
Correctness of Incremental Model Synchronization with
Triple Graph Grammars

Fernando Orejas ?1 and Elvira Pino1

Universitat Politècnica de Catalunya, Spain
{orejas, pino}@lsi.upc.edu

Abstract. In model-driven software development, we may have several models
describing the same system or artifact, by providing different views on it. In this
case, we say that these models are consistently integrated.
Triple Graph Grammars (TGGs), defined by Schürr, are a general and powerful
tool to describe (bidirectional) model transformations. In this context, model syn-
chronization is the operation that, given two consistent models and an update or
modification of one of them, finds the corresponding update on the other model,
so that consistency is restored. There are different approaches to describe this
operation in terms of TGGs, but most of them have a computational cost that de-
pends on the size of the given models. In general this may be very costly since
these models may be quite large. To avoid this problem, Giese and Wagner have
advocated for the need of incremental synchronization procedures, meaning that
their cost should depend only on the size of the given update. In particular they
proposed one such procedure. Unfortunately, the correctness of their approach is
not studied and, anyhow, it could only be ensured under severe restrictions on the
kind of TGGs considered.
In the work presented, we study the problem from a different point of view. First,
we discuss what it means for a procedure to be incremental, defining a correctness
notion that we call incremental consistency. Moreover, we present a general in-
cremental synchronization procedure and we show its correctness, completeness
and incrementality.

Key words: Model Transformation, Model Synchronization, Triple Graph
Grammars, Incremental Model Synchronization.

1 Introduction

In model-driven development, we may have several models describing the same sys-
tem or artifact, by providing different views on it. Then, we say that these models are
consistently integrated. Similarly, we say that two models are consistent if they are com-
plementary descriptions of some system. In this context, given two integrated models,
model synchronization is the problem of restoring consistency when one of these mod-
els has been updated by propagating that update to the other model. The same problem
is also studied in other areas like databases or programming languages [1, 14, 9].

? This work has been partially supported by the CICYT project (ref. TIN2007-66523) and by
the AGAUR grant to the research group ALBCOM (ref. 00516)



Triple Graph Grammars (TGGs) [11, 12] are a general and powerful tool to describe
(bidirectional) model transformations. On the one hand, a TGG allows us to describe
classes of consistently integrated models and, on the other hand, given some source
model M1, using the so-called derived operational rules associated to the TGG, we can
find a corresponding consistent target model M2. There are different approaches to de-
scribe model synchronization in terms of TGGs, but most of them have a computational
cost that depends on the size of the given models. This may be rather inefficient since
the given models may be large. To avoid this problem, Giese and Wagner [4] have ad-
vocated for the need of incremental synchronization procedures, meaning that their cost
should depend only on the size of the given update. In particular they proposed one such
procedure. Unfortunately, the correctness of this approach is not studied and, anyhow, it
could only be ensured under severe restrictions on the kind of TGGs considered, since
the approach only works for the case when source and target models are bijective.

In this paper we address the problem from a different point of view. First, we discuss
what it means for a procedure to be incremental. Specifically, given a derivation used
to create a model and an update on it, we establish what does it means incrementality
with respect to a consistent submodel not affected by the update. Essentially, it means
that there exists a derivation that builds the new model preserving that consistent sub-
model. Then, this idea is formulated as a correctness notion, that we call incremental
consistency. This may be considered a first contribution of the paper.

Our second and main contribution is the introduction of a new general incremental
synchronization procedure. In principle, the input for this procedure would be given by
an integrated model G, a derivation of G representing its structure, and an update on
the source model of G. However, since storing a derivation may be expensive in terms
of the amount of storage needed, we replace the derivation by dependence relations on
the elements of G that are shown to be equivalent, in an adequate sense, to the deriva-
tion. Specifically, we prove a theorem (Th.1 in Sec.4) that guarantees that the largest
consistent submodel not affected by the update can be obtained from that dependencies
without cost depending on the model. Then, the procedure consists of five steps. In the
first one, based on the above result, we identify the part of the model that needs to be
reconstructed and we mark all the elements that may need to be deleted. In the second
step, if needed, we enlarge the part of the model that needs to be reconstructed. As
we will discuss, this second step is only needed in some cases when the update does
not allow incremental consistency with respect to the largest consistent submodel not
affected by the update, but with respect to a smaller one. In the third step, following
the same idea presented informally in [5], we build a model that is already consistent,
by applying a variation of forward translation rules [8, 6] allowing us to reuse most rel-
evant information from the target model. For this reason, we call these rules forward
translation rules with reuse. However, the resulting model may not include elements
from the target model that do not have a correspondence in the source model. To avoid
this, in the fourth step we recover these elements by just using our dependence relations.
Finally, in the fifth step we effectively delete target elements that are still marked to be
deleted. We prove that the results of this procedure are always incrementally correct and
complete in the sense that, if there is an incrementally correct solution, the procedure
will find it.

2



When describing our procedure, sometimes we refer to user interaction to take some
decisions that may be not obvious. We want to point out that, from a theoretical point
of view, this is equivalent to considering that our procedure is nondeterministic. On
the other hand, it is important to notice that we do not assume any restriction on the
kind of grammars or graphs considered in this paper. This is not the case of most other
approaches that impose reasonable restrictions to ensure efficiency. As a consequence,
the implementation of our procedure may be computationally costly since, at some
points some exhaustive search may be needed. However, our ideas could also be used
in the context of the restrictions considered by other authors. In that case, our procedure
would be as efficient (or more efficient) than these other approaches. Anyhow, it must
be understood that our contribution is related to the study of when and how we can pro-
ceed incrementally in the synchronization process in the most general case, rather than
restricting its application to the cases where a certain degree of efficiency is ensured.

