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Extended State Observer-Based Integral Sliding
Mode Control for an Underwater Robot with

Unknown Disturbances and Uncertain
Nonlinearities

Rongxin Cui, Member, IEEE, Lepeng Chen, Chenguang Yang, Senior Member, IEEE, and Mou

Chen, Member, IEEE

Abstract—This paper develops an novel integral slid-
ing mode controller (ISMC) for a general type of under-
water robots based on multiple-input and multiple-output
extended-state-observer (MIMO-ESO). The difficulties as-
sociated with the unmeasured velocities, unknown distur-
bances and uncertain hydrodynamics of the robot have
been successfully solved in the control design. An adap-
tive MIMO-ESO is designed not only to estimate the un-
measurable linear and angular velocities, but also to es-
timate the unknown external disturbances. Then an ISMC
is designed using Lyapunov synthesis, and an adaptive
gain update algorithm is introduced to estimate the upper
bound of the uncertainties. Rigorous theoretical analysis
is performed to show that the proposed control method
is able to achieve asymptotical tracking performance for
the underwater robot. Experimental studies are carried out
to validate the effectiveness of the proposed control, and
to show that the proposed approach performs better than
conventional PD control.

Index Terms—Underwater robot, integral sliding mode
controller, extended state observer, underwater vehicle

I. INTRODUCTION

Underwater robots, including autonomous underwater vehi-

cles (AUVs), remote operated vehicles (ROVs) and underwater

gliders, have been increasingly utilized to expand the abilities

of human in marine resources exploration and marine scientific

research. To achieve the full potential benefits provided by

underwater robots, high-precision controller for underwater

robots is required, such that the quality of the collected data

can be guaranteed, and high precision in trajectory tracking or

station keeping of the robot can be secured [1]–[6].

In practice, there are a number of technical challenges in

the control of an underwater robot, such as the unknown
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external disturbances and model uncertainties. The unknown

disturbances in practical oceanic environments include waves,

tides, currents and upward or downward streams. For an ROV,

the external force caused by the cable that connects with the

depot ship should also be considered. The model uncertainties

of an underwater robot are usually caused by the inaccurate

hydrodynamic coefficients which are calculated through the

computational fluid dynamics (CFD) methods or towing tank

experimental data analysis. During the process of performing a

task, different attitude of the robot will also cause the variation

of the hydrodynamic coefficient.

Several methods, such as adaptive control [1], [7], [8],

robust control [9], [10] and disturbance observer-based control

[11], [12], have been introduced to address the technical

challenges of model uncertainties and unknown external dis-

turbances. In [1], a robust adaptive controller considering the

velocity constraints is proposed for an ROV. The model param-

eters are estimated online and a Barrier Lyapunov function is

applied in the Lyapunov synthesis. Finally, the results are vali-

dated thought simulation. Since the fuzzy logic systems (FLS)

and neural networks (NN) have the ability to approximate

nonlinearities, the NN and fuzzy approximation-based adaptive

controllers have been widely applied to the plants with model

uncertainties and unknown disturbances [7], [8], [13]. In [7],

an adaptive controller which combines NN approximation with

dynamics surface control is presented for trajectory tracking

of an AUV. The computational load is reduced by introducing

an NN learning method using minimal number of learning

parameters. In [14], considering the unknown parameters, an

adaptive fuzzy sliding mode control is presented to steer a low-

speed underactuated underwater vehicle and an experiment

has justified the method. In [15], the NN-based controller

is extended to control the multiple underwater robots and

simulation results have been shown. Although the NN and

fuzzy-based adaptive controllers have the advantages on the

approximation of the uncertainties and disturbances, it is still

a challenging task to adjust its learning parameters in real

applications.

As an effective tool to suppress disturbances for complex

systems, sliding mode control (SMC) has attracted obvious

attentions for the control plant with disturbances [10], [16]–

[20]. In [21], a novel ESO-based adaptive control has been

proposed for power converters to reject the load connected to



the dc-link capacitor and the uncertain parameters. The exper-

iment based on a real power converter prototype validate the

control performance. In [9], a sliding mode tracking controller,

which uses two sliding surfaces for surge tracking errors

and lateral motion tracking errors, is applied to autonomous

surface vessels. To address the control technical challenges for

the switched stochastic systems, a novel dissipativity-based

sliding mode control is proposed in [16]. In [10], integral

sliding mode controllers (ISMC) are proposed for trajectory

tracking of ROVs. Since the effect of the additional error-

integral term, the ISMC has a more accurate trajectory tracking

performance than the conventional SMC. To overcome the

time-delay for the AUV control, an ISMC is introduced to

overcome the problem that data acquisition rate could not

be maintained sufficiently [22]. The major shortcoming of

SMC is the chattering problem, which not only causes energy

losses but also reduces the trajectory tracking smoothness. To

reduce the chattering, several methods, such as the high-order

sliding-mode controller [23], [24], disturbance compensation

method [25], [26], and terminal sliding controller [27] have

been proposed. In [25], a free chattering SMC is presented

via an adaptive term which continuously compensates for the

unknown system dynamics of an ROV. In practice, sometimes,

the upper bound of the uncertainties may be large and the

SMC without a compensator will cause serious chattering.

Therefore, it is necessary to design a compensator for the

external disturbance to reduce chattering.

