
Correctness of Data Representations Involving
Heap Data Structures

Uday S. Reddy1 and Hongseok Yang2

1 School of Computer Science, University of Birmingham
2 ROPAS, Korean Advanced Inst. of Science and Technology

Abstract. While the semantics of local variables in programming
languages is by now well-understood, the semantics of pointer-addressed
heap variables is still an outstanding issue. In particular, the commonly
assumed relational reasoning principles for data representations have not
been validated in a semantic model of heap variables. In this paper, we
define a parametricity semantics for a Pascal-like language with pointers
and heap variables which gives such reasoning principles. It is found
that the correspondences between data representations are not simply
relations between states, but more intricate correspondences that also
need to keep track of visible locations whose pointers can be stored and
leaked.

1 Introduction

Programming languages with dynamically allocated storage variables (“heap
variables”) date back to Algol W [27] and include the majority of languages
in use today: imperative languages like C, Pascal and Ada, object-oriented
languages ranging from Simula 67 to Java, and functional languages like Scheme,
Standard ML, and variants of Haskell [6]. However, the semantic structure of
these languages is not yet clear. In particular, the oft-used principles for data
representation reasoning, involving invariants or simulation relations, have not
been validated. While remarkable progress has been made in understanding local
variables (cf. the collection [15]), none of this theory is directly applicable to heap
variables because the shape of the heap storage dynamically varies.

A number of attacks have been made on the problem: Stark’s thesis [25,
24], which deals with dynamic allocation but not pointers, and Ghica’s and
Levy’s theses [4,5,7,8], which address the general semantic structure but not data
representation reasoning. The recent paper of Banerjee and Naumann [2] is the
first to address data representation correctness with heap variables and pointers.
While their work is remarkably successful in dealing with a Java-like language
with dynamically allocated objects, their treatment falls short of explicating
the semantic structure of the language relying instead on a strong notion of
“confinement” to simplify the problem.

In this paper, we define a parametricity semantics for a Pascal-like language
with dynamically allocated variables, pointers, and call-by-value procedures. The
validity of simulation-based reasoning principles follows from the structure of the

P. Degano (Ed.): ESOP 2003, LNCS 2618, pp. 223–237, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595.276 841.889] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 3600 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile (Ø¯P)
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

224 U.S. Reddy and H. Yang

semantics (similar to Tennent’s treatment in [26] for local variables). The type
structure of the semantics makes explicit where information hiding is going on,
while the formal parametricity conditions back up one’s intuitions and allow
one to produce formal proofs. We do not use any confinement conditions in
our definitions. Where there is information leakage, our semantics explicates the
breakdown of the data encapsulation, so that faulty conclusions are avoided.

Our treatment bears a close relationship with the ongoing work on separation
logic for local reasoning about heap storage [22,11,28]. In particular, our relations
are “local” in the same sense as the assertions of separation logic. We use
the ideas of partial heaps and heap-splitting developed there to formulate the
relations. We envisage that in future work, these connections with local reasoning
will be further strengthened.

2 Motivation

Local variables get hidden in program contexts due to scope restrictions in the
programming language. This gives rise to information hiding which is exploited
in devising data representations. Since dynamically allocated heap variables can
only be accessed through entry points given by local variables, the same scope
restrictions also give rise to information hiding for heap data structures. In this
section, we give an informal introduction to these information hiding aspects
through a series of examples.
Example 1. Consider the following program block adapted from Meyer and
Sieber [9]:

{ local var int x; x := 0; p(); if x = 0 then diverge }
Here, p is an arbitrary non-local procedure with no arguments, and diverge is
a diverging command. The program block should be observationally equivalent
to diverge for the following reason: The local variable x is not visible to the
non-local procedure p. Hence, if x is 0 before the procedure call, it should be 0
after the procedure call too.

Next consider a similar program using pointer-addressed variables:1

{ x :=new int; x↑ := 0; p(); if x↑ = 0 then diverge }
Here, x is a non-local variable (of type ↑int) that can store pointers to integer
variables in the heap. The command x :=new int allocates a new integer
variable on the heap and sets x to point to this variable. Unlike in the local
variable case, we cannot expect this program block to be equivalent to diverge.
The reason is that the heap variable is accessible to p via the non-local variable
x and p has the ability to modify it. There is no information hiding for the heap
variable.

On the other hand, the following variant does implement information hiding:

{ local var (↑int) x; x :=new int; x↑ := 0; p(); if x↑ = 0 then diverge }
1 The notation for pointers is borrowed from Pascal. For any data type δ, ↑δ is the

type of pointers to δ-typed variables. If p is a pointer, p↑ denotes the variable that
p points to. (In the syntax of C, ↑δ would be written as δ∗ and p↑ as ∗p.)

Correctness of Data Representations Involving Heap Data Structures 225

Here, the pointer variable x is local. Since it is the only access point to the heap
variable, the procedure p has no access to the heap variable. If x↑ is 0 before the
procedure call, it should remain 0 after the procedure call. Hence, this block is
equivalent to diverge. �

We give an indication of how this form of selective information hiding can be
modelled in the semantics. Using a possible world form of semantics as in [21,16,
13], we take worlds to be sets of typed locations (or equivalently record types)
of the form W = {l1 : δ1, . . . , lk : δk}. We write X <: W to mean that X is an
extension of W with additional locations (or a “subtype” of W). All program
terms are given meanings with reference to a possible world W denoting the set
of locations available in a particular (dynamic) context of execution. Now, in
a world W , the procedure p denotes a parametrically polymorphic function of
type:

[[p]] : ∀X<:WSt(X)→ St(X)

where St(X) means the set of states for the location world X. Here, X refers to
the set of locations available when p may be called, which will include all the
locations of W plus any additional locations allocated before the call. However,
since p has been defined before these new locations are allocated, it should have
no direct access to these new locations. The parametric interpretation of ∀X<:W
captures information hiding for all parts of X that are not accessible from W .
This is defined via relation-preservation for appropriate kinds of relations. The
definition of these relations is the main technical contribution of this paper.