The paper is organized as follows. In Section 2 we introduce some basic material
needed in the paper and we present a running example that we use to illustrate our ap-
proach and results. In the third section we study the notion of incremental consistency
and in Section 4 we present the dependency relations that are used to represent deriva-
tions. In Section 5 we present our incremental synchronization procedure. Finally, in
Section 6 we discuss related work and we draw some conclusions.

2 Preliminaries

In this section, we describe some basic notions and terminology concerning, model
transformation and model synchronization with Triple Graph Grammars (TGGs). More-
over, we introduce the examples that we will use in the paper.

2.1 Model Synchronization with Triple Graph Grammars

Model synchronization is the operation that, given two consistent models and an update
or modification of one of them, finds the corresponding update on the other model, so
that consistency is restored. Let us be more precise. First, we consider that models are
some kind of typed graphs with attributes (see, e.g., [2]). This means that our models
consist of nodes, edges and attributes1, which are values associated to nodes and edges.
Moreover, a type graph, which is similar to a metamodel, describes the kind of elements
(nodes, edges and attributes) that are part of the given class of models. For example, in
Fig. 1 we can see the type graph of the example considered in this paper. Second, we
consider that integrated models are not just pairs of graphs but triple graphs that, in
addition, provide a correspondence between elements of the given models. Formally, a
triple graph G=(GS sG←GC tG→GT ) consists of a source graph GS and a target graph GT ,
which are related via a correspondence graph GC and two mappings (graph morphisms)
sG : GC → GS and tG : GC → GT specifying how source elements correspond to target
elements. For example in figure 2 we can see a triple graph typed by the graph in figure
1. For simplicity, we use double arrows, 〈GS↔ GT 〉, as an equivalent shorter notation
for triple graphs, whenever the explicit correspondence graph can be omitted.

1 For simplicity, our example includes no attributes

3



L

m
��

� � // R

m′
��

G1
� � // G2

A simple but powerful way of describing a class of consis-
tently integrated models is by using a Triple Graph Grammar [11,
12], consisting of a start triple graph, SG2, and a set of production
rules of the form p : L→ R, where L and R are triple graphs and
L ⊆ R. That is, L(G) = {G | SG ∗

=⇒ G} is the language defined
by a triple grammar G, where ∗

=⇒ is the reflexive and transitive closure of the one step
transformation relation =⇒ defined by the grammar as follows. G1 =⇒ G2 if there is a
production rule p : L→ R in G and a matching monomorphism m : L→G1 such that G2
can be obtained by replacing (the image of) L in G1 by (a corresponding image of) R.
Formally, this means that the diagram above on the right is a pushout in the category of
triple graphs. In this case, we write G1

p,m
=⇒G2, or just G1=⇒G2 if p and m are implicit.

Hence, we say that a triple graph G is consistent if G ∈ L(G). Similarly, we say that
a source graph GS (respectively, a target graph GT ) is consistent if there exists a triple
graph 〈GS↔ GT 〉 ∈ L(G).

Finally, we consider that an update or modification of a graph G, denoted u : G⇒G′

is a span of inclusions (or, in general, injective morphisms) G← G0 → G′ for some
graph G0. Intuitively, the elements in G that are not in G0 are the elements deleted by
u, and the elements in G′ that are not in G0 are the elements added by u.

GS

uS

��

GT//oo

uT

��
G′S G′T//oo

Now we can express formally the synchronization problem
in terms of the diagram on the right [7]. Given a triple graph G
and an update uS : GS⇒ G′S on the source graph3, the synchro-
nization problem is to find an update uT : GT ⇒ G′T and a triple
graph G′ such that G′ is consistent. These results, uT and G′, are
called the forward propagation of uS over G. Notice that finding the triple graph G′
means computing the new correspondences of that graph. Notice also that, in general,
there may be no solution to the synchronization problem. In particular, this is the case
if G′S is not consistent, i.e. when there is no consistent triple graph 〈G′S↔ G′T 〉.

For example, below we will consider the synchronization problems when deleting
the subclass edge between classes C3 and C2 in the triple graph in Fig. 3.

2.2 Model Transformation with Triple Graph Grammars

Model transformation is the problem of finding a consistent triple graph 〈GS ↔ GT 〉,
when given a TGG G and a source model GS. This problem is very related to the prob-
lem of model synchronization. Each of these problems can be seen as a special case of
the other one. In particular, the model transformation problem can be seen as a special
case of model synchronization since it can be solved by computing the propagation of
the update uS : /0⇒ GS over the empty triple graph 〈 /0↔ /0〉. Similarly, model syn-
chronization can be reduced to model transformation, since given 〈GS ↔ GT 〉 and a
source update uS : GS⇒ G′S we can solve the synchronization problem just computing

2 In general, without loss of generality, we will consider that SG is always the empty triple graph.
3 Note that the synchronization problem after a target update can be seen as a special case of the

problem considered in this paper, since triple graphs are symmetric structures.

