Correction to:

"On Operators Derived from Extensions of the Fourier Transform"

G.O.Okikiolu

1. Introduction

In this note we make a number of comments which correct various mistatements in the paper [1] concerning the operator defined by

$$
F_{\sigma}^{(v)}(f)(x)=(2 \pi)^{-\frac{1}{2}}|x|^{\nu+\sigma} \int_{--\infty}^{\rightarrow \infty}|t|^{\nu} e^{i x t} f(t) d t
$$

whenever the integral exists for almost all x.
Our first proof of the boundedness of $F_{\sigma}^{(v)}$ from L^{p} into $L^{q}, 0<1 / p \leqq 1$, $1 / q=1-(1 / p)-\sigma>0, q \geqq p, q>1$, was incomplete. Hence the validity of the results for all v in the range $(1 / p)-1<\nu<(1 / p)$ is incorrect except when $F_{\sigma}^{(\nu)}$ is restricted to certain subsets of L^{p}.

A full discussion of these conclusions is given in [2].
We state below the results which we have so far proved concerning cases in which $F_{\sigma}^{(v)}$ is bounded on L^{p}.

2. The Main Theorems Involving Boundedness of $F_{\sigma}^{(v)}$

(2.1) (Theorem 6.1 and Note 6.1.1 of [2].) Let

$$
\begin{gathered}
1<p \leqq 2, \quad 1 / q=1-(1 / p)-\sigma>0, \quad q \geqq 2 \\
(1 / p)-1<v \leqq \min (0,-\sigma)
\end{gathered}
$$

Then $F_{\sigma}^{(\gamma)}$ can be extended to a bounded operator on L^{p}, there is a finite constant $k(p, v, \sigma) \equiv k$ such that

$$
\left\|F_{\sigma}^{(v)}(f)\right\|_{q} \leqq k\|f\|_{p}, \quad\left(f \in L^{p}\right)
$$

and

$$
\begin{equation*}
\lim _{a, b \rightarrow \infty} \int_{-\infty}^{\infty} F_{\sigma}^{(v)}(f)(x)-\left.(2 \pi)^{-\frac{1}{2}}|x|^{\nu+\sigma} \int_{-a}^{b}|t|^{\nu} e^{i x t} f(t) d t\right|^{q} d x=0 . \tag{2.1.1}
\end{equation*}
$$

Also for g in L^{\prime}, we have

$$
\left\|F_{-\sigma}^{(v+\sigma)}(g)\right\|_{p^{\prime}} \leqq k\|g\|_{q^{\prime}} .
$$

Further, for f in L^{p} and g in $L^{q^{\prime}}$,

$$
\begin{gather*}
\int_{-\infty}^{\infty} g(x) F_{\sigma}^{(v)}(f)(x) d x=\int_{-\infty}^{\infty} f(t) F_{-\sigma}^{(v+\sigma)}(g)(t) d t \tag{2.1.2}\\
F_{\sigma}^{(v)}(f)(x)=(2 \pi)^{-\frac{1}{2}}|x|^{\nu+\sigma}(d / d x) \int_{-\infty}^{\infty}|t|^{\nu}\left(e^{i x t}-1\right)(i t)^{-1} f(t) d t \tag{2.1.3}\\
f(x)=(2 \pi)^{-\frac{1}{2}}|x|^{-v}(d / d x) \int_{-\infty}^{\infty}|t|^{-v-\sigma}\left(e^{-i x t}-1\right)(-i t)^{-1} F_{\sigma}^{(v)}(f)(t) d t \tag{2.1.4}
\end{gather*}
$$

for almost all x.
(2.2) (Theorem 7.6 of [2].) Suppose that either of the following sets of conditions hold:
(i) $1<p<\infty, 1 / q=1-(1 / p)-\sigma, \max (2, p) \leqq q<2 p,(1 / p)-1<v \leqq(2 / q)-1$,
(ii) $1<q<\infty, 1 / q=1-(1 / p)-\sigma, \max \left(\frac{1}{2}, 1 / q\right) \leqq 1 / p<\frac{1}{2}(1+1 / q),(1 / p)-1<\nu \leqq$ (2/q) $-1+\sigma$
then the same conclusions as in (2.1) hold.
(2.2.1) Note. The conditions (ii) of (2.2) are not given explicitly in [2]. They may easily be obtained by writing

$$
p \text { for } q^{\prime}, \quad q \text { for } p^{\prime}, \quad-\sigma \text { for } \sigma, \quad \text { and } \quad v \text { for } v+\sigma
$$

in the conjugate inequality involving $F_{-\sigma}^{(v+\sigma)}$.
(2.3) (Theorems 8.1 and 8.2 of [2].)
(i) Let $1<p<\infty, \tau=1-(2 / p),(1 / p)-1<v \leqq \min (0,(2 / p)-1)$. Then the conclusions of (2.1) hold with $\sigma=\tau, q=p$.
(ii) Let $f \in L^{p}, 1<p<\infty, \tau=1-(2 / p), \max (0,(2 / p)-1) \leqq v<1 / p$, and suppose that $F_{\tau}^{(v)}(f) \in L^{p}$. Then there is a constant $k(p, v) \equiv k$ such that

$$
\|f\|_{p} \leqq k\left\|F_{\tau}^{(v)}(f)\right\|_{p}
$$

(2.4) Remark. We have shown in [2] by considering the example

$$
f(t)=t^{-v}(1-t)^{-\nu}, \quad(0<t<1) ; \quad f(t)=0, \quad t \notin(0,1),
$$

that $F_{\tau}^{(v)}$ is not bounded in L^{p} for $1 /(2 p)<v<(1 / p)$. Further details of results so far proved can be seen in [2] and [4].

3. The Other Results of [1]

The conclusions given in Section 5 and 6 remain valid as they are, although the proofs given there need modification since $F_{\tau}^{(v)}$ is not bounded in L^{p} for all v in $((1 / p)-1,(1 / p))$. Alternative proofs of those in Section 5 are contained in [3], and the conclusions of Section 6 may be justified similarly.

See remarks (9) of [2].

References

1. Okikiolu, G. O.: On operators derived from extensions of the Fourier transform. Math. Z. 92 , 175-186 (1966).
2. - Applications of fundamental operators: The operator $F_{\sigma}^{(v)}$. Proc. London Math. Soc. (to appear).
3. - On certain extensions of the Hilbert operator. Math. Ann. 169, 315-327 (1967).
4. - The operator $F_{\sigma}^{(v)}$ and fractional integrals. J. London Math. Soc. (to appear).

G. O. Okikiolu
School of Mathematics and Physics
University of East Anglia
Norwich, NOR 88 C, England