Another approach dealing with the unknown disturbance

is to design an observer to estimate the unknown external

disturbance of a robot, followed by the control design to

compensate for the estimated disturbance. Such disturbance

observers include sliding mode observer [11], [28], high-gain

observer [29], [30] and extended state observer [12], [31]. In

[11], a sliding mode controller based on a sliding mode ob-

server is proposed for a reusable launch vehicle. The observer

is presented to estimate the unknown external disturbances and

to reduce the control gain. In [29], a high-gain observer-based

output feedback motion control that considers the unmodelled

dynamics, measurement errors, model parameter variations

and unknown external environmental disturbances for observa-

tion class ROVs is presented. In [31], a backstepping control

based on an extended state observer (ESO) is proposed to

handle mismatched disturbance of hydraulic systems. The

designed observer estimates not only the model uncertainties

but also the unmeasured states. In [12], by using an extended

state observer, a backstepping control for a hydraulic system is

presented to suppress the large unknown external disturbances.

The bandwidth of the observer is chosen in accordance with

two conflicting aspects, the maximal load capability and the

dynamic performance of system.

In this work, we design an adaptive sliding mode-based

controller for a general type of underwater robots, and exper-

iment is carried on a test bed for underwater object grasping.

Onboard sensors, including a depth sensor and an inertial

measurement unit (IMU), are equipped to measure the depth

and attitude of the robot. The position of the underwater robot

is measured by an external vision positioning system (VPS)

and some white lightings are equipped on the robot which can

be captured by the VPS to calculate the position of the robot.

In such a case, there is no direct measurement of velocity of

the robot. Then output feedback is required for our work as

the direct differential of the position information may degrade

the control performance. In such case, observes are always

used to estimate the unmeasured states of the robot [5], [32].

A local recurrent NN-based adaptive terminal sliding mode

state observer is presented to estimate the unmeasured velocity

of an ROV in [5], which considers the uncertain dynamic

model, the unmeasured states and inaccurate thrust model. In

[33], an NN-based adaptive observer is presented to address

the problem of estimating the unavailable measurements of

underwater vehicles’ velocities. In [34], a terminal sliding

mode observer of an AUV is introduced to estimate the

velocity, and the estimation error is guaranteed to converge

to zero in a finite time. In [35], an adaptive backstepping

control is introduced for human upper limbs in the presence of

disturbances, unmodeled dynamics and uncertainties. In [36],

an output feedback tracking controller is designed to address

the problem of steering a quadrotor with unknown disturbances

and model uncertainties. The unmeasurable linear and angular

velocities are estimated by a series of nonmodel-based filters.

In [37], an attitude and speed controller is designed based on

an adaptive second order SMC for an unmanned aerial vehicle

(UAV) and an extended observer is applied to estimate the

unmeasured states and unknown external disturbances. In [38],

a high gain observer is implemented to estimate the full states

of the electro-hydraulic system. It is noted that in the literature

mentioned above, controllers designed for underwater robots

in [1], [3], [4], [7], [8], [15], [17], [25], [27] are verified by

simulations, and other controllers in [6], [10], [14], [22], [23]

are verified by experiments.

In this paper, a disturbance compensation approach is uti-

lized to eliminate the chattering based on MIMO-ESO with

a simple structure. Motivated by the ESO model [31] and

the high-gain observer [38], a MIMO-ESO is proposed to

estimate the unknown disturbances and the unmeasured states.

The bounds of the uncertainties are also estimated using the

adaptive control technique. The Lyapunov analysis is involved

to design the final control law. The proposed controller in this

paper includes two parts, namely the equivalent controller and

the switch controller, which guarantees the trajectory tracking

error converge to zero theoretically. The proposed controller

is successfully implemented on an underwater robot propelled

by six thrusters. The main contributions can be summarized

as follows.

1) A novel adaptive MIMO-ESO is developed to estimate

the unmeasured velocity and the unknown external dis-

turbances of the underwater robot.

2) Based on Lyapunov analysis, an adaptive MIMO-ESO

based ISMC is designed to ensure that the trajectory

tracking error converge to zero.

3) Comparative studies with the conventional PD control

are carried out experimentally on an underwater robot

to demonstrate the superior performance of the proposed

control.

The remainder of this paper is organized as follows. Section



II presents the robot model and formulates the problem. In

Section III, the adaptive MIMO-ESO is derived to estimate

the unknown disturbances and the unmeasured velocities. In

section IV, the integral sliding mode controller is proposed.

Experimental results are shown in Section V, followed by the

conclusion of this work in Section VI.

II. PROBLEM FORMULATION
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Fig. 1. Navigation and body frames of an underwater robot.

Following the underwater modeling methods in [39], two

frames, namely, the navigation frame and the body frame are

defined as shown in Fig. 1. The linear velocity ν1 = [u, v, w]⊤

and the angular velocity ν2 = [p, q, r]⊤ are defined in the

body frame. The position η1 = [x, y, z]⊤ and orientations

η2 = [φ, θ, ψ]⊤ are defined in the navigation frame. The

nonlinear dynamics of the robot with respect to the body frame

is described as

Mν̇ + C(ν)ν + D(ν)ν + G(η) = F + d (1)

where ν = [ν⊤
1 , ν⊤

2 ]⊤, η = [η⊤
1 , η⊤

2 ]⊤, d is the unknown

external disturbance, and F is the force and moment acting on

the robot. Detailed definition of other symbols can be found

in [39].

In practical applications, we may not be able to obtain

the accurate hydrodynamics coefficients used in the model,

thus we divide the matrices in (1) into two parts, namely

the nominal value part and the bias part that describes the

difference between the real value and the nominal value,

i.e., M = M∗ + ∆M , G(η) = G∗(η) + ∆G(η), C(ν) =
C∗(ν) + ∆C(ν), and D(ν) = D∗(ν) + ∆D(ν), where (·)∗

denotes the nominal value that can be obtained from the CFD

computation or the tower tank experiment analysis. These

nominal values are available for control design. ∆(·) denotes

the difference between the real value and the nominal value.