4



the model transformation of G′S. However, this would not be an efficient solution of the
synchronization problem4.

In the context of TGGs, the model transformation problem can be solved using the
so-called operational rules (forward, backward, source, and target rules) associated to
G. The key idea is that forward rules, generated from the rules in G, preserve the given
source model but add the missing target and correspondence elements. Solving this
problem is equivalent to finding a source consistent derivation [3].

〈GS↔ /0〉=⇒p1 〈G
S↔ GT

1 〉=⇒p2 . . .=⇒pn 〈GS↔ GT
n 〉

where p1, p2, . . . , pn are forward rules associated to G.
Finding source consistent derivations or checking if a derivation with forward rules

is source consistent is, in general, quite costly. For this reason, [6] introduces a new
technique based on the use of Boolean-valued translation attributes. These attributes
are associated to all elements in the graph (i.e. nodes, edges, and also other attributes)
to denote if that element has been created or not by a rule. The idea is quite simple. Let
us first consider a slightly different problem. Suppose that we want to know if a given
triple graph is consistent, i.e. if G∈L(G). Obviously, we may try to see if we can derive
G using the rules in G. However, we can use a different approach: we modify slightly
the TGG rules so that, instead of creating new elements, we just mark the existing ones,
so that to check if G is consistent, we check if we can mark all its elements with the
modified rules. These marks are the translation attributes, that is, the attribute of an
element states if the element has been marked or not. Then, to check if G is consistent
we just have to add all the translation attributes set to false, and try to see if applying
the modified rules we can arrive to a graph with all its translation attributes set to true.

The above idea can be generalized. Suppose that we have a grammar G and a (not
necessarily consistent) triple graph G, and we want to extend it until we arrive to a
consistent graph. A straightforward approach would be to use the rules in G to find a
graph G′ that extends G. But we can also modify the rules in G, so that, if an old rule
would have created an element already in G, the new rule would just mark it; but if the
old rule would create a new element not in G, the new rule would also create it. We
can say that these new rules reuse the elements in G. A similar idea was informally
introduced in [5]. For example, forward translation rules [6] follow this idea to solve
the model transformation problem. The part that is reused is the given source graph GS,
and the extension that we are looking for consists of the target and correspondence parts
of the result. That is, 〈GS↔ /0〉 is the given triple graph that we want to complete. So, to
solve the model transformation problem, we would first add false translation attributes
to all the elements in GS and then apply the new rules until we arrive to a triple model
G whose source part is like GS, but with all its translation attributes set to true .

2.3 Example

In this subsection we introduce the example that is used to illustrate our techniques. It is
a simplified, and slightly modified, version of the well-known transformation between

4 Actually it would neither be an adequate solution [13].

5



class diagrams and relational schemas. The type graphs of source, target and correspon-
dence models are depicted in Fig. 1. Source models, whose type graph is depicted on
the left, consist of two kinds of nodes, classes and attributes, and two kinds of edges. On
the one hand, an edge between two classes represents a subclass relationship between
them. On the other hand, attributes are bound to their associated classes by the second
kind of edges. Similarly, the type graph of target models is depicted on the right of
the figure, consisting of tables, columns and foo nodes5, together with edges between
columns and tables, and between foo nodes and columns. Finally, in the center of Fig.
1, we depict the type graph of the correspondence models, consisting of two kinds of
nodes: square nodes to bind classes with their associated tables, and round nodes to
bind attributes with their associated columns.

Fig. 1. Type graph

The rules of the TGG defining the transformation between class diagrams and rela-
tional schemas are depicted in Fig. 2 in short notation, i.e. left and right hand sides of a
rule are depicted in a single triple graph. Elements which are created by the rule are la-
belled with ++ and additionally marked by purple line colouring. Rule 1, Class2Table
creates a new class and its corresponding table. and it also creates the correspondence
element that relates the class and the table. Rule 2, Attribute2Column, given a class C1
and a corresponding table T1, creates an attribute A1 of C1 and a related column c1 of
T1, together with the associated correspondence element. Rule 3, Subclass2Table, given
a class C1 and a corresponding table T1, creates a new class C2 that is a subclass of C1.
In this case, C2 is related to T1 through a new correspondence element. Finally, Rule 4,
FooCreation creates a new foo node associated to an existing column. Notice that, in
this rule, the source and correspondence parts of the triple rule are empty.

In the left of Fig. 3 we depict a triple graph generated by this TGG. That triple
graph could have been generated by a derivation d1 consisting of, first, applying twice
the rule Class2Table, to create classes C1,C2 and tables T1,T2; then, applying the rule
Subclass2Table, to create C3, and applying three times the rule Attribute2Column to cre-
ate attributes A1,A2,A3 and columns c1,c2,c3; finally applying the rule FooCreation to
create the foo node associated to column c3. But it could have also been created by other
derivations that are permutation equivalent to d1 [2], like derivation d2, consisting of
applying twice the rules Class2Table and Attribute2Column, to create classes C1,C2, ta-

5 These foo nodes have no special meaning. They are just introduced for our convenience.

6



:C 

:A 

:T 

:Co 

:C 

:C 

:T 

++ ++ ++ 
++ ++ 

++ ++ ++ 
++ ++ 

++ ++ 

++ ++ ++ 
++ ++ 

1. Class2Table 

2. Attribute2Column 

3. Subclass2Table 

:T :C 

:Co :Foo 

++ 
++ 

4. FooCreation 

Fig. 2. Transformations Rules

bles T1,T2, attributes A1,A2, and columns c1,c2.; then, applying rule Subclass2Table, to
create C3, rule Attribute2Column to create attribute A3 and column c3, and rule FooCre-
ation to create the foo node.

