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Abstract. The diagram-based method to prove correctness of program
transformations includes the computation of (critical) overlappings be-
tween the analyzed program transformation and the (standard) reduction
rules which result in so-called forking diagrams. Such diagrams can be
seen as rewrite rules on reduction sequences which abstract away the ex-
pressions and allow additional expressive power, like transitive closures of
reductions. In this paper we clarify the meaning of forking diagrams using
interpretations as infinite term rewriting systems. We then show that the
termination problem of forking diagrams as rewrite rules can be encoded
into the termination problem for conditional integer term rewriting sys-
tems, which can be solved by automated termination provers. Since the
forking diagrams can be computed automatically, the results of this pa-
per are a big step towards a fully automatic prover for the correctness
of program transformations.

1 Introduction

This work is motivated from proving correctness of program transformations in
program calculi that model core languages of functional programming languages.
For instance, Haskell [13] is modeled by the calculus LR [21], Concurrent Haskell
[14] is modeled by the calculus CHF [19], and Alice ML1 is modeled by the
calculus λ(fut) [12,11]. A program transformation transforms one program into
another one. It is correct if the semantics of the program is unchanged, i.e. the
programs before and after the transformation are semantically equivalent. Cor-
rectness of program transformations plays an important role in several fields of
computer science: Optimizations applied while compiling programs are program
transformations and their correctness thus ensures correct compilation. For soft-
ware verification programs are transformed or simplified to show properties of
programs, of course these transformations must be correct. In code refactor-
ing programs are redesigned, but the semantics of the programs must not be
changed, i.e. the transformations must be correct.

As semantics (or equality) of programs we choose contextual equivalence
[10,15], since it is a natural notion of program equivalence which can directly
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be defined on top of the operational semantics. Two programs are contextually
equivalent if their termination behavior is indistinguishable if they are used as
subprograms in any surrounding larger program (which are called the contexts,
denoted by C). For deterministic and expressive programming languages it is
sufficient to observe whether the program’s execution terminates successfully,
since there are enough contexts to discriminate obviously different programs.

Proving two expressions to be contextually equivalent starting from the def-
inition is inconvenient, since all program contexts must be considered. Several
methods and theoretical tools have been developed to ease the proofs, however,
depending on properties of the program calculus. In this paper we concentrate
on the so-called diagram-based method to prove correctness of program transfor-
mations, which was successfully used for several calculi, e.g., [7,9,11,21,18,19].
Diagram uses that are similar to ours also appear in [1]. Related work on dia-
gram methods is [22], who aim at meaning preservation and make a distinction
between standard reduction and transformation. Also [8] propose the use of di-
agrams to prove meaning preservation during compilation.

The diagram method, as we use it, is syntactic in nature, where the steps

can roughly be described as follows: Let
T
=⇒ be a program transformation, i.e. a

binary relation on expressions. First a set of overlappings between the standard

reduction of the calculus and the transformation
T
=⇒ is computed, resulting in a

so-called (finite) complete set of forking diagrams for
T
=⇒. The second task is to

show that for all expressions e1, e2, and contexts C such that C[e1]
T
=⇒ C[e2]: The

program C[e1] converges, if and only if, the program C[e2] converges. Starting
with a successful reduction sequence (evaluation) for C[e1] (or C[e2], resp.), we
construct a successful reduction sequence for C[e2] (C[e1], resp.) by an induction,
where the forking diagrams are used like a (non-deterministic) rewriting system
and the normal form is the desired evaluation.

Our current research goal is to automate the manual proofs in the diagram
method. We already proposed an extended unification algorithms which performs
the computation of the forking diagrams for the call-by-need lambda calculus
and for the above mentioned calculus LR [16,17]. We will show that the missing
part of the correctness proof, i.e. using the diagrams and induction, can be
performed by showing (innermost) termination of a term rewriting system that
can be constructed from the forking diagrams. The termination proof can then be
automated using termination provers like AProVE [5], TTT2 [6], and CiME [2].

In this paper we rigorously analyze the use of forking diagrams as rewriting
problems on reduction sequences. The goal is twofold: to encode the induction
proofs as a termination proof of TRSs and also to clarify the intermediate steps
thereby showing in a general way that the encoding method is sound. The fork-
ing diagrams are denoted by an expressive language, also permitting transitive
closure. They only speak about the arrows (perhaps labeled) of a reduction, and
completely abstract away the expressions. To show that the encoding is correct,
we provide a link to the concrete reductions on expressions, which requires two
levels of abstractions. Finally, we will show that the termination problem can
be expressed (or encoded) by extended term rewriting systems, which are con-
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ditional integer term rewrite systems (ITRS) (see e.g., [4]). Since AProvE can
only show innermost termination of ITRS, our encodings are carefully designed
to require innermost termination only. We applied these encodings to the dia-
grams of the calculus LR and the manually computed forking diagrams in [21]
and used AProVE to show termination (and thus correctness) of several program
transformations automatically.

Structure of the Paper. In Sect. 2 we introduce the notions of a program
calculus, contextual equivalence, and correct program transformations. In Sect. 3
we explain the diagram-based method, and introduce several abstractions for
those diagrams and the corresponding rewriting systems. Our main result is
obtained in Theorem 3.27 showing that correctness of program transformations
can be encoded as a termination problem. In Sect. 4 we apply our techniques
to transformations of the calculus LR and show the step-wise encoding of the
diagrams of two transformations into an integer term rewriting system for which
AProVE can automatically prove termination. Finally, we conclude in Sect. 5.

2 Calculi and Program Transformations

In this section we introduce the notion of a program calculus, contextual equiv-
alence, and correctness of program transformations.