Corresponding to the subtypingX <: W , there is a relation-subtyping S <: R
that says that a relation S between potential instantiations of X is an extension
of a relation R between potential instantiations of W . Intuitively the relation-
subtyping S <: R says that the S relation expects the contents of allW -accessible
locations to be related by R and imposes new constraints for the other new
locations that are inaccessible from W . The parametric interpretation of ∀X<:W
implies that [[p]] must preserve all relations S that extend the identity relation
IW , i.e., preserve all additional conditions that can be stated for W -inaccessible
locations. Using this intuition, we can explain how the three program blocks in
Example 1 are treated. In each case, we choose W to be the set of all locations
allocated before the entry of the program block:

– In the first program block with a local variable x, the extended relation S
can impose the condition that the new location for x contains a specific value
such as 0. Since the binding of p preserves all such relations, it follows that
p cannot affect x.

– In the second program block, where the heap location is accessible via
a non-local pointer variable x, recall that the extended relation S can
impose additional conditions only for W -inaccessible locations. Since the
new location is accessible from W before the procedure call to p, there is no
requirement that p should preserve its value.

– In the third program block where the heap location is accessible via a local
pointer variable x, both x and the heap location are inaccessible from W .

226 U.S. Reddy and H. Yang

Hence the extended relation S can impose the additional condition x↑ = 0
and p must preserve it.

The second example, due to Peter O’Hearn, illustrates information leakage:

Example 2. Consider the program block that calls a non-local procedure h of
type ↑int→ com:

{ local var (↑int) x; x :=new int;
h(x); x↑ := 0; p(); if x↑ = 0 then diverge }

As in the previous example, x and x↑ are not directly visible to the non-local
procedures. However, h is given as argument the pointer value of x. It has the
ability to dereference x and modify x↑. It can also store the pointer x in a
non-local variable. In other words, the access to the local data structure x↑ has
been leaked and encapsulation is lost. It is not guaranteed that the later call to p
will not affect x↑ because p can receive access to x↑ from h via a shared variable.
This block is not equivalent to diverge in general.

If, however, h were to be passed x↑ as an argument, instead of the pointer
value x, it would not have the ability to store x and information leakage would
be avoided.2 �

To model information leakage, we split the relations mentioned previously
into two parts: one part that relates visible heap locations, given by a partial
bijection between the location sets ρ : W ↔ W ′, and a second part that
relates the contents of hidden locations, given by a relation R between partial
states. A pair consisting of the two parts (ρ,R) : W ↔ W ′ will be referred to
as a “relational correspondence.” Such a correspondence determines a relation
between state sets expressed as EQρ ∗ R, where EQρ means that the ρ-related
locations have equal values (modulo ρ) and the ∗ connective, adapted from
separation logic [22,11,28], means that the two parts of the relation access disjoint
sets of locations. Now, a state transformation that preserves EQρ ∗R is allowed
to look up and update ρ-related locations. It is also allowed to store pointers
to ρ-related locations in other locations. However, it cannot store pointers to
locations not related by ρ. The parametricity constraints imply that only the
ρ-related locations can be leaked.

The information leakage in Example 2 is then explained as follows: The
procedure call to h must preserve all relational correspondences (σ, S) <: IW
that allow its argument x to be interpreted. Since the argument is a pointer to a
heap location, the extended partial bijection σ must contain a pair (l, l), where
l is the heap location that x points to. Hence h(x) can store pointers to l in
W -accessible locations with the result that l itself becomes W -accessible. This
has an effect for the later procedure call p(), which can modify any W -accessible
location including l.
2 Because of the subtle distinction between pointer values x and the pointed variables
x↑, we prefer to work with an explicit pointer language like Pascal. Languages
like Java, where pointers are treated implicitly, do not make this distinction and
consequently lack the facility to control access. Surreptitious leakage is pervasive in
the programs of such languages.

Correctness of Data Representations Involving Heap Data Structures 227

Both of our previous examples have to do with data abstraction, albeit in a
veiled form. (The program blocks create local data structures which they attempt
to hide from the client procedures in varying ways.) Our programming language
also contains a class construct, previously studied in [18,19], providing a more
direct form of data abstraction. The next example uses this to illustrate relational
reasoning:
Example 3. Consider a list class implemented using linked lists in heap:

List = class : listsig
local var (↑node) head; init head := nil; meth ...

end

Here, listsig is the interface type of the List class and node is a recursively-
defined storable data type: node = int × ↑node. We omit the details of the
methods which include the usual operations for insertion, deletion and look-up.

To verify the correctness of such a class, one can prove its equivalence with
another class that uses mathematical sequences as the internal representation:

List’ = class : listsig
local var (int∗) s; init s := 〈 〉; meth ...

end

Here int∗ represents the set of integer sequences regarded as a data type, and the
methods update the variable s to achieve the same effect as the methods in the
concrete class. Intuitively, one reasons about the equivalence of the two classes
by considering a relation between their states to the effect that the variable s in
List’ holds exactly the sequence of elements stored in the linked list starting at
head, and showing that all the methods preserve this relation. Such a relation
is formalized in our setting as follows.