Finally, in the rest of the paper, we will use green colour6 to depict the elements
affected by an update, in contrast to the black coloured elements that are not affected
by the update.

3 Incremental Model Synchronization and Incremental
Consistency

In the literature on model synchronization, the term “incremental” has two possible
meanings. On the one hand, in most papers, a synchronization procedure is called incre-
mental if the propagation of a source update reuses the information included in the given
target model. Actually, according to this meaning of incrementality, rather than saying
if a procedure is incremental or not, we should say how much incremental it is, depend-
ing on the amount of target information reused. For instance, an extreme case would
be a procedure that, given an integrated model G and a source update uS : GS → G′S,
would compute the propagation of u by computing the model transformation of G′S,
without taking into account the information in G′T . Obviously, this would be the most
non-incremental (or the least incremental) procedure.

On the other hand, in [4], Giese and Wagner advocate that synchronization should
be incremental, meaning that its computational cost should depend mainly on the size

6 For readers of black and white prints, green elements appear as lighter grey.

7



of the modification and not on the size of the given models. This is not the case in most
existing approaches. Even if they build the solution by modifying the given target model
and reusing its information, their cost still depends on the size of the given models,
because they have to analyze the models to ensure correctness. Our aim is to develop a
procedure that is incremental in both senses.

Our approach is based on assuming that if G is the given integrated model, we know
which derivation d = SG =⇒ . . . =⇒ Gi =⇒ . . . =⇒ G generated it. In this context, if
we know that the given update uS : GS ⇒ G′S does not affect any element in GS

i , i.e.
GS

i ⊆G′S and the result of the synchronization, G′, also includes Gi, then we say that G′
is incrementally consistent with respect to Gi. Then, the idea underlying our procedure
is to find the largest Gi ⊆G so that we can build over it the solution Gi ⊆G′. Moreover,
since we want our procedure to be incremental in the sense of [4], the cost of finding Gi
should not depend on its size.

However, there are many derivations that can be considered equivalent, because
the order in which we apply some productions is irrelevant. These transformations are
called sequentially independent and the derivations are permutation equivalent (for the
concrete definitions see, e.g., [2]). For instance, in the example, derivations d1 and d2
mentioned in subsection 2.3, are permutation equivalent. This means that it is not rele-
vant if we first create classes C1,C2,C3 and tables T1,T2 and then we add the attributes
and columns A1,A2,A3,c1,c2,c3, or if we first create C1,T1,A1,c1, then C2,T2,A2,c2
and finally C3,A3,c3, or if we create the classes, attributes, tables and columns in a
different order. The only limitations are that we cannot create C3 before C2 and T2, be-
cause the rule to create C3 needs that C2,T2 are already there, neither we can create
an attribute/column before their associated class/table, nor we can create a foo node
before its corresponding column. As a consequence, when looking for the submodel
Gi to build the synchronization, we must consider, not only the given derivation d that
generated G, but also all derivations that are permutation equivalent to d.

For example, let us suppose that, in the graph on the left of Fig. 3, we delete the
subclass relation between C3 and C2. The result of the (expected) synchronization is
depicted on the right of that figure. We may see that this result is incrementally con-
sistent with respect to the subgraph depicted in black on the left. So, in this case, our
procedure would first need to find that subgraph and, then, it would construct the result
on the right.

Definition 1 (Incremental consistency). Given a TGG G, a derivation d = SG ∗
=⇒ G

and an update u : GS ⇒ G′S. Let H ⊆ G be such that no element in HS is deleted by u
and there is a derivation d0, permutation equivalent to d with d0 = SG ∗

=⇒ H ∗
=⇒ G.

We say that an integrated model G′ = 〈G′S↔ G′T 〉 ∈ L(G) is incrementally consistent
with respect to d, u and H if there exists a derivation d′ = SG ∗

=⇒ G′ sastifying that,
d′ = SG ∗

=⇒ H ∗
=⇒ G′.

In most cases, we may consider that the submodel Gi ⊆ G that we look for in our
procedure should always be the largest submodel of G generated by a derivation per-
mutation equivalent to d that is not affected by the given update. This works fine in
many cases, like in the example that we have just described. However, there are cases
where this largest model cannot be completed to an incrementally consistent model. For

8



C1:C 

A1:A 

T1:T 

c1:Co 

C2:C 

A2:A 

T2:T 

c2:Co 

C3:C 

A3:A c3:Co 

C1:C 

A1:A 

T1:T 

c1:Co 

C2:C 

A2:A 

T2:T 

c2:Co 

C3:C 

A3:A c3:Co 

T3:T 

:Foo 
:Foo 

Fig. 3. Model Synchronization

instance, let us suppose that the given integrated model G is the triple graph on the right
of Fig. 3 and let us suppose that the given updates consists just of the addition of a sub-
class relation between C3 and C2. In this case, the largest submodel of G not affected by
that update is the whole model G, since the update includes no deletion. However, there
is no way to extend GT so that the final result is consistent. In this case, the submodel
of G that we can use to build an incrementally consistent result is the part of G depicted
in black in the triple graph on the left of Fig. 3.