Definition 2.1. A program calculus is a tuple (E , C, sr=⇒,A,L) where E is the
set of expressions, C is the set of contexts, where C ∈ C is a function from E
into E,

sr
=⇒ ⊆ E × E × L is a reduction relation, A ⊆ E is a set of answers,

and L is a finite set of labels. We assume that there is a context [·] ∈ C, such
that [e] = e for all e ∈ C, and that C is a monoid with [·] as unit, such that

(C1C2)[e] = C1[C2[e]]. We write
sr,l
==⇒ ⊆ sr

=⇒ for reductions with label l ∈ L.

The contexts C consist of all expressions of E where one subexpression is re-
placed by the context hole. The reduction

sr
=⇒ is a small step reduction as the

standard reduction of the calculus, where the labels distinguish different kinds
of reductions. We do not require that answers a ∈ A are

sr
=⇒-irreducible. The

converse relation is always written by reversing the arrows.

Example 2.2. The program calculus LR = (E , C, sr=⇒,A,L) [21] is an extended
call-by-need lambda calculus where expressions E comprise abstractions, applica-
tions, data-constructors, case-expressions, letrec for recursive shared bindings,
and seq for strict evaluation. C is the set of contexts. The standard reduction
sr
=⇒ of LR is called normal order reduction denoted by

n
=⇒ and the answers are

so-called weak head normal forms. The set of labels L are the names of the
standard reductions, e.g. seq, lbeta, and llet.

The evaluation of a program expression e ∈ E is a sequence of standard

reduction steps to some answer a ∈ A, i.e. e
sr,∗
==⇒ a, where

sr,∗
==⇒ denotes the

reflexive-transitive closure of
sr
=⇒. If such an evaluation exists, then we write e⇓

and say e converges, otherwise we write e⇑ and say e diverges. The semantics of
expressions is given by contextual equivalence:
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Definition 2.3. For a program calculus (E , C, sr=⇒,A,L) contextual preorder ≤c
and contextual equivalence ∼c on expressions e, e′ ∈ E are defined as follows:

e ≤c e′ ⇐⇒ ∀C ∈ C : C[e]⇓ =⇒ C[e′]⇓ and e ∼c e′ ⇐⇒ e ≤c e′ ∧ e′ ≤c e.

Definition 2.4. A program transformation
T
=⇒ ⊆ (E × E) is a binary relation

on expressions, and
T
=⇒ is called correct iff

T
=⇒ ⊆ ∼c

Definition 2.5. A relation R ⊆ E × E is called convergence-preserving iff
(e, e′) ∈ R ∧ e⇓ =⇒ e′⇓. If R and its inverse relation R− are convergence-
preserving then we say R is convergence-equivalent.

Often, the correctness proof for
T
=⇒ is done by applying the diagram method

to a modified transformation
T ′
=⇒, and then using theorems of the calculus.

Definition 2.6. A program transformation
T ′
=⇒ is CP-sufficient for a program

transformation
T
=⇒ iff convergence preservation of

T ′
=⇒ implies

T
=⇒ ⊆ ≤c.

For a transformation
T
=⇒, let

C(T )
===⇒ := {(C[e], C[e′]) | e T

=⇒ e′, C ∈ C}. Then

the transformation
C(T )
===⇒ is CP-sufficient for

T
=⇒. However, this still requires to

inspect all contexts C ∈ C for proving correctness of transformation
T
=⇒. In many

calculi a so-called context lemma holds (see e.g. [3,20]) which shows that the

relation
R(T )
===⇒ := {(R[e], R[e′]) | e T

=⇒ e′, R ∈ R} is CP-sufficient for
T
=⇒, where

R ⊂ C are so-called reduction contexts. The following corollary describes the
method for proving correctness. It follows directly from Definitions 2.3 and 2.6.

Corollary 2.7. If
T ′
=⇒ is CP-sufficient for

T
=⇒,

T ′′⇐== is CP-sufficient for
T⇐=, and

T ′
=⇒ and

T ′′⇐== are both convergence-preserving, then
T
=⇒ is correct.

Proving convergence preservation of a transformation
T
=⇒ requires as a base

case to inspect what happens if an answer a ∈ A is transformed by
T
=⇒.

Definition 2.8. A program transformation
T
=⇒ is called answer-preserving

(weakly answer-preserving), if a ∈ A and a
T
=⇒ e imply e ∈ A (e⇓, respectively).

3 Proving Correctness of Program Transformations

Throughout this section we assume that a program calculus (E , C, sr=⇒,A,L) is
given. In this section we explain our diagram-based method to prove convergence

preservation of a transformation
T
=⇒. For showing that e0⇓ is implied by e1

T
=⇒ e0

and e1⇓, we start with a sequence of reductions a
sr,ln⇐=== en

sr,ln−1⇐==== . . .
sr,l1⇐==

e1
T
=⇒ e0 where a ∈ A and rewrite this sequence resulting in a sequence a′

sr,l′m⇐===

e′m
sr,l′m−1⇐===== . . .

sr,l′0⇐== e0 (with a′ ∈ A) validating that e0⇓ holds. If this is possible

for all e1
T
=⇒ e0 then convergence preservation of

T
=⇒ is proven.
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Definition 3.1. Let { T1=⇒, . . . , Tk=⇒} be a set of program transformations. Then a

concrete reduction sequence (RS) is a string of elements in
sr⇐= ∪

⋃
1≤i≤k(

Ti=⇒
×{i}) ∪ {(a, a, id) | a ∈ A} with the restrictions that (a, a, id) can only be the
leftmost element, and that two subsequent elements (e1, e2, d)(e3, e4, d

′) are only

permitted if e2 = e3. We write e1
sr,l⇐== e2 for (e1, e2, l), e1

Ti=⇒ e2 for (e1, e2, i),
and a id a for (a, a, id). An RS is a converging concrete reduction sequence (cRS)
if its leftmost reduction is of the form a id a. Let cRS be the set of all cRSs.