The two representation worlds contain one location each, for the local
variables of the classes: W = {l : ↑node} and W ′ = {l′ : int∗}. The partial
bijection part of the correspondence is the empty relation ∅ : W ↔ W ′ because
only visible locations need be included in the partial bijection but l and l′ are not
visible to the clients of the classes. The state relation part of the correspondence
is a relation R defined as follows:

s [R] s′ ⇐⇒ rep(s, l, s′(l′))
rep(s, l, α)⇐⇒ (s(l) = nil ∧ α = 〈〉) ∨ ∃n, k, β.(s(l) = (n, k) ∧ α = 〈n〉·β ∧ rep(s, k, β))

�

The important point to notice is that R is not simply a relation between St(W)
and St(W ′). In fact, the world W does not contain any locations that can be
used for the nodes of the linked list. Rather R should be viewed as a relation
that applies not only to the states for W and W ′ but also to all their future
extensions with additional locations. This is one of the key technical issues that
is addressed in the definitions to follow.

3 Definitions

Let δ range over a collection of data types. In particular, we assume that ↑δ is
a data type for any data type δ.

228 U.S. Reddy and H. Yang

Let Loc = �δLocδ be a countable set, countable for each δ, whose elements
are regarded as names of “typed locations.” A location world is a finite subset
W ⊆fin Loc. It is also intuitive to think of a location world as a record type
[l1: δ1, . . . , ln: δn]. A subtype X <: W is a superset X ⊇W of locations. In terms
of records, X is a longer record type than W .

Fix a set of values Val(δ) for each data type δ such that Val(↑δ) = Locδ�{nil}.
We use the following technical notion of a “heap” (or a partial state with

pointers) from the work on separation logic [11]. A heap is a pair 〈L, s〉 where
L ⊆fin Loc and s :

∏
lδ∈L Val(δ) is a mapping of locations to values. We simply

denote a heap 〈L, s〉 by s, and denote L by dom(s). If s(l) is a data value
involving another location l′, l′ may or may not be in dom(s). If l′ �∈ dom(s)
then its occurrence in s(l) is called a “dangling pointer.” A heap with no dangling
pointers is said to be total.

Whenever s1 and s2 are heaps with disjoint domains, s1 ∗ s2 denotes their
join with dom(s1 ∗s2) = dom(s1)�dom(s2). Much use is made of this operation
in the separation logic [11] and the Banerjee-Naumann work [2]. It will play a
central role in our work as well.

A state for a world W is a heap s such that dom(s) = W and there are no
dangling pointers in s. The set of states for a world W is denoted St(W).

Definition 1. A renaming relation is a triple ρ = 〈W,W ′, ρ〉 where

– W and W ′ are location worlds, and
– ρ ⊆W ×W ′ is a type-respecting relation that is single-valued and injective.

(That is, ρ is a type-respecting bijection between some subsets L ⊆ W and
L′ ⊆ W ′.) We refer to W as dom(ρ), W ′ as cod(ρ) and the relation as the
“graph” of ρ.

If X <: W and X ′ <: W ′ are extended worlds and σ = 〈X,X ′, σ〉 and
ρ = 〈W,W ′, ρ〉 are renaming relations, we say that σ is an extension of ρ and
write σ <: ρ if σ ∩ (W ×W ′) = ρ. �

As mentioned in the context of Example 2, the purpose of renaming relations
is to identify the visible locations. Since the pointers to such locations can be
stored in other visible locations, we define the following notation. For d, d′ ∈
Val(δ), we say that d and d′ are equivalent modulo ρ, and write d ≡ρ d′, if d and
d′ denote the same data value assuming that all ρ-related locations are deemed
to be equal.

In the following definitions, we make crucial use of relations between partial
heaps. Even though we are, in the end, interested in relations between total
states, these relations will be defined using those on heaps.

– If ρ is a renaming relation, EQρ relates heaps that have equal values in
ρ-related locations (where ρ � i denotes projection of i’th components):

s [EQρ] s
′ ⇐⇒ dom(s) = ρ � 1 ∧ dom(s′) = ρ � 2 ∧ ∀(l, l′) ∈ ρ. s(l) ≡ρ s′(l′).

– The relation emp relates empty heaps: s [emp] s′ ⇐⇒ dom(s) = ∅ = dom(s′)

Correctness of Data Representations Involving Heap Data Structures 229

– The relation R ∗ S puts together two relations R and S side by side:

s [R ∗ S] s′ ⇐⇒ ∃s1, s2, s
′
1, s
′
2. s = s1 ∗ s2 ∧ s′ = s′1 ∗ s′2 ∧ s1 [R] s′1 ∧ s2 [S] s′2

This is the binary version of the ∗ connective in separation logic [11] and is
extremely powerful. Its power owes to the fact that we do not have to specify
in advance which parts of the heaps R and S run between. In a manner of
speaking, R and S are “untyped” relations even if R ∗ S may be a “typed”
relation.

Definition 2. A relational correspondence between location worlds is a pair
(ρ,R) : W ↔W ′ where

– ρ is a renaming relation between W and W ′ and
– R is a function mapping all extensions π <: ρ to relations between heaps,

such that, whenever π2 <: π1 <: ρ, R(π1) ⊆ R(π2).
The extension relation for correspondences is defined by (σ, S) <: (ρ,R) if

and only if (i) σ <: ρ, and (ii) for any π <: σ, there is a relation P such that
S(π) = R(π) ∗ P . �

This is the key definition of this paper. We explain it in detail. The intuition
is that the state consists of

– visible locations, identified by ρ, which must allow look-up, update and
storage, and

– hidden locations, related by R(π), which contain representations for abstract
data and, so, can only be modified by invariant-preserving operations.