Nevertheless, the following proposition shows that, given a derivation d of an in-
tegrated model G and given a subset of elements D ⊆ G that must be deleted when
applying a given update, there is a largest consistent graph Gd\D ⊆G that consists of all
the elements of G that can be generated by d without the use of elements from D in any
derivation d′ that is permutation equivalent to d. Moreover, some of these derivations
d′ include the derivation of Gd\D, i.e. d′ : SG ∗

=⇒ Gd\D
∗

=⇒ G, then we say that d′ is
maximally preserving with respect to D.

The idea is that the result of the synchronization will be built from Gd\D. As a
consequence, in most cases, D will be the set of elements deleted by the given update
and, as a consequence, Gd\D would be be the largest submodel of G generated by a
derivation permutation equivalent to d that is not affected by the given update. However,
as explained above, we will need to include in D some additional elements from GS to
ensure that we can extend Gd\D to a consistent graph.

Proposition 1 (Maximal preserving derivations). Given a derivation d = SG ∗
=⇒ G

and a subset of elements D ⊆ G , there is a consistent graph Gd\D ⊆ G such that,

for every derivation d′ permutation equivalent to d, if d′ = SG ∗
=⇒ Gi

∗
=⇒ G and Gi

does not include any element from D then Gi ⊆ Gd\D. Moreover, there are derivations

9



d′ = SG ∗
=⇒ Gd\D

∗
=⇒ G which are maximally preserving and permutation equivalent

to d.

The idea of the proof is quite simple. The consistent submodel Gd\D is built by in-
cluding in d0 = SG ∗

=⇒Gd\D all transformations in d that are sequentially independent
with respect to the productions in d that need from elements in D. Then, d′ is built by
extending d0 with the remaining transformations in d.

4 Derivation Dependencies

To build incrementally consistent solutions we need information about the derivation
that generated the given integrated model, since we need to know what part of the
model must remain unchanged after update propagation. However, saving derivations
and working with them may be costly and cumbersome. In this section, we show that
just saving some dependence information associated to the given derivation is enough
for our purposes. The basic idea is to define some dependency relations between the
elements (nodes, edges and attributes) of the given integrated model 〈GS ↔ GT 〉 that
describe if an element e1 was needed for the creation of e2 in a given derivation d. The
first relation, called strict dependency and denoted e1 /d e2, holds if e1 was matched by
the left-hand side of the rule that created e2. For instance, in Example 2, C2 /d1 C3 and
T2 /d1 C3, since the application of rule Subclass2Table that created C3 in derivation d1
had to match its lefthand side to C2 and T2 (and also to their correspondence element).
The second relation, called interdependency and denoted e1 ./d e2, holds if e1 and e2
are created by the same rule. For instance, in Example 2, C2 ./d1 T2, since they are both
created by the same application of the Class2Table rule in d1. Obviously, C2 and T2 are
also interdependent with their correspondence node.

Definition 2 (Dependency relations). Given G and a derivation d : SG ∗
=⇒ G, we de-

fine the following relations on elements of G:

1. Strict dependency: /d is the smallest relation satisfying that if d includes the trans-
formation step depicted below:

L
m ��

� � // R
m′��

Gi−1
� � // Gi

then for every e in L and e′ in R\L, m(e)/d m′(e′).
2. Strict interdependency: ./d is the smallest relation satisfying that if d includes the

transformation step depicted above, then for every e,e′ in R\L, m′(e) ./d m′(e′).

The key result for our synchronization procedure is the following theorem that
shows that if in the given integrated model we delete the set of elements D that are
dependent on a given update, the resulting triple graph is Gd\D. Moreover, it also shows
that if we are interested in any submodel of Gd\D that is also generated by the given
derivation (or some permutation equivalent derivation), it is enough to remove from
Gd\D some additional elements together with all the elements that depend on them.

10



Theorem 1 (Dependency Relations and Incrementality). Let d = SG ∗
=⇒ G be a

derivation, D be a the subset of elements of G, and Closd(D) be the least set satisfying
that:

– D⊆Closd(D),
– If e′ ∈Closd(D) and e′ ≺d e or e′ ./d e then e ∈Closd(D),

then:

1. Gd\D = G\Closd(D).

2. Given a subset D0 of elements of Gd\D, there is a derivation d0 = SG ∗
=⇒ (G \

Closd(D))\Closd(D0)
∗

=⇒ G permutation equivalent to d.
3. Conversely, if H is a submodel of Gd\D such that there is a derivation d0 = SG ∗

=⇒
H ∗
=⇒G permutation equivalent to d, then there is a subset D0 of elements of Gd\D

such that H = (G\Closd(D))\Closd(D0).

The proof of this theorem is not difficult. The key issue is to show that the ele-
ments in Closd(D) or of Closd(D∪D0) are exactly the elements generated by the last
transformations in a maximally preserving derivation as constructed in Prop.1.

5 A Procedure for Incremental Model Synchronization

In this section we present our procedure for incremental synchronization and we show
its correctness. The input for this procedure is, not only the given integrated model and
source update, but also the dependency relations. Moreover, we assume that there is a
translation attribute set to true for every element in the model. This allows us to use
our techniques needed to ensure the incrementality of solutions. Then, the output is,
not only the resulting integrated model (and the resulting update), but also the updated
dependence relations, so that they can be used to deal with further updates. Notice that
handling explicitly the dependence relations and the translation attributes is not costly,
neither in space nor in time, since all this information is boolean.