In this work, we consider an underwater robot that equips six

thrusters. The moment and force acting on the robot by the

thrusters is defined as F = LU , where U is a vector describing

the force generated by the thrusters, L is the force allocation

matrix which is related to the center of buoyancy (COB) and

the center of gravity (COG) of the robot.

Now, the model of the underwater robot studied in this work

can be written as

M∗ν̇ + C∗(ν)ν + D∗(ν)ν + G∗(η) = LU + dsum(η, ν)
(2)

where dsum(η, ν) is the lumped disturbance, which includes

uncertain hydrodynamics and unknown external disturbance.

It is defined as dsum(η, ν) = d + dun, where

dun = −∆Mν̇ − ∆G(η) − ∆C(ν)ν − ∆D(ν)ν (3)

The kinematics of the robot is described as

η̇ = J(η)ν (4)

where J(η) is the transformation matrix that relates between

speeds in the body and navigation frames. We assume that

during the motion of the underwater robot, θ 6= 90◦, i.e., J
is invertible. Thus, the model of the robot in the navigation

frame can be written as

η̈ + Cη(η, ν)η̇ + Dη(η, ν)η̇ + Gη(η) = MηLU + H (5)

where Cη = JM∗−1C∗J−1 − J̇J−1, Dη = JM∗−1D∗J−1,

Gη = JM∗−1G∗, Mη = JM∗−1, H = Hd+Hun = Mηdsum

Hd = Mηd, Hun = Mηdun.

Assumption 1: The unknown external disturbance term d(t)
and the first time derivative ḋ(t) are bounded. Moveover,

Hd(t) and Ḣd(t) are bounded as well. The upper bound of

Ḣd(t) is unknown for the control design.

The uncertain items in the robot’s model, ∆M , ∆G, ∆C
and ∆D are related to the states of the robot. In practice, we

can also have the following assumption.

Assumption 2: ∆M , ∆G, ∆C and ∆D are bounded. Then,

we assume that dun and Hun(t) are also bounded, satisfying

‖Hun(t)‖ ≤ ρ1 ∈ R
+, where ρ1 is the unknown upper bound

and ‖ · ‖ is the Euclidean norm.

In this work, the underwater robot is equipped with an IMU

which is used to measure the orientations of η2. Position of the

robot η1 is measured by an external VPS. There is no sensor

available to measure the velocity of the robot directly. Thus,

in this work, we design a proper control input, U(t), using

the IMU, VPS measurements, to control the trajectory of the

underwater robot η(t) following the reference trajectory ηr(t),
i.e., the trajectory tracking error of the robot limt→∞ e(t) =
limt→∞ (η(t) − ηr(t)) = 0.

III. ADAPTIVE EXTENDED-STATE-OBSERVER DESIGN

In this section, motivated by the adaptive sliding mode ob-

server [40] and the ESO [31], we design an adaptive multiple-

input and multiple-output extend-state-observer (MIMO-ESO).

Beside the velocity estimation, the unknown external distur-

bance Hd is estimated simultaneously.

A. Extended-state-observer Design

The extended state vector X can be defined as X =
[x⊤

1 , x⊤
2 , x⊤

3 ]⊤ = [η⊤, η̇⊤,H⊤
d ]⊤. The unknown external dis-

turbance Hd is defined as an extended state. According to (5),

we have

Ẋ = AX + f(X) + BU(t) + χ

Y = CX
(6)

where

A =





06×6 I6×6 06×6

06×6 06×6 I6×6

06×6 06×6 06×6



 , B =





06×6

MηL
06×6



 (7)



f(X) =





06×1

ϕ(x1, x2)
06×1



 , χ =





06×1

Hun

Ḣd



 , C = [I6×6, 06×12] (8)

ϕ(x1, x2) = −Cη(η, ν)η̇ − Dη(η, ν)η̇ − Gη(η) (9)

The adaptive MIMO-ESO is presented as

˙̂
X = AX̂ + f(X̂) + BU(t) − κ(x̂1 − x1) − Q̟

Ŷ = CX̂
(10)

where X̂ is the estimation of X , the gain κ is designed as

κ = [3w0I6×6, 3w2
0I6×6, w

3
0I6×6]

⊤ ∈ R
18×6 (11)

where w0 is the bandwidth of the ESO.

Q =





I6×6 06×6 06×6

06×6 w0I6×6 06×6

06×6 06×6 w2
0I6×6



 , f(X̂) =





06×1

ϕ̂(x̂1, x̂2)
06×1





(12)

̟(Ỹ , ρ̂2) =











P−1C⊤Ỹ ρ̂2−c1P−1C⊤Ỹ ḣ1(t)ρ̂
2
2/‖Ỹ ‖

‖Ỹ ‖−c1ḣ1(t)ρ̂2

,

if ‖Ỹ ‖ 6= 0

018×1, if ‖Ỹ ‖ = 0

(13)

where Ỹ = Ŷ − Y , c1 is a positive constant, ρ̂2 is posi-

tive and will be defined later, ḣ1(t) is designed to satisfy

supt∈R+ ḣ1(t) < 0. Those parameters ensure the positive

definiteness of ‖Ỹ ‖ − c1ḣ1(t)ρ̂2.

The uncertain and first time derivative of external distur-

bance parts are assumed to satisfy a matching condition [41]

−G3Ḣd/w2
0 − G2Hun/w0 = P−1C⊤ρt(t) (14)

Remark 1: In this work, both unmeasured velocity and the

external disturbances are considered in the control design. The

bounds of the disturbances are assumed to be unavailable for

the control design, thus an ESO is introduced to estimate the

unmeasured velocity and the disturbance. Similar to works in

[41], the matching condition (14) is assumed to be existed

that facilitates subsequent stability proof. For the systems

which don’t satisfy the matching condition, there have been

several works that relax the matching condition, such as [42]

in which an additional observer is introduced to observe the

unknown inputs. This inspires us that one of the future research

directions lies in the relaxing of such matching condition.