The visible locations and the hidden locations are disjoint. The visible locations
must have equal values in related states. The hidden locations, on the other hand,
are related by some relation R(π) that captures the data representation invari-
ants. The relation R(π) is parameterized by renamings π so that information
about visible locations mentioned in π can be incorporated in its formulation.
The condition R(π1) ⊆ R(π2) means that related states continue to be related
if the states are extended with additional visible locations. The intuition for
the definition of (σ, S) <: (ρ,R) is that S extends R by imposing additional
conditions for new locations but does not alter R for the part of the heap that
R deals with. This is the same intuition as that in [16,14] for local variables.

The identity correspondence for a world W is IW = (ιW , empW) : W ↔ W ,
where ιW is the diagonal relation for W and empW maps every π <: ιW to emp.

Fact 1. Whenever X <: W , IX <: IW .

Having defined relational correspondences, we must specify how these are
used to relate states. Note that the relation EQρ ∗R(ρ) relates heaps (or partial
states with arbitrary domains). The corresponding relation for states is obtained
by restricting the heap relation to states:

St(ρ,R) : St(W)↔ St(W ′)
St(ρ,R) = (EQρ ∗R(ρ)) ∩ (St(W)× St(W ′))

230 U.S. Reddy and H. Yang

The idea is that in order to define a typed relation between states, we transit
to the untyped world of partial heaps where we have the powerful ∗ connective
available and coerce the results back to the typed world. Defining the required
relations without the ∗ connective would be extremely awkward.

Fact 2. St(IW) is the identity relation on St(W).

To make these definitions concrete, we give an example:
Example 4. Consider the list data structure from Example 3 but now adapted to
contain pointers to integer cells instead of just integers. The type of nodes is given
by node = ↑int×↑node. For the worlds W = {l : ↑node} and W ′ = {l′ : (↑int)∗},
we define a correspondence (∅, R) where the relation function R(π) is defined
by:

s [R(π)] s′ ⇐⇒ repπ(s, l, s′(l′))
repπ(s, l, α)⇐⇒ (s(l)=nil ∧ α=〈〉) ∨

∃n, n′, k, β.(s(l)=(n, k) ∧ α=〈n′〉·β ∧ (n, n′) ∈ π ∧ repπ(s, k, β))

Notice the use of π argument in relating the contents of the list cells. The
corresponding definition for Example 3 would use a constant function R(π)
because no pointers are to be related. �

Categorical Matters

We use the setting of reflexive graph categories [14,23,3] to explicate the
categorical structure that we use.

Proposition 3. There is a reflexive graph of categories World with the
following data: worlds as vertices, extensions X <: W as vertex morphisms,
correspondences (ρ,R) : W ↔ W ′ as edges and extensions (σ, S) <: (ρ,R) as
edge morphisms. The identity edges are the identity correspondences.

Let Set denote the reflexive graph with sets and functions forming the vertex
category and binary relations and relation-preserving squares forming the edge
category. We will be working with the functor category SetWorldop

whose objects
are reflexive graph-functors Worldop → Set and morphisms are parametric
natural transformations. (To deal with divergence and recursion, we must really
use Cpo in place of Set. We omit the treatment of recursion in this version of
the paper, but it can be treated the same way as in [14].)

Definitions of parametric limits ∀XF (X) and parametric colimits ∃XF (X) for
arbitrary reflexive graph-functors F may be found in [3]. In our case, we will be
using these with nonvariant functors F : World◦ → Set (where World◦ is the
discrete reflexive graph corresponding to World with only identity morphisms).
We will also use parametric ends

∫
X
F (X,X) for functors F of type World ×

Worldop → Set. See below for explicit constructions for these limits, colimits
and ends.

The notation ∀X<:WF (X) is used to denote the parametric limit of the
functor F ◦J◦ : (World<:W)◦ → Set where World<:W is the reflexive subgraph
of World with vertices X <: W and edges (σ, S) <: IW , and J is its inclusion
in World. It is to be noted that the type expression ∀X<:WF (X) forms a

Correctness of Data Representations Involving Heap Data Structures 231

contravariant functor T (W). The notation ∃X<:WF (X) similarly refers to the
parametric colimit of F ◦ J◦ (covariantly in W) and

∫
X<:W F (X,X) refers to

the parametric end of F ◦ (J × Jop) (contravariantly in W).
The functor category SetWorldop

is cartesian closed with products given
pointwise and exponents F ⇒ G given by (F ⇒ G)(W) =

∫
X<:W F (X) →

G(X) [14,3].

Explicit Constructions

For the benefit of the reader unfamiliar with parametric limits, we give direct
definitions of these constructions (which may be seen to be special cases of the
definitions in [3]).

Let F be a type operator that associates, to every world W , a set F (W) and,
to every correspondence (ρ,R) : W ↔ W ′, a relation F (ρ,R) : F (W)↔ F (W ′)
such that F (IW) = ∆F (W). Then,

–
∏
X F (X) is the set of families of the form {pX ∈ F (X)}X indexed by all

worlds X.
∏
X<:W F (X) is similar except that the families are indexed only

by subtypes of W .
– ∀XF (X) is a subset of

∏
X F (X) consisting of families satisfying the

parametricity condition: for all correspondences (ρ,R) : X ↔ X ′ between
different worlds, the components pX and pX′ are related by F (ρ,R).