We write RSs like reduction sequences, e.g. e1
sr,l⇐== e2 e2

T
=⇒ e3 is written as

e1
sr,l⇐== e2

T
=⇒ e3. A rewrite rule on RSs is a rule S1  S2 where S1, S2 are RSs.

Definition 3.2. Let D be a set of rewrite rules on RSs. Then the pair (cRS,
D−⇀)

is a string rewrite system, called a concrete rewrite system on RSs (CRSRS).

3.1 Abstract Reduction Sequences

For reasoning we use abstract reduction sequences (ARS), which abstract away
concrete expressions, and where abstract symbols represent the reductions and
transformations, and a special constant A represents answers. To distinguish
concrete and abstract reductions we use solid lines on the abstract level (i.e.

sr−→
instead of

sr
=⇒), in contrast to doubly lined-arrows on the concrete level.

We also provide an interpretation of ARSs which maps them into concrete
sequences. Note that there may be ARSs without a corresponding RS. We define
two variants of abstract reduction sequences, those that must start with an
answer and a more general variant which may start with any expression.

Definition 3.3. An abstract reduction sequence (ARS) is a finite sequence
In . . . I1, and a converging ARS (cARS) is a finite sequence AIn . . . I1 where
A is a constant representing any answer, n ≥ 0. The symbol Ij may either be

the symbol
sr,l←−− with l ∈ L representing a (labeled) standard reduction, the sym-

bol
sr,x←−− where x is a variable,

sr,τ←−− with τ 6∈ L where τ represents a union of

labels, or the symbol
Ti−→ representing transformation Ti. Any symbol can also be

extended by + representing the transitive closure of the corresponding reduction
or transformation. Symbols that have sr as a part are called sr-symbols, and
other symbols are called transformation-symbols.

An ARS or cARS that does not contain variables is called ground, and a
ground ARS or cARS is called simple if there is no occurrence of +. An ARS

or cARS that does not contain
sr,τ←−−-symbols is called τ -free.

Definition 3.4. Let S be a simple ARS (or S be a simple cARS, resp.) and
M ⊆ L be a set of labels. The interpretation w.r.t. M is the set IM (S) of RSs
(cRSs, resp.) defined recursively by the following cases, where S1, S2 are non-
empty sequences, ε denotes the empty sequence, and e1 ./ e2 means a RS that
starts with expression e1 and ends with expression e2.
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IM (ε) := ∅ IM (A) := {a id a | a ∈ A}
IM (

sr,l←−−) := {e1
sr,l⇐== e2 | e2

sr,l
==⇒ e1} IM (

Ti−→) := {e1
Ti=⇒ e2 | e1

Ti=⇒ e2}
IM (

sr,τ←−−) := {e1
sr,l⇐== e2 | e2

sr,l
==⇒ e1, l ∈M}

IM (S1S2) := {e1 ./ e2 ./′ e3 | e1 ./ e2 ∈ IM (S1), e2 ./
′ e3 ∈ IM (S2)}

3.2 Rewriting by Forking and Answer Diagrams

ARSs are used in the so-called forking diagrams [7,21], which represent the over-
lappings of transformation steps with standard reductions on the abstract level.

General forking diagrams are a finite representation of all overlappings be-
tween a transformation step and a standard reduction step, and are suitable
for automated encoding. They may contain + for transitive closure and label-
variables. For clarifying their meaning we introduce simple forking diagrams
(without label-variables and transitive closures, but with τ).

Definition 3.5. A general forking diagram for a transformation
T
=⇒ is a rewrite

rule SL  SR where SL, SR are τ -free ARSs and:

– SL is of the form In . . . I1
T−→ with n ≥ 0 and all Ii are sr-symbols.

– SR is of the form Jm . . . J1I
′
m′ . . . I

′
1 with m,m′ ≥ 0 where all Ji are

transformation-symbols and I ′i are sr-symbols.

A simple forking diagram SL  SR is defined like a forking diagram where
SL and SR are simple ARSs (which are not necessarily τ -free).

sr,ln←−−− . . . sr,l1←−−− T−→  
T1−→ . . .

Tm′−−→ sr,l′m←−−− . . . sr,l′1←−−− is a
forking diagram as shown to the right, where the left
hand side of the rule (the solid arrows) form a fork and
the right hand side (the dashed arrows) join the fork.

·

...

·

·

...

·. . .

sr, l1
��

sr, ln ��

T //

sr, l′1
��
�
�

sr, l′m���
�

T1 //___ Tm′ //___

Example 3.6. The transformation
llet
==⇒ of the calculus LR (Example 2.2) is de-

fined by two rules, where Env is an environment of the form y1 = e1, . . . , yn = en:

letrec Env1 in (letrec Env2 in e)
llet
==⇒ letrec Env1,Env2 in e

letrecEnv1, y = (letrec Env2 in e′) in e
llet
==⇒ letrecEnv1,Env2, y = e′ in e

A (complete) set of general forking diagrams for the transformation
iS,llet
====⇒

(which is CP-sufficient for the transformation
llet
==⇒) consists of five diagrams:

1 · iS,llet //

n,x

��

·
n,x

���
�
�

· iS,llet //___ ·

2 · iS,llet //

n,x

��

·

n,x
���

�
�

�

·

3 · iS,llet //

n,lll,+

��

·

n,lll,+���
�

�
�

·

4 · iS,llet //

n,lll,+

��

·
n,lll,+

���
�
�

· iS,llet //___ ·

5 · iS,llet //
n,x ��

·

n,x
���

�
�

�
·

n,llet ��
·

Definition 3.7. Let D be a set of rewrite rules of the form SL  SR where
SL, SR are simple ARSs. Let cARS(D) be the set of simple cARSs that can be built

by the symbols occurring in D. Then the string rewriting system (cARS(D),
D−⇀)

is called a simple rewrite system on abstract reduction sequences (SRSARS).
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On the concrete level, the interpretation of a simple forking diagram is a set
of rewrite rules on (concrete) reduction sequences:

Definition 3.8. The interpretation IM (SL  SR) of a simple forking diagram
SL  SR w.r.t. a set of labels M ⊆ L is defined as

IM (SL  SR) := {e1 ./ e2  e1 ./
′ e2 | e1 ./ e2 ∈ IM (SL), e1 ./

′ e2 ∈ IM (SR)}

We will also interpret general forking diagrams as sets of simple forking
diagrams (and thus also as rewrite rules on RSs using IM ). We first introduce the
notion of a variable interpretation which assigns concrete labels or τ to symbols
sr,x←−− and the notion of an expansion which unfolds the symbols containing a +

for the transitive closure of a reduction or transformation.

Definition 3.9. A simple expansion Expk (where k ≥ 1) expands symbols as

follows: Expk(
Ti,+−−−→) =

Ti−→ . . .
Ti−→︸ ︷︷ ︸

k times

and Expk(
sr,l,+←−−−−) =

sr,l←−− . . . sr,l←−−︸ ︷︷ ︸
k times

where l ∈

L ∪ {τ}, and Expk(I) = I otherwise. For a ARS (or cARS) S = In . . . I1 we
define Expπ(S) := Expπ(1)(In) . . .Expπ(n)(I1) where π : IN → IN, and Expπ
denotes the expansion for π. For a set of labels M ⊆ L a variable interpretation

V¬M maps any
sr,x←−−-symbol to a symbol

sr,l←−− where l = V¬M (x) ∈ (L \M)∪{τ}.

General forking diagrams are interpreted as a set of simple forking diagrams:

Definition 3.10. For a general forking diagram SL  SR and M ⊆ L the
translation JM (SL  SR) is a set of simple forking diagrams JM (SL  SR) :={

Expπ(V¬M (SL)) Expπ′(V¬M (SR))
V¬M is a variable interpretation for
M , Expπ and Expπ′ are expansions

}
We also use JM for sets of forking diagrams, where the resulting sets are joined.

Example 3.11. Let D be the third diagram from Example 3.6. For L =
{lll , llet , seq , . . .} and M = L \ {lll , llet} the translation JM (D) is

{ n,lll←−−− iS,llet−−−−→  n,lll←−−−, n,lll←−−− n,lll←−−− iS,llet−−−−→  n,lll←−−−, n,lll←−−− iS,llet−−−−→  n,lll←−−− n,lll←−−−, . . .}.
If D is the second diagram from Example 3.6 then JM (D) = { n,lll←−−− iS,llet−−−−→  
n,lll←−−−, n,llet←−−− iS,llet−−−−→ n,llet←−−−, n,τ←−− iS,llet−−−−→ n,τ←−−}.

With DF (
T
=⇒) we denote a set of forking diagrams for a transformation

T
=⇒.

Definition 3.12. A set of forking diagrams DF (
T
=⇒) for transformation

T
=⇒ is

called complete for a set of labels M ⊆ L, if any concrete reduction sequence of

the form a
sr,ln⇐=== en

sr,ln−1⇐==== . . .
sr,l1⇐== e1

T
=⇒ e0 where a ∈ A, n > 0, and li ∈ L is

rewritable by the CRSRS (cRS,
IM (JM (DF(

T
=⇒)))−−−−−−−−−−−−⇀).

In ARSs the label τ is used to represent standard reductions which are not

explicitly mentioned in the diagrams, i.e.
sr,τ←−− is interpreted as

⋃m
i=1

sr,li⇐== where
l1, . . . , lm are the labels of L that do not occur in the general forking diagram.
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Now that forking diagrams and their semantics are defined there are two

further tasks: (i) We have also to deal with reductions a
T
=⇒ . . ., and (ii) diagrams

may use several transformations
Ti=⇒ in SR. Thus for (i) we introduce answer

diagrams, and for (ii) we will join forking diagrams of a set of transformations.

Definition 3.13. An answer diagram for transformation
T
=⇒ is a rewrite rule

of the form A
T−→  S where S is a τ -free cARS. A simple answer diagram is

defined analogously where τ -labels in S are allowed, but S is a simple cARS.

The interpretation of a simple answer diagram w.r.t. a set M ⊆ L is

IM (A
T−→ S) := {a1 ./ e a2 ./

′ e | a1 ./ e ∈ IM (A
T−→), a2 ./

′ e ∈ IM (S)}
We extend IM to sets of simple answer diagrams joining the resulting sets.

For an answer diagram the set of simple answer diagrams w.r.t. a set of labels
M ⊆ L is computed by the function JM which is defined as follows:

JM (A
T−→ S) =

{
A

T−→ S′
S′ ∈ Expπ(V¬M (S)), Expπ is an expansion,
V¬M is a variable interpretation for M

}
We extend JM to sets of answer diagrams such that the resulting sets are joined.

A set of answer diagrams DA(
T
=⇒) for transformation

T
=⇒ is complete w.r.t.

a set of labels M iff the set IM (JM (DA(
T
=⇒))) contains a rewrite rule with left

hand side matching any possible cRS a id a
T
=⇒ e for a ∈ A and e ∈ E.