According to Assumption (1) and (2), we know that Ḣd and

Hun are bounded. From (14), ρt(t) is bounded and satisfies

‖ρt(t)‖ ≤ ρ2 ∈ R
+, where the upper bound ρ2 is unknown.

The update law of its estimation ρ̂2, is designed as

˙̂ρ2 = γ2‖Ỹ ‖ (15)

where γ2 is a positive constants and we define ρ̂2(0) = 0.

The estimation error is defined as X̃ = X̂ − X =
[x̃⊤

1 , x̃⊤
2 , x̃⊤

3 ]⊤. The scaled estimation errors are defined as

εi = x̃i/wi−1
0 ∈ R

6, i = 1, 2, 3. Then, subtracting (6) from

(10), we can describe the observer scaled estimation error as

ε̇ = − w0Aεε + Q−1f̃ − G3Ḣd/w2
0

− G2Hun/w0 − ̟(Ỹ , ρ̂2)

= − w0Aεε + Q−1f̃ + P−1C⊤ρt(t) − ̟(Ỹ , ρ̂2)

(16)

where ε = [ε⊤1 , ε⊤2 , ε⊤3 ]⊤ with εi = [εi1, · · · , εi6]
⊤, G3 =

[012×6, I6×6]
⊤, G2 = [06×6, I6×6, 06×6]

⊤,

Aε =





3I6×6 −I6×6 06×6

3I6×6 06×6 −I6×6

I6×6 06×6 06×6



 , f̃ = f(X̂) − f(X). (17)

It is assumed that all states and the function ϕ(x1, x2) are in

a compact set. Then, the nonlinear term ϕ(x1, x2) is Lipschitz

with respect to x1 and x2 in the compact set.

Remark 2: Different from the observers which are used to

estimate the lumped disturbance that contains the unknown

external disturbance and the nonlinear uncertainties in [25],

[37], we only estimate the unknown external disturbance.

The boundedness of the first time derivative of the lumped

disturbance is required for the control design in [25], [37]. In

practice, the uncertainty part always includes the velocities of

the robot. Then, the time derivative of the uncertainty contains

the accelerates which are strongly dependent on the control

inputs. The switching control input in the SMC will lead to a

large value of the derivative of the uncertainty, which prevents

the boundedness assumption of the derivation of uncertainty.

In this paper, we regard the unknown external disturbance as

an augmented state, thus the assumption is relaxed.

Lemma 1: ε̇ = −w0Aεε + Q−1f̃ + P−1C⊤ρt(t) − ̟ has

a faster convergent rate or a slower divergent rate than ε̇ =
−βAεε + P−1C⊤ρt(t) − ̟.

Proof: Since −Aε is Hurwitz, there exists a symmetric

positive definite matrix P which satisfies

AT
ε P + PAε = I18×18 (18)

Substituting Aε into (18), we can calculate that

P =





I6×6 −0.5I6×6 −I6×6

−0.5I6×6 I6×6 −0.5I6×6

−I6×6 −0.5I6×6 4I6×6



 (19)

We can obtain that ‖Q−1f̃‖ = ‖ϕ̂−ϕ‖
w0

= ‖ϕ̃‖
w0

from

(8) and (12). According to the assumptions, there are some

known constants ζ1 and ζ2 that satisfy the following Lipschitz

conditions.

‖ϕ̃‖ ≤ ζ1‖ε1‖ + ζ2‖ε2‖ ≤ (ζ1 + ζ2)‖ε‖ (20)

Let us choose a Lyapunov function candidate as

V1 = ε⊤Pε. (21)

The time derivative of V1 can be written as

V̇1 =ε̇⊤Pε + ε⊤P ε̇

= − w0ε
⊤A⊤

ε Pε + (Q−1f̃)⊤Pε + (P−1C⊤ρt)
⊤Pε

− ̟⊤Pε − w0ε
⊤PAεε + ε⊤PQ−1f̃

+ ε⊤PP−1C⊤ρt − ε⊤P̟
(22)

Because P is a symmetric positive definite matrix, we

have (Q−1f̃)⊤Pε = ε⊤PQ−1f̃ , (P−1C⊤ρt)
⊤Pε =

ε⊤PP−1C⊤ρt and ̟⊤Pε = ε⊤P̟.

V̇1 = − w0ε
⊤(A⊤

ε P + PAε)ε + 2ε⊤PQ−1f̃

+ 2ε⊤P f̃/w0 + 2ε⊤C⊤ρt(t) − 2ε⊤P̟
(23)



Substituting (18) into (23), we have

V̇1 = − w0ε
⊤ε + 2ε⊤PQ−1f̃/w0

+ 2ε⊤C⊤ρt(t) − 2ε⊤P̟

≤− w0‖ε‖
2 + 2‖ε‖‖P‖‖Q−1f̃‖

+ 2ε⊤C⊤ρt(t) − 2ε⊤P̟

≤ [−w0 + c2(ζ1 + ζ2)/w0] ‖ε‖
2

+ 2ε⊤C⊤ρt(t) − 2ε⊤P̟

(24)

Then, (24) can be rewritten as

V̇1 ≤− β‖ε‖2 + 2ε⊤C⊤ρt(t) − 2ε⊤P̟ (25)

where β = w0 − c2(ζ1 + ζ2)/w0 > 0, c2 is a positive constant

which satisfies c2 ≥ 2‖P‖.

According to (25), we can conclude that (16) has a faster

convergent rate or a slower divergent rate than ε̇ = −βAεε +
P−1C⊤ρt(t) − ̟. This completes the proof.

