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Correction to: 

"On Operators Derived from Extensions 
of the Fourier Transform" 

G.O. O~IK~OLU 

1. Introduction 

In this note we make a number of comments which correct various mistate- 
ments in the paper 1-13 concerning the operator defined by 

F2V~(f)(x)=(2~z)-~-Ixr +~ ~ It l~ei~f(t)dt ,  

whenever the integral exists for almost all x. 

Our first proof of the boundedness o f / ~  from L p into L q, O< t /p< 1, 
1/q= 1 - ( 1 / p ) - a > 0 ,  q>p,  q> 1, was incomplete. Hence the validity of the 
results for all v in the range ( l / p ) -  1 < v < (I/p) is incorrect except when, F~ ~ is 
restricted to certain subsets of L p. 

A full discussion of these conclusions is given in I-2]. 
We state below the results which we have so far proved concerning cases in 

which F (~) is bounded on L p. 

2. The Main Theorems Involving Boundedness of F~ ~ 

(2.1) (Theorem 6.1 and Note 6.1.1 of 1,,2].) Let 

l<p<_2,  1 / q = l - ( 1 / p ) - ~ > O ,  q > 2 ,  

(1/p) - 1 < v <= min (0, - ~r). 

Then F~ V~ can be extended to a bounded operator on L p, there is a finite constant 
k (p, v, o9-= k such that 

HF~)(.f)lhq<=k Hfllp, (feLP), 
and 

(2.1.1) lira 

Also Jbr g in I f ,  we have 

i [ti~eiX~.f(z) dt qdx=O. r~v~(/')(x)-(2rc) -~ [xl ~+~ 
- - o o  - - a  
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Further, .for f in L p and g in L q', 

(2.1.2) ; g (x)FJ ~) ( f)(x) dx = ~ f ( t )F ( ;  + ~ (g)(t) dt, 
c o  - - o 0  

(2.1.3) Fff)(f)(x)=(2x)-~lxl~+~(d/dx) ; ttl~(e i ~ -  1)(it) -~f(t)  dr, 
- - o 0  

(2.1.4) f(x)=(2~z)-~lxl-~(d/dx) ; Itl . . . .  ( e - ~ ' - l ) ( - i t ) - ~ F ~ ) ( f ) ( t ) d t ,  

for almost all x. 

(2.2) (Theorem 7.6 of [2].) Suppose that either of the.following sets of conditions 
hold: 

(i) l < p <  0% 1/q= 1 - (1 /p ) -a ,  max(2, p ) < q < 2 p , ( 1 / p ) - l < v < ( 2 / q ) - l ,  

(ii) l < q <  o% 1 / q = l - ( 1 / p ) - ~ ,  max(�89 1/q)< 1/P<�89 + l/q), (1/p)- l  < v< 
(2/q) - 1 + 

then the same conclusions as in (2.1) hold. 

(2.2.1) Note. The conditions (ii) of (2.2) are not given explicitly in E2]. They 
may easily be obtained by writing 

p for q', q for p', - o- for ~, and v for v + 

in the conjugate inequality involving F ~  +~). 

(2.3) (Theorems 8.1 and 8.2 of [2].) 

(i) Let 1 < p < o% z = 1 - (2//)), ( l /p)-  1 < v < min(0, (2/,o)- 1). Then the con- 
clusions of (2.1) hold with a=z,  q=p. 

(ii) Let f e  L p, 1 < p < ~ ,  ~ = 1 - (2/p), max (0, (2/p) - 1) < v < I/p, and suppose 
that Fff ~ ( f )~  L p. Then there is a constant k (p, v)= k such that 

Il f [lp< k IlFff~(f)l[p. 

(2.4) Remark. We have shown in [2] by considering the example 

f ( t ) = t - ~ ( 1 - t )  -v, (0< t< l ) ;  f(t)  =0 ,  tq~(0, 1), 

that Fff ) is not bounded in L p for 1/(2p)< v < (l/p). Further details of results so 
far proved can be seen in [2] and [4]. 

3. The Other Results of [1] 

The conclusions given in Section 5 and 6 remain valid as they are, although 
the proofs given there need modification since Fff ) is not bounded in L p for all v 
in ((l/p)- 1, (l/p)). Alternative proofs of those in Section 5 are contained in [3], 
and the conclusions of Section 6 may be justified similarly. 

See remarks (9) of [2]. 
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