– ∀X<:WF (X) is a subset of
∏
X<:W F (X) with a parametricity condition that

applies only to correspondences (ρ,R) <: IW . We say that the families are
parametric with respect to W .

–
∑
X F (X) is the set of pairs of the form 〈X, a〉 where X is a world and

a ∈ F (X). Such pairs should be viewed as “implementations” of abstract
data types, where X denotes the representation type and a is the collection
of operations. The set

∑
X<:W F (X) is similar except that the worlds X are

restricted to subtypes of W .
– ∃XF (X) is the quotient of

∑
X F (X) under a behavioral equivalence relation.

First, if 〈X, a〉 and 〈X ′, a′〉 are pairs in
∑
X F (X), a simulation relation

between them is a correspondence (ρ,R) : X ↔ X ′ such that a and a′ are
related by F (ρ,R). Two pairs 〈X, a〉 and 〈X ′, a′〉 are behaviorally equivalent,
written 〈X, a〉 ≈ 〈X ′, a′〉, if there is a sequence of pairs 〈X, a〉, 〈X1, a1〉, . . . ,
〈Xn−1, an−1〉, 〈X ′, a′〉 with simulation relations between successive pairs.
The equivalence class of a pair 〈X, a〉 under the behavioral equivalence
relation is denoted 〈|X, a|〉. These equivalence classes denote true “abstract
data types” [10,19].

– ∃X<:WF (X) is a quotient of
∑
X<:W F (X) where the allowed simulations

between pairs are restricted to correspondences (ρ,R) <: IW . The induced
behavioral equivalence relation with respect to W is denoted ≈W and the
equivalence class of a pair 〈X, a〉 is denoted 〈|X, a|〉W . These equivalence
classes should be viewed as “partially abstract” types whose representations
X are hidden except for the knowledge that they form subtypes of W .

232 U.S. Reddy and H. Yang

The intuitive reading of ∃X<:WSt(X) is that all the locations in X that are not
accessible from W are hidden. This intuition can be clearly seen in the following
“garbage collection” lemma:
Lemma 4. Let GCW : ∃X<:WSt(X)→ ∃X<:WSt(X) be defined by

GCW (〈|X, s|〉) = 〈|reachX(W, s), s � reach(W, s)|〉
where reachX(W, s) is the subset of X consisting of all locations reachable from
W in the heap s. Then GCW is the identity function on ∃X<:WSt(X).
This result signifies that reachability of locations has been properly captured by
the relational correspondences.

A reflexive graph-functor F : Worldop → Set is a type operator that also
has an associated contravariant action on the morphisms of World. That means
that, for all subtypings X <: W , there are functions F (X<:W) : F (W) →
F (X) preserving identity and composition. Moreover, if (σ, S) <: (ρ,R) then the
functions F (X<:W) and F (X ′<:W ′) map F (ρ,R)-related arguments to F (σ, S)-
related results.

We note two general cases of functors arising in our setting:

– The type expression T (W) = ∀X<:WF (X) forms a contravariant functor in
W , independent of whether F is functorial. The morphism part T (V <:W)
sends {pX}X<:W to {pX}X<:V . The relation action T (ρ,R):T (W)↔ T (W ′)
is given by

{pX}X<:W [T (ρ,R)] {p′X′}X′<:W ′ ⇐⇒
for all (σ, S):X ↔ X ′ such that (σ, S) <: (ρ,R), pX [F (σ, S)] p′X′

We write this relation as ∀(σ,S)<:(ρ,R)F (σ, S).
– The type expression T (W) = ∃X<:WF (X) determines a covariant functor in
W . If V <: W , we have the morphism part T (V <:W) : T (V)→ T (W) which
sends 〈|X, a|〉V to 〈|X, a|〉W . Since any simulation relation with respect to V is
also a simulation relation with respect to W , this function is well-defined. We
use the notation hideV <:W to denote it. The relation action T (ρ,R):T (W)↔
T (W ′) is given by

〈|X, a|〉W [T (ρ,R)] 〈|X ′, a′|〉W ′ ⇐⇒
there exist 〈Y, b〉 ≈W 〈X, a〉, 〈Y ′, b′〉 ≈W ′ 〈X ′, a′〉
and (σ, S) : Y ↔ Y ′ such that (σ, S) <: (ρ,R) and b [F (σ, S)] b′

We write this relation as ∃(σ,S)<:(ρ,R)F (σ, S).

The ∀ quantifier uses relational parametricity to capture uniformity and
information hiding. The categorical condition of natural transformation is
an alternative condition for uniformity. In [17,3], it is argued that ideally
naturality should be subsumed under parametricity. However, our relational
correspondences for heap worlds are not rich enough to subsume naturality. So,
for the present paper, we treat naturality separately. If F, G : Worldop → Set
are functors, we use the notation ∀XF (X)→ G(X) to mean families of functions
that are parametric as well as natural (which would be written more formally
as
∫
X
F (X) → G(X) in the notation of [3].) Similarly, ∀X<:WF (X) → G(X)

denotes families that are parametric as well as natural in X with respect to W .