Remark 3: It is not easy to analyze the convergent perfor-

mance directly through (16). Based on Lemma 1, we only

need to analyze the convergent behavior of ε̇ = −βAεε +
P−1C⊤ρt(t) − ̟ instead of (16).

IV. CONTROLLER DESIGN

To guarantee a satisfied trajectory tracking performance for

the underwater robot, an extended state observer-based integral

sliding mode controller is proposed in this section.

Before designing the ISMC, let us rewrite the system model

as follows.

η̈ = − Cη η̇ − Dη η̇ − Gη + MηLU + H

= − Cη η̇ − Dη η̇ − Gη + MηLU + Hun + Hd

(26)

where H = Mηdsum(η, ν, t) is the lumped uncertainty, which

consists of three parts, including the external disturbances,

the matched uncertainty resulting from the uncertain hy-

drodynamic coefficients ∆C(ν(t)) and ∆D(ν(t)), and the

uncertainty of ∆Gη. Our goal is to propose a controller to

overcome the problem that the lumped uncertainty H(t) will

degrade the control performance.

The integral sliding surface is defined as

s(t) =Kpe(t) + Ki

∫ t

0

e(τ)dτ + Kd
ˆ̇e(t) − Kpe(0) − Kd

ˆ̇e(0)

(27)

where Kp, Ki, and Kd are designed positive definite diagonal

matrices.

Similar definitions of the sliding mode surface can be found

in [10], [43], [44]. The difference is that we replace the

derivative of the tracking error, ė(t), by its estimation value,
ˆ̇e(t), in this work, since there is no direct measurement of the

velocity of the underwater robot. ˆ̇e(t) in (27) is defined as

ˆ̇e(t) = ˆ̇η(t) − η̇r(t) (28)

Employing the derivative on both sides of (27), we have

ṡ(t) = Kp
ˆ̇e(t) + Kie(t) + Kd

ˆ̈e(t) (29)

The reaching law can be chosen as

ṡ(t) = −Kss − Kswsgn(s) (30)

where Ks and Ksw are positive definite diagonal matrices,

sgn(s) = [sgn(s1), . . . , sgn(s6)]
⊤.

According to (26), (29) and (30), we can derive

ṡ + Kss =Kp
ˆ̇e + Kie + Kss + Kd(−η̈r − Cη

ˆ̇η

− Dη
ˆ̇η − Gη + MηLU + Ĥd)

− Kd(Ĥd − Hd) + KdHun

(31)

where Ĥd(t) is the estimation of the unknown external distur-

bance, ν̂ and ˆ̇η are the estimations of ν and η̇, respectively.

The first part of our control can be designed as

Ueq = − (KdMηL)−1(Kp
ˆ̇e + Kie + Kss)

+ (MηL)−1[η̈r + Cη(η, ν̂)ˆ̇η

+ Dη(η, ν̂)ˆ̇η + Gη − Ĥd]

(32)

Substituting Ueq into U in (31), we have

ṡ = −Kss − Kd(Ĥd − Hd) + KdHun

= −Kss − KdH̃d + KdHun

(33)

where H̃d = Ĥd − Hd.

We design the switching control as

Usw =

−
[

(KdMηL)−1Ksw + λmax(Kd)ρ̂1(KdMηL)−1
]

sgn(s)
(34)

where ρ̂1 is the estimation of ρ1 and ρ̃1 = ρ̂1 − ρ1 is the

estimation error.

The gain update law of ρ̂1 is designed as follows

˙̂ρ1 = γ1λmax(Kd)‖s‖ (35)

where γ1 is designed positive constant.

Combining (32) and (34), the complete control law can be

described as follows

U = Ueq + Usw

= −(KdMηL)−1(Kp
ˆ̇e + Kie + Kss)

+ (MηL)−1[η̈r + Cη(η, ν̂)ˆ̇η + Dη(η, ν̂)ˆ̇η + Gη

− Ĥd] − (KdMηL)−1Kswsgn(s)

− λmax(Kd)ρ̂1 (KdMηL)
−1

sgn(s)

(36)

where λmax(·) and λmin(·) are the maximum and minimum

eigenvalues of a matrix, respectively.

Lemma 2: [45] If a signal has a bounded derivative and is

square integrable, the signal can converge to zero asymptoti-

cally.

Theorem 1: Consider the uncertain system (6) satisfying

Assumptions 1 and 2, with the designed ESO (10), the integral

sliding mode controller (36), and the gain adaption law (35).

The system tracking error and external disturbance estimation

error will converge to zero if the parameters β, w0, Kd, Ks,

and Ksw satisfy the following conditions: β > w4
0λmax(Kd),

λmin(Ks) > λmax(Kd)
2 and λmin(Ksw) > 0.

Proof: Now, we define a Lyapunov function candidate

V =
1

2
V1 +

1

2
s⊤s +

1

2γ1
ρ̃2
1 +

1

2γ2
ρ̃2
2 (37)

where V1 is defined in (21).