Note that for an answer-preserving transformation
T
=⇒ a complete set of an-

swer diagrams is {A T−→  A} and for a weakly answer-preserving transforma-
tion a complete set of answer diagrams can be constructed such that all answer

diagrams are of the form A
T−→ AIm . . . I1 where every Ij is an sr-symbol.

Definition 3.14. Let DA(
T1=⇒), . . . ,DA(

Tn=⇒) be sets of answer diagrams and

DF (
T1=⇒), . . . ,DF (

Tn=⇒) be sets of general forking diagrams. Let M be all labels
of L that do not occur in any of the diagrams. The union D of these sets of di-

agrams is called complete for transformations
T1=⇒, . . . , Tn=⇒ iff every set DA(

Ti=⇒)

is complete for
Ti=⇒ w.r.t. M , every set DF (

Ti=⇒) is complete for
Ti=⇒ w.r.t. M , and

the only transformations occurring in the diagrams are
T1−→, . . . , Tn−−→.

We write I(D) instead of IM (D) (I(J (D)) instead of IM (JM (D)), resp.) for a
complete set D, since the set M is fixed by the completeness definition.

3.3 Proving Convergence Preservation

Definition 3.15. A string rewriting system (O,−⇀) is leftmost terminating, iff
it is terminating w.r.t. the leftmost rewriting relation −⇀l:
S1In . . . I1S2 −⇀l S1SRS2 iff In . . . I1 −⇀ SR and S1In . . . I2 is −⇀-irreducible.
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Proposition 3.16. Let D =
⋃n
i=1 DA(

Ti=⇒) ∪
⋃n
i=1 DF (

Ti=⇒) be complete for
T1=⇒, . . . , Tn=⇒. If the SRSARS (cARS(J (D)),

J (D)−−−⇀) is (leftmost) terminating then

the CRSRS (cRS,
I(J (D))−−−−−⇀) is (leftmost) terminating.

Proof. For termination, the claim holds, since a nonterminating rewriting se-

quence for the CRSRS (cRS,
I(J (D))−−−−−⇀) can easily be transfered into a nontermi-

nating rewriting sequence of the SRSARS (cARS(J (D)),
J (D)−−−⇀). For leftmost

termination the claim also holds, since completeness of D implies that always
the leftmost transformation step is rewritten by the CRSRS, and there is a cor-
responding rewrite rule in J (D) which must be leftmost, since all left hand sides

of rules in J (D) are of the form
sr,ln←−−− . . . sr,l1←−−− Tj−→.

Proposition 3.17. Let D =
⋃n
i=1 DA(

Ti=⇒) ∪
⋃n
i=1 DF (

Ti=⇒) be complete for
T1=⇒, . . . , Tn=⇒. Let the CRSRS (cRS,

I(J (D))−−−−−⇀) be terminating (leftmost terminat-

ing, resp.). Then the transformations
T1=⇒, . . . , Tn=⇒ are convergence-preserving.

Proof. Let e1
Ti=⇒ e0 where e1⇓. Let a id a

sr,ln⇐=== en
sr,ln−1⇐==== . . .

srl1⇐== e1 be a cRS

witnessing e1⇓. We compute a normal form of the cRS a id a
sr,ln⇐=== en

sr,ln−1⇐====

. . .
srl1⇐== e1

Ti=⇒ e0 using leftmost rewriting of the CRSRS (cRS,
I(J (D))−−−−−⇀). We only

have to argue that this normal form is of the form a′ id a′
sr,l′m⇐=== e′m . . .

sr,l′m⇐=== e0,
which implies e0⇓. The definition of forking and answer diagrams and the com-

pleteness conditions imply that any rewrite step
I(J (D))−−−−−⇀ transforms a cRS into a

cRS where the contained reductions are
sr,l⇐==-reductions and

Tj
=⇒-transformations.

Completeness of the diagrams ensures that the reduction sequence is modifiable

by
I(J (D))−−−−−⇀ as long as

Tj
=⇒-transformations are contained in the sequences. ut

In general the other direction does not hold, since the SRSARS may be nonter-
minating, while the CRSRS is terminating. Propositions 3.16 and 3.17 imply:

Theorem 3.18. Let D =
⋃n
i=1 DA(

Ti=⇒) ∪
⋃n
i=1 DF (

Ti=⇒) be complete for
T1=⇒, . . . , Tn=⇒, and let the SRSARS (cARS(J (D)),

J (D)−−−⇀) be (leftmost) terminat-

ing. Then the transformations
T1=⇒, . . . , Tn=⇒ are convergence-preserving.

3.4 A Rewriting System with Finitely Many Rules

A naive approach that encodes general diagrams with transitive closures adds

rules
T,+−−→  T−→ T,+−−→ and

T,+−−→  T−→ for any symbol
T,+−−→. However, this is

useless, since it it leads to nontermination. Hence, we provide another encoding
which is suitable for automation. It translates +-symbols as nondeterministic
rules using natural numbers to avoid nontermination. The translation is a little
bit complex, since it has to respect the leftmost rewriting and it treats +-symbols
in left hand sides and right hand sides differently.
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Definition 3.19. A (converging, resp.) abstract reduction sequence with nat-
ural numbers (NARS) (or cNARS, resp.) is a sequence In . . . I1 (AIn . . . I1,
resp.) where A represents any answer and each Ij is a symbol of the form
sr,l←−−, Ti−→, 〈w〉, 〈w, k〉, 〈w, k + 1〉 where l ∈ L ∪ {τ}, where w ∈ W for a set of

names W with W ∩ (L ∪ {τ}) = ∅, and k is either a natural number (k ∈ IN)
or a number variable, i.e. a variable that may only be instantiated by natural
numbers, and k is always a number variable. A NARS (cNARS, resp.) is called
ground iff it does not contain number variables.

