vectors, see p. 522 in [5] for a definition, and note that

$$B_m \triangleq \left\{ x \in \mathbb{B} \colon ||x|| > \frac{1}{m} \right\} = \bigcup_{k \in \mathbb{N}} \left\{ x \in \mathbb{B} \colon |\langle x, x_k^* \rangle| > \frac{1}{m} \right\}.$$

For $m, k \in \mathbb{N}$ set

$$\gamma(m,k) \triangleq \inf(t \in \mathbb{R}_+ : \mu^n([0,t] \times B_m) > k) \land m.$$

The dominated convergence theorem yields that

$$M^P_{\mu^n}((A \times B) \cap (\llbracket 0, \gamma(m, k) \rrbracket \times B_m)) = M^P_{\nu^n}((A \times B) \cap (\llbracket 0, \gamma(m, k) \rrbracket \times B_m))$$

for all $A \times B \in \mathbb{Z}_1 \times \mathbb{Z}_2$. Now, we conclude from the uniqueness theorem for measures that $M_{\mu^n}^P = M_{\nu^n}^P$ on the trace σ -field $(\mathscr{P}^P \otimes \mathcal{B}(\mathbb{B})) \cap (\llbracket 0, \gamma(m, k) \rrbracket \times (B_m \cup \{0\}))$. Finally, taking $k, m \to \infty$ and using the monotone convergence theorem show that $M_{\mu^n}^P = M_{\nu^n}^P$ on $\mathscr{P}^P \otimes \mathcal{B}(\mathbb{B})$. The proof is complete. \Box

The candidate density process Z can be defined as in [2, Lemma 4.21] with μ^X and ν^X replaced by μ^n and ν^n .

3.7 [2, Lemmata 4.21, 4.22]

In the proofs, the process X should be replaced by \widehat{X} .

3.8 [2, Proposition 3.7]

The representation of the CMG densities and the function V^k in [2, Lemma 4.23] should be multiplied by $\mathbf{1}_{\{\tau_n < \tau_\Delta\}}$. Moreover, in all Lebesgue integrals X_- should be replaced by X.

3.9 [2, Lemma 3.16]

Instead of the Yamada–Watanabe argument, the uniqueness also follows from the observation that for a pseudo-contraction semigroup $(S_t)_{t\geq 0}$ and a square integrable Lévy process *L* the law of $\int_0^{\cdot} S_{-s} dL_s$ is completely determined by *L*. This can be seen with the approximation argument used in the proof of [11, Theorem 9.20].

4 Final Comment

Above [2, Proposition 3.9] it is noted that "in a non-conservative setting, one can try to conclude existence from an extension argument in a larger path space, [but] in this case one has to prove that the extension is supported on (Ω, \mathcal{F}) " as defined in [2]. The larger path space, to which this comment refers, is the path space defined in this correction note. In our modified setting, it follows from Parthasarathy's extension theorem (see [10]) that under the assumptions imposed in [2] the GMP $(A, b', a, K', \eta, \tau_{\Delta}-)$ has a solution whenever the GMP $(A, b, a, K, \eta, \tau_{\Delta}-)$ has a solution. This observation extends [2, Theorem 3.6].

References

- Biagini, S., Bouchard, B., Kardaras, C., Nutz, M.: Robust fundamental theorem for continuous processes. Math. Finance 27(4), 963–987 (2017)
- Criens, D.: Cylindrical martingale problems associated with Lévy generators. J. Theor. Probab. 32(3), 1306–1359 (2019)
- 3. Dellacherie, C., Meyer, P.: Probabilities and Potential. North-Holland, Amsterdam (1978)
- 4. Ethier, S., Kurtz, T.: Markov Processes: Characterization and Convergence. Wiley, Hoboken (2005)

- Hytönen, T., van Neerven, J., Veraar, M., Weis, L.: Analysis in Banach Spaces: Volume I: Martingales and Littlewood–Paley Theory. Springer, Berlin (2016)
- 6. Jacod, J., Shiryaev, A.: Limit Theorems for Stochastic Processes, 2nd edn. Springer, Berlin (2003)
- 7. Kato, T.: Perturbation Theory for Linear Operators, 2nd edn. Springer, Berlin (1980)
- Kunze, M.: On a class of martingale problems on Banach spaces. Electron. J. Probab. 18(104), 1–30 (2013)
- 9. Liptser, R., Shiryaev, A.N.: Theory of Martingales. Springer, Berlin (1989)
- 10. Parthasarathy, K.: Probability Measures on Metric Spaces. Academic Press, New York (1967)
- 11. Peszat, S., Zabczyk, J.: Stochastic Partial Differential Equations with Lévy Noise: An Evolution Equation Approach. Cambridge University Press, Cambridge (2007)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.