According to Lemma 1, we have

V̇ ≤−
β

2
(ε⊤1 ε1 + ε⊤2 ε2 + ε⊤3 ε3) + ε⊤C⊤ρt(t)

− ε⊤P̟ + s⊤ṡ +
1

γ1
ρ̃1

˙̂ρ1 +
1

γ2
ρ̃2

˙̂ρ2

(38)

Substituting (13) and (15) into (27), we have

V̇ ≤− βε⊤ε/2 + s⊤ṡ + ρ̃1
˙̂ρ1/γ1

+ ‖Ỹ ‖ρ2 − ε⊤P̟ + ‖Ỹ ‖ρ̃2

≤− βε⊤ε/2 + s⊤ṡ + ρ̃1
˙̂ρ1/γ1 + ‖Ỹ ‖ρ̂2

−
‖Ỹ ‖2ρ̂2 − c1‖Ỹ ‖2ḣ1ρ̂

2
2/‖Ỹ ‖

‖Ỹ ‖ − c1ḣ1ρ̂2

= − βε⊤ε/2 + s⊤ṡ + ρ̃1
˙̂ρ1/γ1

(39)

Substituting (36) into (31), we have

ṡ = − Kss − λmax(Kd)ρ̂1sgn(s) − Kswsgn(s)

− KdH̃d + KdHun

(40)

Substituting (35) and (40) into (39), we see that the derivative

of V can be described as

V̇ ≤−
β

2
ε⊤ε − s⊤Kss

− s⊤Kswsgn(s) − λmax(Kd)ρ̂1s
⊤

sgn(s)

− s⊤KdH̃d + s⊤KdHun + λmax(Kd)ρ̃1‖s‖

(41)

where H̃d = w2
0ε3, −s⊤KdH̃d ≤ λmax(Kd)(‖s‖

2 +
w4

0‖ε3‖
2)/2, −s⊤Kss ≤ −λmin(Ks)‖s‖

2/2, s⊤KdHun ≤
λmax(Kd)‖Hun‖‖s‖.

Then, we have

V̇ ≤−
β

2
ε⊤ε − λmin(Ks)‖s‖

2 +
λmax(Kd)

2
(‖s‖2

+ w4
0‖ε3‖

2) + λmax(Kd)‖Hun‖‖s‖ + λmax(Kd)ρ̃1‖s‖

− λmax(Kd)ρ̂1‖s‖ − s⊤Kswsgn(s)

≤−
β

2
‖ε1‖

2 −
β

2
‖ε2‖

2 −

[

β

2
−

1

2
w4

0λmax(Kd)

]

‖ε3‖
2

−

[

λmin(Ks) −
1

2
λmax(Kd)

]

‖s‖2

− λmax(Kd)(ρ1 − ‖Hun‖)‖s‖ − λmin(Ksw)‖s‖

≤ − ξ⊤Λξ − [λmin(Ksw) + λmax(Kd)(ρ1 − ‖Hun‖)] ‖s‖
(42)

where ξ = [ε⊤, s⊤]⊤, Λ =





Λ1 012×6 012×6

06×6 Λ2 06×6

06×6 06×6 Λ3



,

Λ1 = β
2 I12×12, Λ2 =

[

β
2 − 1

2w4
0λmax(Kd)

]

I6×6, Λ3 =
[

λmin(Ks) −
1
2λmax(Kd)

]

I6×6.

Based on Assumption 2, we have ρ1−‖Hun‖ ≥ 0. Because

the parameters β, w0, Ks and Ksw satisfy related conditions

mentioned in Theorem 1, we know that λmin(Ksw) > 0 and

λmin(Λ) > 0.

Inequation (42) implies that V̇ < 0 for ξ 6= 0, and the

signals s, ε, ρ̃1 and ρ̃2 are bounded. Based on (42), we

have V̇ ≤ −ξ⊤Λξ. Then, we have lim
t→∞

∫ t

0
(ξ⊤Λξ)dτ ≤

V (0) − V (∞). Because V (0) and V (∞) are bounded, s and ε

are square integrable. According to (40) and the boundedness

of s, ρ̂1, Ḣd and Hun, we can conclude that ṡ is bounded.

From (12), we know that ‖f̃‖ = ‖ϕ̃‖. Further, we have f̃ is

bounded according to (14). The boundedness of Ḣd and Hun

implies that ρt(t) is bounded from (14). Because ε, ρ̂2 and

ḣ(t) are bounded, from (13), we can obtain ̟ is bounded.

Then, ε̇ is bounded from (16). The boundedness of ṡ and ε̇
implies that ξ̇ is bounded. According to Lemma 2, we have

lim
t→∞

ξ(t) = 0, i.e., lim
t→∞

s(t) = 0 and lim
t→∞

ε(t) = 0.

Substituting ˆ̇e = ˆ̇η − η̇ into (27), we have

Kpe(t) + Ki

∫ t

0

e(τ)dτ + Kdė(t) + Kde(0) = z(t) (43)

where z(t) = [z1(t), · · · , z6(t)]
⊤ satisfies

z(t) = s(t)−w0Kdε2(t)+Kpe(0)+Kd
ˆ̇e(0)+Kde(0) (44)

Because Kp, Ki and Kd are positive definite diagonal

matrices, we have

zi(t) =Kpiei(t) + Kii

∫ t

0

ei(τ)dτ + Kdiėi(t)

+ Kdie(0), i = 1, . . . , 6

(45)

where zi(t) is the ith element of z(t).
Then, take Laplace transform of (45), we have

ei(p)

zi(p)
=

p

Kdip2 + Kpip + Kii
(46)

where p is the Laplace transform operator, ei(p) and zi(p) are

the Laplace transforms of ei(t) and zi(t), respectively.