Definition 3.20. A number substitution σ assigns a natural number to any
number variable. The extension of σ to NARS-symbols is the identity except for
the cases σ(〈w, k〉) = 〈w, σ(k)〉, σ(〈w, k + 1〉) = 〈w, k′〉, where k is a number
variable, and k′ = σ(k) + 1 ∈ IN.

We now define rewriting on ground cNARSs.

Definition 3.21. Let D be a set of rules of the form SL  SR where SL, SR are
NARSs. Let gcNARS(D) be the set of all ground cNARS that can be built by in-
stantiating the symbols occurring in D by any number substitution σ. The rewrit-

ing system (gcNARS(D),
D−⇀) is called an encoded rewrite system on abstract

reduction sequence (ERSARS) where
D−⇀ is defined by: If S = S′S′LS

′′, SL  

SR ∈ D, σ is a number substitution with σ(SL) = S′L, then S
D−⇀ S′σ(SR)S′′.

Definition 3.22. For a general forking or answer diagram SL  SR and
M ⊆ L the translation VM is a finite set of rewrite rules over ground ARSs:

VM (SL  SR) :=
⋃
{V¬M (SL) V¬M (SR) | V¬M is a variable interpretation}

Given a set D =
⋃
i{Si,L  Si,R} of general forking and general answer dia-

grams and M ⊆ L the translation KM (D) is defined as follows:
First all (usual) variables are interpreted, resulting in the set D′ :=⋃

i{VM (Si,L  Si,R)}. For every rule SL  SR ∈ D′ the set KM (D) contains a
rule KL(SL)→ KR(SR) perhaps together with some further rules.

Construction of KL(SL): Let SL = In . . . I1
Ti−→ where Ij is either

sr,lj←−−−, or
sr,lj ,+←−−−−, or (for j = 1) Ij = A. Let Kj := 〈wj〉 if Ij =

sr,lj ,+←−−−− and Kj := Ij
otherwise, where wj ∈W are fresh names (chosen fresh for any new rule). Then

we set KL(SL) := Kn . . .K1
Ti−→. For any Ij which is of the form

sr,lj ,+←−−−− we add

two so-called contraction rules:
sr,lj←−−− Kj−1 . . .K1

Ti−→ KjKj−1 . . .K1
Ti−→ and

sr,lj←−−− KjKj−1 . . .K1
Ti−→ KjKj−1 . . .K1

Ti−→.
Construction of KR(SR): Let SR = In . . . I1. If none of the Ij contains a +
then the translation is KR(SR) := In . . . I1. Otherwise there is at least one +.

Let Lj :=
Ti−→ if Ij =

Ti,+−−−→, Lj :=
sr,lj←−−− if Ij =

sr,lj ,+←−−−− and Lj := Ij otherwise.
Let w′j ∈ W (for j ∈ {1, . . . , n}) be fresh names. Let Ia be the rightmost Ij

that contains a +, then we set KR(SR) := 〈w′a, k〉La−1 . . . L1 where k is a number

variable. For all Ij with Ij =
Ti,+−−−→ or Ij =

sr,lj ,+←−−−− we additionally add so-called
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expansion rules 〈w′j , k + 1〉  〈w′j , k〉Lj and 〈w′j , 1〉  Ln . . . Lj. If there exists
m > j where Im contains a +, then for the smallest such m we also add the
expansion rule 〈w′j , k + 1〉 〈w′m, k〉Lm−1 . . . Lj.

For complete sets of diagrams, M is the set of labels that do not occur in any
of the diagrams. In this case we omit the index M in KM .

The symbols 〈wi〉 and 〈w′j , k〉 together with the additional rules are used to
interpret the transitive closure symbols on the left and the right hand side of rules
in forking and answer diagrams. It is easy to verify that any rewriting sequence
using only the contraction rules must be finite, and also that any rewriting
sequence using only the expansions rules is also finite.

Example 3.23. Let D be the set consisting of the third diagram from Exam-
ple 3.6. For L = {lll , llet , seq , . . .},M = L \ {lll , llet} the translation KM (D) is:

{〈w〉 iS,llet−−−−→ 〈w′, k〉, n,lll←−−− iS,llet−−−−→ 〈w〉 iS,llet−−−−→, n,lll←−−−〈w〉 iS,llet−−−−→ 〈w〉 iS,llet−−−−→,
〈w′, k + 1〉 〈w′, k〉 n,lll←−−−, 〈w′, 1〉 n,lll←−−−}

Lemma 3.24. Let D =
⋃n
i=1 DA(

Ti=⇒) ∪
⋃n
i=1 DF (

Ti=⇒) be complete for
T1=⇒, . . . , Tn=⇒ and SL  SR ∈ J (D). Then SL

K(D),∗−−−−⇀l SR.

Proof. Since SL  SR ∈ J (D) there are expansions Expπ,Expπ′ and a
variable interpretation V¬M such that SL = Expπ(V¬M (S′L)) and SR =

Expπ′(V¬M (S′R)) where S′L  S′R ∈ D. Let S′L = I ′n . . . I
′
1
Ti−→, i.e. SL =

Expπ(1)(V¬M (I ′n)) . . .Expπ(n)(V¬M (I ′1))
Ti−→. Let Kj := 〈wj〉 if V¬M (I ′j) con-

tains a + and Kj := V¬M (I ′j) otherwise. Using the contraction rules introduced

by K(D) we rewrite SL = Expπ(1)(V¬M (I ′n)) . . .Expπ(n)(V¬M (I ′1))
Ti−→ K(D),∗−−−−⇀l

Expπ(1)(V¬M (I ′n)) . . .K1
Ti−→ K(D),∗−−−−⇀l . . .

