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Corrections to the Capacitance between Two Electrodes
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We have studied the capacitance between two parallel plates enclosing a quantum confined
system and its dependence on the applied voltage. The concepts of capacitance and differen-
tial capacitance are discussed together with their applicability to systems characterized by
single.electron tunneling. We determine the tunneling thresholds by means of a formalism
based on the minimization of the system free energy and we retrieve, as a special case,
Luryi’s quantum capacitance formula. We apply our method to the study of an idealized sys-
tem made up of a number of quantum dots with random size distributed according to a gaus-
sian. Results are shown for different choices of the position of the dots between the plates and
of the voltage span applied to perform the measurement of the differential capacitance.
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1. CAPACITANCE AND DIFFERENTIAL
CAPACITANCE FOR A QUANTUM SYSTEM

The capacitance between two electrodes is defined as
the ratio of the charge stored on such electrodes to the
potential difference between the electrodes. If we
consider a system such as that represented in Fig. 1,
made up of two plates between which quantum dots
are present, the capacitance between the two plates is
influenced by the charge status of each dot. In particu-
lar, let us assume, here and in the following, that tun-

neling is possible from the lower plate to the dots but
not from the dots to the upper plate. This is true in a

wide range of experimental situations, from the clas-
sical MOS capacitor, in which the electrons forming
the inversion layer come from thermal or optical gen-
eration in the semiconductor bulk to several semicon-
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ductor heterostructures, in which quantum dots are
formed on a plane isolated from doped layers by a rea-

sonably transparent tunnel barrier and are charged by
applying a suitable voltage to an upper electrode sepa-
rated by an opaque spacer layer (see e.g. Ref. 11).

Quantum dots

-::-<E>

FIGURE System with two parallel plates, held at constant volt-
age. enclosing a quantum system
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When an electron tunnels from the lower plate to

one of the quantum dots, the charge on the upper plate
changes by an amount AQ kq, where q is the elec-
tron charge and k is the fraction of the distance
between the lower and the upper plate at which the
dot is located. This is a consequence of elementary
electrostatics and can be obtained, for example, from
the application of the Ramo-Shockley theorem [2].
Since the voltage between the two plates is held con-
stant by the voltage source V, this is equivalent to a

variation in the capacitance measured between the
two plates by an amount AC kq/V.

The differential capacitance is instead defined as
the limit for 8V --o 0 of the ratio Q/V. If we strictly
apply this definition, the differential capacitance Cd is

equal to the geometrical capacitance C. This is

because tunneling of each additional electron occurs

for a well defined threshold (in the hypothesis of zero

temperature), and, for 8V -- 0, the number of elec-
trons in the dots does not vary during the measure-

ment, unless we hit exactly one of the bias values
corresponding to the thresholds. However, real meas-
urements are performed by applying a finite, small

alternating voltage to the electrodes, on top of the DC
bias. Therefore, if the applied 8V spans across one or

more tunneling thresholds, the variation of the charge
stored on the top electrode will be given by

Q CV + Mkq, (1)

whereM is the number of tunneling thresholds within
8V. Thus, the measured differential capacitance will be

Mkq
Ca C+ 8--" (2)

In the following we shall consider only the second
term on the r.h.s, of Eq. (2) and denote it by C. This

quantity is clearly dependent both on the value of 8V
and on the DC bias value.

2. EVALUATION OF THE TUNNELING
THRESHOLDS

We determine the number of electrons contained in
each dot for a given bias voltage by minimizing the

free energy of the system. An appropriate expression
for the free energy must contain the contribution from
the work done by the voltage source that keeps the
two plates at a constant voltage, an approach that is

common in Coulomb Blockade studies [3,4]. One
such expression is given by Stopa [4]:

F N V E E - d x[g - (i) -if"at- d3x)ion(-)l.)sc(-) -QuV, (3)

where N is the total number of electrons in the dot, E

is the energy eigenvalue for the i-th electron, Pel is the
charge density associated with the electrons, OPsc is

the self-consistent electrostatic potential. Qu is the
total charge on the upper electrode. We stress the fact
that this expression is rigorously valid only at zero

temperature and is applicable with reasonable approx-
imation only up to temperatures for which kBT (kB
being the Boltzmann constant) is small on the scale of
the relevant energies. If we assume the Fermi level in

the region supplying electrons as the energy reference

(the bottom plate in our simplified model), the
number of electrons on the dot for a given applied
voltage V can be obtained simply by minimizing
F(N, V) with respect to N.

Let us apply our formalism to the limiting case of
an infinite 2D Electron Gas (2DEG) enclosed
between two parallel plates (the MOS capacitor). If
we define Cu as the geometrical capacitance per unit

area between the upper plate and the 2DEG and C as
that between the 2DEG and the lower plate, we have
that k Cu/(C + Cu). Remembering that the quantum
confinement energy per unit area in a 2DEG is

hZzN2/(2m*), we obtain, for the free energy of the
system,

1
F(N, V) -u (O + Uqk) 2 + -ll [Q (1 k)Nq] 2

h2N2

2m*
(Q + Uqk)V. (4)

From the condition OF(N, V)/ON 0 we obtain the
number of electrons in the 2DEG, and, equating the
corresponding additional charge present on the top
electrode to that expected in the presence of a capaci-
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tance Cq in parallel with C1, we get Cq= m*q2/(h2rc),
which coincides with Luryi’s result[5].