Using the final value theorem of Laplace transform, we have

e(∞) = lim
p→0

p2zi(p)

Kdip2 + Kpip + Kii
(47)

Let p = Re(p) + iIm(p) = pr + ipi. Since the initial

error e(0) and ˆ̇e(0) are bounded, and ε2(t) is bounded,

from (44), zi(t) is bounded. zi(t) can converge to Kpe(0) +
Kd

ˆ̇e(0) + Kde(0) as time goes to infinity. Then, we have

|zi(t)| ≤ zi max < ∞. The Laplace transform of zi(t) satisfies

|zi(t)| =

∣

∣

∣

∣

∫ ∞

0

e−pτzi(τ)dτ

∣

∣

∣

∣

≤

∫ ∞

0

|e−pτzi(τ)|dτ

≤ zi max

∫ ∞

0

|e−pτ |dt = zi max

∫ ∞

0

|e−(pr+ipi)τ |dτ

≤ zi max

∫ ∞

0

|e−prτ ||e−ipiτ |dτ

≤ zi max

∫ ∞

0

|e−prτ || cos(−piτ) + i sin(−piτ)|dτ

=
zi max

pr

(48)

Then, we have

lim
p→0

|p2zi(p)| ≤ lim
pr→0,pi→0

(

|pr + ipi|
2

∣

∣

∣

∣

zi max

pr

∣

∣

∣

∣

)

≤ lim
pr→0

(

p2
r

∣

∣

∣

∣

zi max

pr

∣

∣

∣

∣

)

= 0

(49)



Hence, it can be induced from (49) that lim
p→0

p2zi(p) = 0.

Then,

ei(∞) = lim
p→0

p2zi(p)

Kdip2 + Kpip + Kii
= 0 (50)

The system given by (45) and (46) is stable if the parameters

Kdi, Kpi and Kii are chosen as positive constants to satisfy

Hurwitz stability criterion. According to (47) and (50), it can

be concluded that lim
t→∞

e(t) = 0. This completes the proof.

Remark 4: Given that many parameters need to be chosen

for the control design, we provide a guidance on choosing

the control parameters. The parameters can be divided into

three parts as follows. (i) Kp, Kd and Ki in (27) relate to

the the dynamic convergent performance of trajectory tracking

error, which should be chosen as positive definite matrices to

satisfy Hurwitz stability criterion. (ii) Ksw and Ks in (30) are

associated with the control stability and the rate of reaching

the sliding mode surface. Ksw is a positive definite matrix

satisfying λmin(Ks) > λmax(Kd)
2 in order to guarantee the

positive definite property of matrix Λ in (42). Besides, since

large Ksw may lead to chattering problem, it is expected to

decrease minKsw as small as possible. Ks can effect the rate

of reaching the sliding mode surface. (iii) γ1, γ2, c1 are the

parameters for the ESO. w0 is an important parameter for

the observer. If w0 is selected very large, the estimation of the

states can vibrate sharply in the beginning; this it is harmful to

the control performance. A small w0 leads to a slow converge

rate of the estimation error. γ1 and γ2 have influences on

the convergence rates of ρ̃1 and ρ̃2, respectively. These two

parameters can be chosen empirically.

V. EXPERIMENT STUDIES

This section describes the experiment studies we have

performed to verify the developed controller via an underwater

robot propelled by six thrusters. The designed controller is

compared with the conventional PD controller during experi-

ment study.

A. Experiment Setup

As shown in Fig. 2(a), the underwater robot used in the

experiment measures 574×574×454.5mm and weights 60kg.

It is equipped with six separate thrusts, U = [U1, . . . , U6]
⊤,

in which two thrusts (U1, U5) are used for surge motion, two

thrusts (U2, U4) are used for sway motion and two thrusts

(U3, U6) are used for heave motion. The thrusters can provide

the thrust Ui ∈ [−20, 20]N, i = 1, · · · , 6. An IMU is used

to measure the orientations of the robot in the body frame

and the measurement accuracy is 0.4◦. A VPS, which is

equipped with two cameras next to the pool and four white

light sources on the robot, is applied to measure positions

of the underwater robot whose white lights are all turned on

during the experiment for the position capturing by the VPS

as presented in Fig. 2(b).

The underwater robot includes an internal computer system

which connects to external computer via fiber-optic com-

munication. The internal computer system is composed by

PC104 module. Both internal and external computer system

use Windows XP operating systems. The internal computer

system receives the IMU data and transmits it to the external

computer. The external computer receives this information and

the position information from the VPS, and calculates the

control input for each thruster. Then, the control signals are

transmitted to the internal computer which connects to six

thrusters. The signal flow of the control system is presented

in Fig. 3.
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Fig. 2. (a) The underwater robot used in the experiment. (b) The
underwater robot in the pool.
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Fig. 3. Signal flow of the underwater robot control.

B. Experiment Parameters

In the experiment, the control sampling interval time is

selected as 0.1s. The gains of the MIMO-ESO ISMC are

designed as Table I.

Beside the proposed controller, we have also designed

a PD controller for comparing the control performance, in

which the velocity of the robot are calculated by the direct

deriviations of the position information. The parameters of the

PD control are designed as Kp̄ = diag[180, 50, 40, 0.2, 0.2, 3],
and Kd̄ = diag[10, 10, 10, 2, 2, 2]. The initial position

and orientation of the underwater robot are set as η0 =
[1.4m, 1.8m, 0.6m, 0rad, 0rad,−π

4 rad]⊤. Note that in dif-

ferent experiments, there will be a slight variation of

the initial states due to the the deployment error. The

nominal hydrodynamic parameters Gη, M∗, D∗, C∗ and

L in the designed control are Gη = 06×6, M∗ =
diag[121.8, 127, 134.1, 32.62, 33.87, 33.87], D∗ = diag[13 +



TABLE I
CONTROL GAINS OF THE MIMO-ESO ISMC.