K(D),∗−−−−⇀l Kn . . .K1
Ti−→ = K(V¬M

(S′L)).

All these steps are leftmost, since the rightmost symbol
Ti−→ is always part of the

redex and always kept. Now we apply the rule K(V¬M
(S′L))

K(D)−−−⇀l K(V¬M
(S′R))

(which is again leftmost) and have to show that K(V¬M
(S′R)) can be rewritten

into SR by leftmost rewriting using
K(D)−−−⇀.

If SR does not contain a +-symbol, then this is obvious. Suppose
that SR contains at least one +-symbol. Let S′R = J ′m . . . J

′
1, i.e. SR =

Expπ′(1)(V¬M (J ′m)) . . .Expπ′(m)(V¬M (J ′1)) and let Lj =
Ti−→ if V¬M (J ′j) =

Ti,+−−−→,

Lj =
sr,l←−− if V¬M (J ′j) =

sr,l,+←−−−−, and Lj = V¬M (J ′j) otherwise. Moreover let
us assume that J ′ar , . . . J

′
a1 are the symbols that contain a +, such that for

i, j ∈ {1, . . . , r} with i 6= j we have ai < aj . Then SR = Qm . . . Q1 where
every Qj consists of kj repetitions of Lj , i.e. it is a string of the form Lj . . . Lj .
Let s :=

∑
i∈{a1,...,ak} ki. We choose this number s during the rewriting step

K(V¬M
(S′L))

K(D)−−−⇀l K(V¬M
(S′R)), and then iteratively build the string SR using

the expansion rules introduced by K(D): K(V¬M
(S′L))

K(D)−−−⇀l K(V¬M
(S′R)) =
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〈w′a1 , s〉Qa1−1 . . . Q1
K(D),∗−−−−⇀l 〈w′a2 , s − ka1〉Qa2−1 . . . Q1

K(D),∗−−−−⇀l . . .
K(D),∗−−−−⇀l

〈w′ar , kar 〉Qar−1 . . . Q1
K(D),∗−−−−⇀l Qm . . . Q1 = SR. All steps are leftmost, since

always the leftmost symbol is reduced (which is of the form 〈w′j , s′〉). ut

Proposition 3.25. Let D =
⋃n
i=1 DA(

Ti=⇒) ∪
⋃n
i=1 DF (

Ti=⇒) be complete for
T1=⇒, . . . , Tn=⇒. Then leftmost termination of the ERSARS (gcNARS(K(D)),

K(D)−−−⇀)

implies leftmost termination of the SRSARS (cARS(J (D)),
J (D)−−−⇀).

Proof. We show that a leftmost diverging rewriting sequence of the SRSARS
can be transformed to a leftmost diverging rewriting sequence of the ERSARS.

Assume there is a diverging reduction. We consider a single step S1SLS2
J (D)−−−⇀l

S1SRS2 from this diverging reduction. Then SL must be of the form I1 . . . In
Ti−→

where all Ik are sr-symbols or A. If S1 does not contain a transformation-symbol,

then Lemma 3.24 implies that S1SLS2
K(D),∗−−−−⇀l S1SRS2: The rewriting step must

be leftmost, since at the beginning a transformation step is required on the end
of the redex, and since the rewriting generates SR from right to left.

We now consider the case that S1 contains other transformation symbols,

w.l.o.g. let S1 = S3
Tj−→ S4 such that S4 does not contain transformation-

symbols. Then perhaps there are some leftmost rewriting steps possible inside

S3
Tj−→ using

K(D),∗−−−−⇀l: These can only be steps using the contraction rules.
Since contraction rules cannot remove the rightmost transformation-symbol in
the redex and since they are terminating, the following rewriting sequence is

possible S3
Tj−→ S4SLS2

K(D),∗−−−−⇀l S
′
3

Tj−→ S4SLS2
K(D),∗−−−−⇀l S

′
3

Tj−→ S4SRS2. Any

rewriting sequence of
K(D)−−−⇀l now cannot modify the prefix S′3

Tj−→. Moreover, all

rewriting steps of
J (D)−−−⇀l starting with S3

Tj−→ S4SRS2 also do not modify the

prefix S3
Tj−→ and thus it does not make a difference if we replace S3 by S′3. ut

Proposition 3.25 and Theorem 3.18 imply:

Theorem 3.26. Let D =
⋃n
i=1 DA(

Ti=⇒) ∪
⋃n
i=1 DF (

Ti=⇒) be complete for
T1=⇒, . . . , Tn=⇒. Then leftmost termination of the ERSARS (gcNARS(K(D)),

K(D)−−−⇀)

implies that all transformations
Ti=⇒ are convergence preserving.

Theorem 3.27. Let
T1=⇒ be CP-sufficient for

T
=⇒ and let

T ′1⇐== be CP-sufficient

for
T⇐= and let D =

⋃n
i=1 DA(

Ti=⇒) ∪
⋃n
i=1 DF (

Ti=⇒) be complete for
T1=⇒, . . . , Tn=⇒,

D′ =
⋃m
i=1 DA(

T ′i⇐==) ∪
⋃m
i=1 DF (

T ′i⇐==) be complete for
T ′1⇐==, . . . , T ′m⇐==, such that

both ERSARSs (gcNARS(KM (D)),
KM (D)−−−−−⇀) and (gcNARS(KM (D′)),

KM (D′)−−−−−⇀)

are (leftmost) terminating. Then
T
=⇒ is a correct program transformation.