Correctness of Data Representations Involving Heap Data Structures 233

Table 1. Type syntax of terms

Γ, x : ν � x : exp ν

Γ � C1 : com Γ � C2 : com

Γ � C1;C2 : com

Γ, x : var δ � C : com

Γ � {local var δ x;C} : com
Γ � V : exp(var δ)

Γ � read V : exp δ

Γ � V : exp(var δ) Γ � E : exp δ

Γ � V := E : com Γ � skip : com

Γ � E : exp(δ1 × · · · δn)

Γ � E.i : exp δi

Γ � V : exp(var(δ1 × · · · × δn)) Γ � E : exp δi

Γ � V.i := E : com

Γ � nil : exp(↑δ)
Γ � E : exp(↑δ)

Γ � E↑ : exp(var δ)

Γ � V : exp(var(↑δ))
Γ � V := new δ : com

Γ, x : ν �M : π

Γ � λx.M : exp (ν → π)

Γ �M : exp(ν → π) Γ � N : exp ν

Γ �M(N) : π
Γ, x : var δ � A : com Γ, x : var δ �M : exp ν

Γ � class : ν local var δ x init A meth M end : exp (cls ν)
Γ � K : exp (cls ν) Γ, x : ν � C : com

Γ � {local K x; C} : com

Notation. We use convenient notation borrowed from the polymorphic lambda
calculus [20] to denote polymorphic families. A family {P (X)}X<:W is written
as ΛX<:W.P (X) and, if φ is such a family, then component selection φX is
written as φ[X].

4 Semantics

We consider a Pascal-like language with types given by the following syntax:

(data types) δ ::= int | ↑δ | δ1 × · · · × δn
(value types) ν ::= δ | var δ | ν1 × · · · × νn | ν → π | cls ν
(phrase types) π ::= exp ν | com

Data types identify storable values, and value types identify bindable values (or
values that can be passed to procedures). Phrase types are the types of terms.

The term syntax for our language is given in Table 1. We use a sample of
command forms. Other forms can be accommodated in a similar fashion. The
notation for classes is borrowed from [18,19].

The types are interpreted as reflexive graph-functors Worldop → Set. The
interpretation comes in three parts: the set part [[τ]] maps worlds to sets, the
relation part 〈〈τ〉〉maps correspondences (ρ,R) : W ↔W ′ to relations [[τ]](W)↔
[[τ]](W ′) and the morphism part gives, for every subtyping X <: W , a function
[[τ]](X<:W) : [[τ]](W)→ [[τ]](X) such that correspondences are preserved.

[[int]](W) = Int
[[↑δ]](W) = (Locδ ∩W) + {nil}

[[var δ]](W) = [[δ → com]](W)× [[exp δ]](W)
[[ν1 × · · · × νn]](W) = [[ν1]](W)× · · · × [[νn]](W)

234 U.S. Reddy and H. Yang

Table 2. Semantic combinators

unitνW : [[ν]](W)→ [[exp ν]](W)
unitW d = ΛX<:W.λs. d ↑XW
bindν,πW : [[exp ν]](W)× [[ν → π]](W)→ [[π]](W)
bindW (e, f) = ΛX<:W.λs. let d = e [X] s

in if d = fault then fault else f [X] d [X] s
bindν1,ν2,πW : [[exp ν1]](W)× [[exp ν2]](W)× [[ν1 × ν2 → π]](W)→ [[π]](W)
bindW (e1, e2, f) = ΛX<:W.λs. let d1 = e1 [X] s, d2 = e2 [X] s

in if d1 = fault ∨ d2 = fault then fault
else f [X] (d1, d2) [X] s

hideY <:X : [(∃Z<:Y St(Z)) + {fault}]→ [(∃Z<:XSt(Z)) + {fault}]
hideY <:X r = case r of 〈|Z, s|〉Y ⇒ 〈|Z, s|〉X | fault⇒ fault
seqW : [[com]](W)× [[com]](W)→ [[com]](W)

seqW (c, c′) = ΛX<:W.λs.

{
fault if c [X] s = fault
hideY <:X

(
c′ [Y] s′

)
if c [X] s = 〈|Y, s′|〉X

[[ν → π]](W) = ∀X<:W [[ν]](X)→ [[π]](X)
[[cls ν]](W) = ∀X<:W∃Z<:X [[exp ν]](Z)× [St(X)→ ∃Y <:ZSt(Y) + {fault}]

[[exp ν]](W) = ∀X<:WSt(X)→ [[ν]](X) + {fault}
[[com]](W) = ∀X<:WSt(X)→ ∃Y <:XSt(Y) + {fault}

The position of the type quantifications ∀ and ∃ in the type interpretations has
been recognized in earlier work [25,4,8]. Intuitively, a command defined for a
world W should be prepared to accept additional locations (represented by X)
in its input state, and it might itself allocate new locations during the execution
(represented by Y). The parametricity interpretation of the type quantifiers
means that the command does not have direct access to the extra locations in
its input state and the successor commands will not have direct access to the
locations allocated by the present command.

Variables are interpreted as pairs of “put” and “get” methods, as in Reynolds
[21]. Indeed, if l ∈ W is a δ-typed location, we can map it to a pair of methods
varδW (l) = (putδW (l), getδW (l)) defined as follows:

putδW (l) [Y] k [Z] s = 〈|Z, s[l→ k]|〉Z , and getδW (l) [Y] s = s(l).

The relation interpretation of types 〈〈τ〉〉 is straightforward: 〈〈int〉〉(ρ,R) =
∆Int , 〈〈↑δ〉〉(ρ,R) = ρ+∆{nil} and, for all other cases, it follows from the structure
of [[τ]]. For the morphism part, [[int]](X<:W) is idInt , [[↑δ]](X<:W) is the evident
inclusion, and for all other cases, it follows from the structure of the types. We
use the shorthand notation a↑XW for [[τ]](X<:W)(a) when a ∈ [[τ]](W).

The semantics of a term with typing x1: ν1, . . . , xn: νn �M : π is a parametric
natural transformation of type ∀W [[ν1]](W)×· · ·×[[νn]](W)→ [[π]](W). (As usual
values of the type [[ν1]](W)× · · · × [[νn]](W) will be regarded as “environments”
ranged over by the symbol η.)