According to Theorem 1, we could consider a quite simple incremental synchro-
nization procedure. For instance, if we know that we can build an incremental solution
from Gd\D, where D is the set of elements deleted by the given source update u, we
could proceed as follows. In a first step, the procedure would delete from GT and GC all
the elements depending on the elements deleted by u and would mark as non-created all
source elements added by u and all source elements depending on the elements deleted
by u (except the deleted elements themselves). Then we would apply forward trans-
lation rules to the resulting model until arriving to a consistent G′. The dependency
relations would be updated accordingly. Unfortunately, this procedure would not work
as we would like as the following example shows.

Let us consider again the deletion of the subclass relation between C3 and C2 in the
triple graph depicted on the left of Fig. 3. The result of the first step is depicted on the
left of Fig. 4, where the source elements marked as non-created are depicted in green.
The reason is that all the deleted target and correspondence elements depend on the

11



creation of C3 as a subclass of C2. Finally, the result after applying forward translation
rules is depicted on the right of Fig. 4. As we may see, the foo element related to
column c3 is now not present. Moreover, since c3 has been deleted and created again,
if it included some additional information (e.g. some data attributes), this information
may have been lost.

C1:C 

A1:A 

T1:T 

c1:Co 

C2:C 

A2:A 

T2:T 

c2:Co 

C3:C 

A3:A c’3:Co 

T3:T 

C1:C 

A1:A 

T1:T 

c1:Co 

C2:C 

A2:A 

T2:T 

c2:Co 

C3:C 

A3:A 

Fig. 4. Model Synchronization

To avoid these problems, we apply three ideas. The first one, quite obvious, is
that the elements in the target (and correspondence) graphs should not be deleted but
marked, in order not to lose information. Only at the end of the process we should delete
some of these elements. The second idea is that, when building the resulting model, we
should reuse the information included in the model, using a general form of forward
translation rules, that use the idea presented in [5]. For this purpose, the following no-
tion of forward transformation rule with reuse plays a main role, where RemAttr(G)
denotes the graph resulting from removing from G all its translation attributes:

Definition 3. Given a rule p : L→ R, we say that p′ : L′→ R′ is a forward transforma-
tion rule with reuse over p if:

1. RemAttr(R′) = R, L⊆ RemAttr(L′)⊆ R.
2. RS ⊆ RemAttr(L′S).
3. The translation attributes in L′ are true for all the elements in L, otherwise they

are false.
4. All translation attributes in R′ are true.

The intuition of these new rules is based on the idea that the given graph G includes
some elements with translation attribute true, which are elements considered really

12



in the graph, and some other elements with false attribute, meaning that they have
not yet been created, i.e. they are not real elements of G. So, in a rule with reuse, L′
includes all elements in L with attribute true since, to apply the rule, all these elements
must really be in G. But L′ may also include some elements from R \ L, with false
attribute, that are reused. Then, after applying p′, all the reused elements have now a
true attribute, since they are now real elements of the graph, and all the elements in
R \L which are not in L′ (i.e. they have not been reused) are added to the graph with
true attribute. Condition 2. states that all source elements in R must be in L′, the reason
is that these are forward rules, i.e., we assume that the rules should only add target and
correspondence elements.

 c:C 

a:A 

 t:T 

 co:Co 

++ 

Attribute2Column with reuse Class2Table with reuse 

++ 
++ ++ t:T c:C 

Fig. 5. Examples of rules with reuse

We may notice that, for each original rule, we may have quite a big amount of
associated rules with reuse. This means that creating a priori all of them can make the
model transformation and synchronization processes quite costly. Instead, we believe
that, for implementation, the right approach is to work directly with the original triple
graph rules, L→ R, as proposed in [5]. The idea would be that after finding a match
between L and the given graph G, we check how much of R we can reuse, and we
proceed accordingly. However, we must warn that, in some situations, if we reuse as
much as possible, some of this reuse could be inadequate. For instance, suppose that in
our example the given triple graph includes also a class C0 and a related table T0 and
suppose also that the given update not only deletes the subclass relation between C3 and
C2, but it also includes the deletion of the class C0. Then, with maximal reuse, instead
of creating a new table T3 and associating it to C3, we would reuse T0, associating it
to C3. This is probably wrong according to what the user expects, even if the result is
technically correct. Anyhow, we believe that, in the worst case, it is better to produce
an inadequate result that the user can easily amend, that producing some result, which
is also inadequate, but where some information has been lost and can be difficult to
recover. In any case, we also believe that, in general, the decision on how much to reuse
should not be automatic, but it should be taken by the user.

The third idea is related to rules like FooCreation on figure 2, that includes no source
elements. The model transformation process, to construct the synchronization, is driven
by the source elements of the given graph. This means that, while there are source

13



elements with false translation attributes, we look for a rule that would transform
some of these false source attributes into true. So, a rule like FooCreation will never
be applied in this process. The problem is to know when to apply this kind of rules.
The solution is given by our dependence relations. If there is a target element e with
false translation attribute (i.e. the element was in the original model, but the previous
process has not created it); if all elements e′ such that e′ / e have true attribute (i.e. the
elements that were used to create e have already been created); and if all elements e′′,
such that e ./ e′′, have false attribute (i.e. the other elements created together with e
have not been created either); then we can turn the translation attributes of e and all the
elements e′′ to true, because this is like applying the same rule that created e. We call
this operation the recreation of e and all its interdependent elements.