Gain Value

γ1 1
γ2 1.5
c1 0.8
w0 1.5
Kp diag[0.55, 1.2, 1.5, 0.5, 0.8, 0.06]
Ki diag[3, 0.8, 0.8, 0.6, 0.4, 0.8]
Kd diag[0.1, 0.1, 0.1, 0.1, 0.1, 0.1]
Ksw diag[0.003, 0.0024, 0.002, 0.0025, 0.003, 0.0026]
Ks diag[0.3, 0.3, 0.3, 0.3, 0.3, 0.3]

50|u|, 14.3 + 50.2|v|, 21.2 + 64.7|w|, 18 + 73.8|p|, 24.3 +
101.7|q|, 19.2 + 84.1|r|],

C∗ =







0 0 0 0 134.1w −127v
0 0 0 −134.1w 0 121.8u
0 0 0 127v −121.8u 0
0 134.1w −127v 0 33.87r −33.87q

−134.1w 0 121.8u −33.87r 0 32.62p
−127v −121.8u 0 33.87q −32.62p 0







L =





1 0 0 0 1 0
0 1 0 1 0 0
0 0 1 0 0 0
0 0 0.287 0 0 −0.287

0.277 0 0 0 −0.277 0
0 0.287 0 −0.287 0 0





The h1(t) is selected as h1(t) = 1/(t + 1) and the de-

sired trajectory is xr(t) = 0.6 sin(t/20) + 1.2, yr(t) =
0.4 cos(t/20) + 1.2, and zr(t) = 0.0025t + 0.5.

C. Experiment Results With Robust Test

To justify the controller performance against external dis-

turbances, robustness tests have been done for the PD and the

proposed controller in the experiment. At t = 87s, there is an

instantaneous external force, which lasts for 0.2s, acting on

the robot during the experiment.

The trajectory tracking results of the experiment in the 3D

space and in the horizontal plane are presented in Fig. 4.

Intuitively, both the PD controller and the proposed controller

are able to steer the robot following the desired trajectory.

To compare the two controllers, we define the RMS value of

the tracking error as ‖e‖RMS =
√

1
N

∑N
i=1 ‖e(i)‖

2, where N
is the total sampling numbers in the experiment. The RMS

values for both controllers is shown in Table II.

Fig. 5 takes further analysis of the tracking result and it

shows the trajectory tracking errors of the underwater robot in

each channel. Note that, from Fig. 5(a)-Fig. 5(f) and Table II,

the tracking error with PD controller in each channel is greater

error than the proposed one. Moreover, after the disturbance

at 87s as mentioned above, the proposed controller shows less

overshooting and needs less time to recover, compared with

the PD controller. Fig. 6 presents the control inputs of the six

thrusts, under the PD and proposed controller. Fig. 7 illustrates

the output of the disturbance estimation in experiment.

To validate the performance of the ESO clearly, we provide

simulation results in Fig. 8. In the simulation, the controller

and the parameters are chosen as the same as that used in

the experiment. To imitate the measurement noise of VPS

and IMU, we add the white noise with standard deviations

0.05m and 0.05rad for position and angular measurement,

respectively. The hydrodynamic parameters in the robot are

selected as the nominal value with 10% uncertainties added.

To verify the robustness performance, at t = 87s, there is an

instantaneous external force, which lasts for 3s, acting on the

robot during the simulation. Fig. 8 shows that the ESO can

estimate the external disturbance.

Comparison of the experimental results indicates that no

matter in the presence or absence of the disturbance, the

proposed controller tracks the desired trajectory more pre-

cisely with less tracking deviation than the conventional PD

controller. Although the proposed controller has large control

inputs and fluctuations during the course as shown in Fig. 6.

The robustness test shows that the proposed controller is

better than PD controller in terms of peak overshoots and

convergence rates.

TABLE II
RMS ERROR OF PD CONTROLLER AND MIMO-ISMC.

‖e‖RMS PD MIMO-ESO ISMC

X(m) 0.0438 0.0209
Y (m) 0.0539 0.0294
Z(m) 0.037 0.0143
φ(◦) 5.92 1.59
θ(◦) 8.04 2.52
ψ(◦) 5.48 2.27

0.5
1

1.5
2

0.5

1

1.5

2

0.4

0.6

0.8

1

 

X(m)

Y(m) 

Z
(m

)

Desired trajectory

PID

MIMO−ESO ISMC

(a)

0.5 1 1.5 2
0.5

1

1.5

2

2.5

X(m)
Y

(m
)

 

 

Desired trajectory

PID

MIMO−ESO ISMC

(b)

Fig. 4. (a) Trajectory in 3D space. (b) Trajectory in the horizontal plane.

Note that there are some aspects that may have influences on

the experimental results; (i) the underwater robot used in the

experiment has six low cost thrusters with different character-

istics, such as respond time, size of dead-zone, which degrades

the control performance of the robot especially in case that

the calculated control input is small. (ii) The performance

of the PD control could be improved if we carefully adjust

the control parameters and add the integral items. However,

this is empirical and will take more time to achieve a better

performance. (iii) Chattering phenomenon still exists in the

experiment because the switching control is applied. To reduce

chattering, the saturation function can be employed to replace

the sgn function. However, this may reduce the robustness of

the controller against the uncertainties and disturbances.

VI. CONCLUSION

In this paper, a novel integral sliding mode control based

on an adaptive MIMO-ESO has been developed for a gen-

eral type of underwater robots. Asymptotic convergence of

both tracking error and estimation error were achieved even

in presence of unknown external disturbances and model
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(b) Tracking error in sway.

0 50 100
−0.2

−0.1

0

0.1

0.2

0.3

Time(s)

T
ra

c
k
in

g
 e

rr
o

r 
 Z

e
(m

)

 

 

PID

MIMO−ESO ISMC

90 95
−0.1

0
0.1
0.2

(c) Tracking error in heave.
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Fig. 5. Trajectory tracking errors in the experiment.
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Fig. 6. Control inputs of the controllers.
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Fig. 7. Estimation of disturbances in the experiment.

uncertainties. Comparative experimental studies verified the

effectiveness and illustrate the supervior performance of the

proposed control.
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