We use the semantic combinators from Table 2. We also assume that there is
a family of functions newlocδ(X) that give, for each world X, a δ-typed location
that is not in X.

Correctness of Data Representations Involving Heap Data Structures 235

[[x]]W η = unitW (η(x))
[[skip]]

W
η = ΛX<:W.λs. 〈|X, s|〉X

[[C1;C2]]
W
η = seqW ([[C1]]

W
η, [[C2]]

W
η)

[[{local var δ x;C}]]W η =
ΛX<:W.λs. hideX+<:X

(
[[C]]

X+ (η↑X+

W [x→varδX+(l)]) [X+] (s ∗ [l→initδ])
)

where l = newlocδ(X) and X+ = X � {l}
[[read V]]

W
η = bindW ([[V]]

W
η, ΛX<:W.λ(p, g). g)

[[V := E]]W η = bindW ([[V]]W η, [[E]]W η, ΛX<:W.λ((p, g), k). p[X]k)
[[E↑]]

W
η = bindW ([[E]]W η, deref δW)

[[V := new δ]]W η = bindW ([[V]]
W
η, allocδW)

[[λx.M]]W η = unitW (ΛX<:W.λd. [[M]]X(η↑XW [x→d]))
[[M(N)]]

W
η = bindW ([[M]]

W
η, [[N]]

W
η, ΛX<:W.λ(f, d). f [X](d))

[[class : ν local var δ x init A meth M end]]W η =
unitW (ΛX<:W. 〈|X+, [[M]]

X+η
+, λs. [[A]]

X+(η+)(s ∗ [l→initδ])|〉X)
where l = newlocδ(X), X+ = X � {l}, and η+ = η↑X+

W [x→varδX+(l)]
[[{local K x; C}]]W η =

bindW


[[K]]W η,

ΛX<:W.λk.ΛY <:X.λs.
let 〈|Z,m, i|〉Y = k[Y]
in if 〈|Z′, s′|〉Z = i(s) ∧m[Z′]s′ �= fault

then hideZ′<:Y ([[C]]Z′(η↑Z
′

W [x→m[Z′]s′]) s′)
else fault




These definitions are expressed using operations allocδW : [[var(↑δ)→ com]](W)
and deref δW : [[↑δ → exp (var δ)]](W):

allocδW [X] (p, g) [Z] s = hideZ+<:Z(p [Z+] l [Z+] (s ∗ [l→initδ]))
where l = newlocδ(Z) and Z+ = Z � {l}

deref δW [X] l [Z] s = if l �= nil then varδZ(l) else fault

5 Results

The most basic result to be proved about our semantics is that it satisfies an
abstraction theorem. (Really, this is not a separate result from the semantic
definition, but rather an integral part of checking that the semantics is well-
defined.)

Theorem 5. The meaning of every term [[Γ � M : θ]] is a parametric natural
transformation of type [[Γ]]→ [[θ]]. That is,

1. for all worlds W and all environments η ∈ [[Γ]](W), [[M]]W η ∈ [[θ]](W);
2. for all (ρ,R):W ↔W ′, and all related environments η[〈〈Γ 〉〉(ρ,R)]η′,

[[M]]W η [〈〈θ〉〉(ρ,R)] [[M]]W ′η
′; and

3. for all extensions X <: W and all η ∈ [[Γ]](W), ([[M]]W η)↑XW = [[M]]X(η↑XW).

The abstraction theorem immediately implies the soundness of the simulation
principle for data representation reasoning. Suppose {〈|F (Y),mY , iY |〉}Y and
{〈|F ′(Y),m′Y , i

′
Y |〉}Y are two similar implementations of a class, i.e., for any

236 U.S. Reddy and H. Yang

world Y , there is a simulation relation (σ, S):F (Y) ↔ F ′(Y) such that
(σ, S) <: IY and mY [〈〈exp ν〉〉(σ, S)] m′Y and iY and i′Y are related by
St(IY) → ∃(τ,T)<:(σ,S)St(τ, T) + ∆{fault}. Then in any command term of the
form Γ,C: cls ν � {local C x; M} : com, we get the same results independent
of which implementation is used for C. This is because when iY s = 〈|Z, s1|〉F (Y)
and i′Y s = 〈|Z ′, s′1|〉F ′(Y),

hideZ<:Y
(
[[M]]Z(η↑ZW [x→m[Z]s1])[Z]s1

)
=

hideZ′<:Y
(
[[M]]Z′(η↑Z

′
W [x→m′[Z ′]s′1])[Z ′]s′1

)

for all η ∈ [[Γ]]W and Y <: W , which follows from the abstraction theorem.
The separation logic for reasoning about heap data structures [22,11,28]

contains an important rule called the “frame rule,” which is central to the local
reasoning methodology developed there. The frame rule is supported by the
frame property of commands which says that if a command is safe in a given
state, then the result of executing it in a larger state can be predicted based on
an execution on the smaller state. This property is satisfied by our semantics. Say
that a command c ∈ [[com]](W) is safe for world X <: W and state s ∈ St(X)
if c[X](s) �= fault.
Theorem 6. Let c ∈ [[com]](W) be safe for world X <: W and state s. Then
for all extended worlds X � Z and states s ∗ t ∈ St(X � Z),

1. c is safe for X � Z and s ∗ t, and
2. there exist world Y <: X and state s′ ∈ St(Y) such that Y ∩Z = ∅, c [X]s =
〈|Y, s′|〉X , and c [X � Z] (s ∗ t) = 〈|Y � Z, s′ ∗ t|〉X�Z .