C1:C 

A1:A 

T1:T 

c1:Co 

C2:C 

A2:A 

T2:T 

c2:Co 

C3:C 

A3:A c3:Co 

foo3:Foo 

C1:C 

A1:A 

T1:T 

c1:Co 

C2:C 

A2:A 

T2:T 

c2:Co 

C3:C 

A3:A c3:Co 

T3:T 

foo3:Foo 

C1:C 

A1:A 

T1:T 

c1:Co 

C2:C 

A2:A 

T2:T 

c2:Co 

C3:C 

A3:A c3:Co 

T3:T 

foo3:Foo 

Fig. 6. Synchronization: Some intermediate steps and final model

Following the above ideas, our procedure for incremental synchronization has five
steps. As said above, we assume given the original integrated model, G = 〈GS↔ GT 〉,
including translation attributes set to true for all its elements, an update u : GS⇒ G′S,
and the dependency relations associated to the derivation that created 〈GS↔ GT 〉.

1. Updating and Marking All elements deleted by u are deleted from GS. All ele-
ments added by u are added to GS with false translation attribute. All elements in
G that are dependent on the elements deleted are marked as false. Finally, any cor-
respondence element whose associated source element has been deleted, is deleted.
As a consequence of Theorem 1, all the elements with true translation attribute
form the submodel Gd\D, where D is the set of elements deleted by u.

2. Selection of a submodel of Gd\D. If needed, the translation attributes of some other
elements of Gd\D and the elements depending on them are set to false. This step
is needed in the case where we cannot build an incrementally consistent derivation

14



out of Gd\D. For instance, in the case where G is the triple graph on the right of
Fig. 3 and u consists of the addition of a subclass relation between C3 and C2, we
would need to set to false the attributes of C3 and all the elements depending on
it. The decision of which translation attributes have to be set to false may be either
taken by the user or by some search procedure based on some heuristics or just on
backtracking.

3. Forward Model Transformation While there are elements in GS with false
translation attribute, select a rule that can match at least one of these elements.
Select the amount of the rule to be reused and apply it. 7

4. Recreation of Target Elements For each element in GT with false translation
attribute, try to recreate it together with all its interdependent elements.

5. Deletion Any target or correspondence element with false translation attribute
must be deleted.

For instance, Fig. 6 depicts the results of some steps of our procedure if G is the
triple graph on the left of Fig. 3 and u consists of the deletion of the subclass relation
between C3 and C2. In particular, on the left of Fig. 6 we can see the resulting triple
graph after step 1, where the green color means that those elements have a false trans-
lation attribute. In this case, step 2 causes no effect, since it is not necessary to mark to
false any other element. In the middle figure we can see the resulting graph after step
3, where some existing elements have been reused by applying the rules Class2Table
and AttributeColumn with reuse in Fig. 5. The process is almost finished, except that
the Foo element has not yet been created (this is done in step 4) and we still have an
edge between c3 and T2, and a correspondence between C3 and T2, both with false
translation attribute. That edge will be deleted in step 5. Finally, on the right of Fig. 6,
we have the final synchronized model after applying steps 4 and 5.

As a consequence of how our procedure works and our previous results, our pro-
cedure is incremental and incrementally correct, in the sense that the solution obtained
is incrementally consistent with respect to the submodel chosen in step 2. Moreover,
the procedure is complete, in the sense that if there is an incrementally consistent solu-
tion with respect to some submodel, the procedure will find it. Finally, the cost of the
procedure is independent of the size of the submodel chosen in step 2.

Theorem 2. The procedure is incremental, incrementally correct and complete.

6 Related Work and Conclusion

As said in the introduction, model synchronization8 is a problem studied in different ar-
eas in Computer Science. In particular, in databases (e.g., [1]), programming languages
(e.g., [9]) and in model-driven software development (MDD). In the former two areas
the kind of models considered are very specific, however in the latter area the kind of

7 In general, some choices may not lead to a result where all elements in the source part have
true translation attribute. In that case, this step may need backtracking.

8 In some cases model synchronization is called incremental model transformation, or just model
transformation. Obviously, this is quite confusing.

15



models considered may be very different. For this reason, in MDD we need general
approaches, as TGGs [11, 12], that can be used for dealing with most kinds of models.

There are several approaches based on TGGs that propose a solution to the model
synchronization problem (that we know [4, 7, 5, 10] and some variations on them) but
all of them are, in our opinion, not completely satisfactory. In particular, even if the con-
struction of the solution does not start from scratch but from the given integrated model
G, the approach in [7] has to analyze the complete graph G to know what parts must be
modified, so its cost depends on the size of the given model. In addition, in [7] not all
elements of the original graph that could be reused are indeed reused. In particular, in
our example, column c3 would have been deleted and created again. This means that, if
that column would have included some additional information, this information would
have been lost. Moreover, the foo element associated to c3 would not be present in the
final result. On the other hand, the only restriction considered in [7] is that the given
TGG should be deterministic, to ensure that their procedure is deterministic.