In the case of the MOS inversion layer, it is possi-
ble to define an equivalent capacitance, independent
of the number of electrons in the layer, because of the

quadratic dependence of the quantum confinement
energy on the electron number. In general this is not

possible: if we consider a quantum dot, for example,
the presence of confinement energy will influence the
thresholds in a way that must be separately evaluated
for each transition.

Nevertheless, in our parallel-plate model with 2D
dots it is still possible to take advantage of some sim-

plifications in the expression of the free energy. We
notice that, for 2D dots, the quantum confinement

energy does not depend on the electric field in the
direction orthogonal to the dot plane and is therefore
independent of the voltage applied between the two

plates. Furthermore. since the system is equivalent to

a capacitor C (representing the capacitance between
the plates in the absence of charge in the quantum dot)
in parallel with the series of Cu (capacitance between
the upper plate and the dot) and C (capacitance
between the dot and the lower plate), it can be shown
that the variation of electrostatic energy as a conse-

quence of the addition of one electron onto the dot

corresponds simply to that for the same addition per-
formed with both plates kept at zero potential (a rigor-
ous proof of this will be given elsewhere [6]). Thus.
the problem is reduced to the calculation of AE(N)
E(N)- E(N- 1) (the total energy variation with the
inclusion of quantum effects) for a system with both
plates grounded. By subtracting from this quantity the
work performed by the external voltage sources dur-

ing the electron addition process, we obtain the free
energy variation:

F(N,V)-F(N- I,V) =E(N)-E(N-1)-kqV. (5)

Notice that the only dependence on V is in the third

term on the r.h.s., which makes the procedure for the
minimization of F(N, V) much simpler. Thus, all we
need to evaluate are the energy variations AE(N),
which can be computed from the self-consistent cal-
culation described in Sec. 3 by means of Slater’s tran-

sition rule[7]. The tunneling thresholds are then
obtained equating to zero the r.h.s, of Eq. (5).

3. NUMERICAL PROCEDURE AND RESULTS

We have studied the contribution (C) of 40 quantum
dots with randomly distributed size to the differential

capacitance measured between two plates enclosing
them. We assume that tunneling is possible only
between the lower plate and the dots, that the dots are

sparse enough as to prevent any dot-dot interaction
and that they are all on the same plane, parallel to

those of the plates. The model we use for each dot is

2-dimensional [8], but the self-consistent electrostatic

field is computed solving the 3D Poisson equation in

the hypothesis of cylindrical symmetry. This is possi-
ble because there is no interdot interaction and the

plates have an infinite extension. The electron density
in the dot is obtained, in the mean field approxima-
tion, from the solution of the 2D Schr6dinger equa-
tion with Dirichlet boundary conditions, assuming a

sine squared distribution of the charge along the verti-

cal direction for an interval of 10 nm (the results show

very little dependence on the vertical spread of the

charge), corresponding to the ground state in the case

of hard-wall confinement. Our Poisson solver can

treat the general case of variable permittivity (as long
as the boundaries between regions of different permit-
tivity have cylindrical symmetry) but for this calcula-
tion we have assumed a constant relative permittivity
of 12.9, corresponding to that of gallium arsenide.

The dot radius has a random gaussian distribution

with mean value 18 nm and variance 0.8 nm, while

the distance between the plates is 180 nm. We also
assume that each dot can accommodate, at most,
10 electrons (in reality this depends on the actual

height of the confining potential). The results for C}
are presented in Fig. 2 for k 0.5 and in Fig. 3 for k =.

0.2. The voltage span for the measurement is 50 mV
in both cases. The dashed curves represent the
number of electrons in the dots as a function of the
bias voltage. Increasing the DC bias we first observe
an increase in Ca while we move towards bias val-
ues for which the "density" of tunneling events per
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FIGURE 2 Contribution C (solid line) to the differential capacitance versus bias voltage for the system described in the text for k 0.5
and a voltage span 5V 50 mV. The dashed line represents the number of electrons in the dots

l

120 ....

-0. 0 0.2 0.4 0.6 0.8 1 1.2 1.4

400

300

-2o0

100

z
0

1.6

DC bias voltage (V)

FIGURE 3 Contribution C (solid line) to the differential capacitance versus bias voltage for the system described in the text for k 0.2 and
a voltage span 5V 50 inV. The dashed line represents the number of electrons in the dots

unit voltage grows. Then, when the dots start saturat-

ing, the value of C falls down (a 2DEG may start

forming, further raising the capacitance, but this is

beyond the scope of the present work). The curve is

not symmetric because the spacing between the
chemical potential values for consecutive numbers of
electrons in the dot gets larger for the higher orbitals.

This is just an application to an idealized case, in
which the spacing between two consecutive thresh-
olds is much smaller than the voltage span used for

the measurement. Other situations are also possible
and we are planning to investigate a wide range of
them with the more refined model that we are cur-

rently developing and which will include a 3D
Schr6dinger solver. Some quantum capacitance
effects, such as those studied in the present paper,
may become important also in conventional MOS
capacitors if their size is shrunk in the tens of nanom-
eter range.
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