We expect that this connection will pave the way for integrating the data
representation reasoning studied here and the state-based reasoning developed
with separation logic.

Acknowledgments. We have benefited from discussions with Peter O’Hearn
and David Naumann. Yang was supported by Creative Research Initiatives of
the Korean Ministry of Science and Technology.

References

1. Abramsky, S., Honda, K., and McCusker, G. A fully abstract game semantics
for general references. In LICS 1998 (1998), pp. 334–344.

2. Banerjee, A., and Naumann, D. A. Representation independence, confinement
and access control. In POPL 2002 (2002), ACM.

3. Dunphy, B. P. Parametricity as a Notion of Uniformity in Reflexive Graphs.
PhD thesis, University of Illinois, Dep. of Mathematics, 2002.

4. Ghica, D. R. Semantics of dynamic variables in Algol-like languages. Master’s
thesis, Queen’s University, Kingston, Canada, Mar 1997. (available electronically
from ftp://ftp.qucis.queensu.ca/pub/rdt).

5. Ghica, D. R. Parameters and linked structures in algol-like languages. In
Report of the Dagstuhl Seminar 98261: The Semantic Challenge of Object-oriented
Programming (1998), Schloss Dagstuhl.

Correctness of Data Representations Involving Heap Data Structures 237

6. Launchbury, J., and Peyton Jones, S. L. State in Haskell. J. Lisp and Symbolic
Comput. 8, 4 (1995), 293–341.

7. Levy, P. B. Call-by-Push-Value. PhD thesis, Queen Mary, University of London,
March 2001.

8. Levy, P. B. Possible world semantics for general storage in call-by-value. In CSL
2002 (2002), pp. 232–246.

9. Meyer, A. R., and Sieber, K. Towards fully abstract semantics for local
variables. In Fifteenth Ann. ACM Symp. on Princ. of Program. Lang. (1988),
ACM, pp. 191–203. (Reprinted as Chapter 7 of [15]).

10. Mitchell, J. C., and Plotkin, G. D. Abstract types have existential types.
ACM Trans. Program. Lang. Syst. 10, 3 (1988), 470–502.

11. O’Hearn, P., Reynolds, J., and Yang, H. Local reasoning about programs
that alter data structures. In CSL 2001 (Berlin, 2001), L. Fribourg, Ed., vol. 2142
of LNCS, Springer-Verlag, pp. 1–19.

12. O’Hearn, P. W., and Reynolds, J. C. From Algol to polymorphic linear
lambda-calculus. J. ACM 47, 1 (2000), 167–223.

13. O’Hearn, P. W., and Tennent, R. D. Semantics of local variables. In Appli-
cations of Categories in Computer Science, M. P. Fourman, P. T. Johnstone, and
A. M. Pitts, Eds. Cambridge Univ. Press, 1992, pp. 217–238.

14. O’Hearn, P. W., and Tennent, R. D. Parametricity and local variables. J. ACM
42, 3 (1995), 658–709. (Reprinted as Chapter 16 of [15]).

15. O’Hearn, P. W., and Tennent, R. D. Algol-like Languages (Two volumes).
Birkhäuser, Boston, 1997.

16. Oles, F. J. A Category-Theoretic Approach to the Semantics of Programming
Languages. PhD thesis, Syracuse University, 1982.

17. Reddy, U. S. When parametricity implies naturality. Electronic manuscript, July
1997. URL http://www.cs.bham.ac.uk/˜udr.

18. Reddy, U. S. Objects and classes in Algol-like languages. In Fifth Intern.
Workshop on Foundations of Object-oriented Languages (Jan 1998), electronic
proceedings at http://pauillac.inria.fr/˜remy/fool/proceedings.html.

19. Reddy, U. S. Objects and classes in Algol-like languages. Information and
Computation 172 (2002), 63–97.

20. Reynolds, J. C. Towards a theory of type structure. In Coll. sur la
Programmation, vol. 19 of LNCS. Springer-Verlag, 1974, pp. 408–425.

21. Reynolds, J. C. The essence of Algol. In Algorithmic Languages, J. W. de Bakker
and J. C. van Vliet, Eds. North-Holland, 1981, pp. 345–372. (Reprinted as Chapter
3 of [15]).

22. Reynolds, J. C. Intuitionistic reasoning about shared mutable data structure.
In Millenial Perspectives in Computer Science. Palgrave, 2000.

23. Robinson, E., and Rosolini, G. Reflexive graphs and parametric polymorphism.
In Proceedings, Ninth Annual IEEE Symposium on Logic in Computer Science
(July 1994), IEEE Computer Society Press.

24. Stark, I. Names and higher-order functions. Technical Report 363, University of
Cambridge Computer Laboratory, April 1995.

25. Stark, I. Categorical models for local names. Lisp and Symbolic Computation 9,
1 (Feb. 1996), 77–107.

26. Tennent, R. D. Correctness of data representations in Algol-like languages. In A
Classical Mind: Essays in Honor of C. A. R. Hoare, A. W. Roscoe, Ed. Prentice-
Hall International, 1994, pp. 405–417.

27. Wirth, N., and Hoare, C. A. R. A contribution to the development of Algol.
Comm. ACM 9, 6 (June 1966), 413–432.

28. Yang, H. Local reasoning for stateful programs. Tech. Rep. UIUCDCS-R-2001-
2227, University of Illinois, Dep. of Computer Science, July 2001.

	Introduction
	Motivation
	Definitions
	Semantics
	Results