The approach in [4] does not need to analyze the complete graph G to check which
parts must be modified, so its cost only depends on the size of the modification. How-
ever, their approach only works for the case when source and target models are bijective,
which excludes the case where source models are views of target models (or vice versa).
Moreover, rules like FooCreation, with empty source graph, are forbidden. In addition,
this approach shares with [7] the information loss problem. Finally, that approach has
not been fully formalized.

The approach in [5] proposes a technique to avoid the loss of information in [4]
that is essentially similar to our forward rules with reuse. Unfortunately, even if it is
based on [4], it needs to analyze the complete graph G to check which parts must be
modified, so its cost depends on the size of G. Moreover, the approach imposes the
same restrictions as [4] and lacks formality.

Finally, in [10], like us, the authors use precedence relations to avoid having to
analyze the complete graph G to find which parts must be modified. However, their
relation is coarser than ours. The reason is that our relations are directly based on a
given derivation while in [10], their relation is based on the dependences established by
the rules of the TGG. In particular, this means that two given elements of a model may
be independent, but their relation may say that one depends on the other. This has some
important consequences. In particular, their synchronization procedure only works if the
given triple graph is forward precedence preserving and if, when adding new elements,
the resulting precedence graph includes no cycles. In addition, to ensure correctness,
the approach also requires that the given TGG is source-local complete. On the other
hand, the procedure needs to use a data structure that encodes how the given graph G
has been derived with the given TGG. No details are given about this structure, but we
suppose that it is more complex than our dependency relations. Finally, this approach
also shares with [7] the information loss problem.

To conclude, in this paper we have presented a new approach for incremental model
synchronization based on TGGs that has been shown to be incremental, correct and
complete. Moreover, our approach is general, in the sense that we do not restrict the
class of TGGs considered. As pointed out in the introduction, we do not assume any
restriction on the kind of grammars or graphs, as other approaches does. On the con-

16



trary, we have focussed on the study of when and how we can proceed incrementally in
the synchronization process in the most general case, rather than on finding out specific
conditions and limitations on graphs and grammars that could make some techniques
more efficient. As a consequence, it is difficult to provide an accurate evaluation of its
performance: for some TGGs our procedure may exhibit an exponential (on the size
of the updated part) behavior. But for the kind of more restricted TGGs, as the ones
considered in other approaches, the behavior could be close to linear. Anyhow, what
obviously remains to be done is to implement the approach and evaluate it in practice.

Acknowledgements The authors would like to thank the reviewers of this paper,
whose comments have contributed to improve it.

References

1. Dayal, U., Bernstein, P.A.: On the Correct Translation of Update Operations on Relational
Views. ACM Trans. Database Syst. 7(3), 381–416 (1982)

2. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transfor-
mation. EATCS Monographs of Theoretical Comp. Sc., Springer (2006)

3. Ehrig, H., Ehrig, K., Hermann, F.: From model transformation to model integration based on
the algebraic approach to triple graph grammars. ECEASST 10 (2008)

4. Giese, H., Wagner, R.: From model transformation to incremental bidirectional model syn-
chronization. Software and System Modeling 8(1), 21–43 (2009)

5. Greenyer, J., Pook, S., Rieke, J.: Preventing information loss in incremental model synchro-
nization by reusing elements. In: ECMFA 2011. Lecture Notes in Computer Science, vol.
6698, pp. 144–159. Springer (2011)

6. Hermann, F., Ehrig, H., Golas, U., Orejas, F.: Formal analysis of model transformations
based on triple graph grammars. Software and System Modeling To appear (2012)

7. Hermann, F., Ehrig, H., Orejas, F., Czarnecki, K., Diskin, Z., Xiong, Y.: Correctness of Model
Synchronization Based on Triple Graph Grammars. In: MODELS 2011. Lecture Notes in
Computer Science, vol. 6981, pp. 668–682. Springer (2011)

8. Hermann, F., Ehrig, H., Orejas, F., Golas, U.: Formal analysis of functional behaviour for
model transformations based on triple graph grammars. In: ICGT 2010. Lecture Notes in
Computer Science, vol. 6372, pp. 155–170. Springer (2010)

9. Hofmann, M., Pierce, B.C., Wagner, D.: Symmetric lenses. In: POPL 2011. pp. 371–384.
ACM (2011)

10. Lauder, M., Anjorin, A., Varró, G., Schürr, A.: Efficient model synchronization with prece-
dence triple graph grammars. In: ICGT 2012. Lecture Notes in Computer Science, vol. 7562,
pp. 401–415. Springer (2012)

11. Schürr, A.: Specification of graph translators with triple graph grammars. In: WG ’94. Lec-
ture Notes in Computer Science, vol. 903, pp. 151–163. Springer (1994)

12. Schürr, A., Klar, F.: 15 years of triple graph grammars. In: ICGT 2008. pp. 411–425 (2008)
13. Stevens, P.: Towards an Algebraic Theory of Bidirectional Transformations. In: ICGT’08.

Lecture Notes in Computer Science, vol. 5214, pp. 1–17. Springer (2008)
14. Terwilliger, J.F., Cleve, A., Curino, C.: How Clean Is Your Sandbox? - Towards a Unified

Theoretical Framework for Incremental Bidirectional Transformations. In: ICMT 2012. Lec-
ture Notes in Computer Science, vol. 7307, pp. 1–23. Springer (2012)

17