Proof. Theorem 3.26 shows that
T1=⇒ and

T ′1⇐== are convergence preserving and

thus CP-sufficiency shows that
T
=⇒ is a correct program transformation.
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4 Encoding ARSs and Sets of Diagrams as ITRSs

For the automation of correctness proofs we left open how to check for left-
most termination of an ERSARS derived by complete sets of forking and answer
diagrams according to Theorems 3.27.

If the diagrams do not contain transitive closures, then the ERSARS is also
an SRSARS with finitely many rules. In this case the SRSARS can be encoded

as a term rewriting system: A step
Ti−→ is encoded as 1-ary function symbol ti ,

a step
sr,li←−−− is encoded as a 1-ary function symbol srli , and the answer token

A is encoded as a constant A. The string rewriting rules are translated into
term rewriting rules, where left and right hand sides are both encoded from

right to left, e.g. the rule
sr,l1←−−− T1−→  T2−→ sr,l2←−−− is encoded as the term rewrit-

ing rule t1 (srl1 (X)) → srl2 (t1 (X)) where X is a variable. It is easy to verify
that leftmost termination of the SRSARS is implied by innermost termination
of the TRS. We illustrate this encoding by an example from [21] for the calculus

LR (see Example 2.2). We consider the transformation
seq
==⇒, which is used for

sequentialization, and reduces an expression seq e1 e2 to e2 if e1 is a value or

bound to a value. The complete set of general forking diagrams DF (
iS,seq
===⇒) for

the transformation
iS,seq
===⇒, which is CP-sufficient for the transformation

seq
==⇒, is:

1 · iS,seq //

n,x

��

·
n,x

���
�
�

· iS,seq //___ ·

2 · iS,seq //

n,x

��

·

n,x
���

�
�

�

·

3 · iS,seq //
n,x ��

·

n,x
���

�
�

�
·

n,seq ��
·

4 · iS,seq //

n,cp

��

·
n,cp

���
�
�

· iS,seq //___ · iS,seq //___ ·

Since transformation
iS,seq
===⇒ is answer-preserving, the answer diagrams are

DA(
iS,seq
===⇒) = {A iS,seq−−−−→ A}. The encoding of the corresponding SRSARS

J (DF (
iS,seq
===⇒) ∪DA(

iS,seq
===⇒)) as a TRS is as follows, where X denotes a term-

variable, and all other symbols are function symbols.

1 iSseq(ntau(X))→ ntau(iSseq(X)) 3 iSseq(ntau(nseq(X)))→ ntau(X)
iSseq(nseq(X))→ nseq(iSseq(X)) iSseq(nseq(nseq(X)))→ nseq(X)
iSseq(ncp(X))→ ncp(iSseq(X)) iSseq(ncp(nseq(X)))→ ncp(X)

2 iSseq(ntau(X))→ ntau(X) 4 iSseq(ncp(X))
iSseq(nseq(X))→ nseq(X) → ncp(iSseq(iSseq(X)))
iSseq(ncp(X))→ ncp(X) Answer diagram: iSseq(A)→ A

For
iS,seq
===⇒, and also for its inverse

iS,seq⇐==== innermost termination of the encoded
complete diagram sets could be automatically shown via AProVE. Hence by
Theorem 3.18 we can conclude correctness of the transformation.

If transitive closures occur on right hand sides of the diagrams, then
an encoding into a usual TRS is not possible, since the corresponding rule
in the ERSARS introduces a free number variable (which is then used for
the expansion of the transitive closures). However, conditional integer term
rewriting systems (ITRSs) is a formalism that fits for encoding ERSARS,
since they allow free variables on right hand sides of rules which may only
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be instantiated by normal forms during rewriting. Also integers as well as
conditions including arithmetic operations, comparison of integers, and Boolean
connectives are already present in ITRSs (see e.g., [4]). Moreover, innermost
termination of ITRSs can also be treated by the automated termination prover
AProVE [5,4]. Since innermost termination of the encoded ITRSs then implies
leftmost termination of an ERSARS we can use AProVE to show correctness
of program transformations. The translation is as before, where the introduced
names wi in contraction rules are encoded as 1-ary function symbols, the
names w′i in expansion rules are encoded as 2-ary function symbols, natural
numbers are represented by integers, and number variables are represented by
variables together with constraints. Example 3.6 shows a complete set of forking

diagrams for the transformation
iS,llet
====⇒, and Example 3.23 shows the encoding

of the third diagram as an ERSARS. An encoding of these rules as an ITRS
is as follows where X,K are variables and all other symbols are function symbols:

iSllet(w(X))→ v(K,X) with K > 0
iSllet(w(nlll(X)))→ iSllet(w(X)) iSllet(nlll(X))→ iSllet(w(X))
v(K,X)→ nlll(v(K − 1, X)) if K > 1 v(1, X)→ nlll(X)

The first rule encodes the diagram, the other rules are contraction rules (using
the function symbol w), and expansion rules (using the function symbol v).
The first constraint K > 0 ensures that a positive integer is chosen, and
the constraint K > 1 ensures that K is a positive integer after rewriting.
Innermost termination of the ITRS-encoded complete sets of forking and answer

diagrams for
iS,llet
====⇒ and for

iS,llet⇐==== can be checked using AProVE. This implies
leftmost termination of the corresponding ERSARSs and thus by Theorem 3.27
correctness of the transformation llet is shown automatically.

We encoded complete sets of diagrams for several program transformations
from [21] and they could all be shown as innermost terminating using AProvE.
The encoded diagrams and the termination proofs can be found on our website2.

5 Conclusion

Future work is to connect the automated termination prover with the diagram
calculator of [16,17] and thus to complete the tool for automated correctness
proofs of program transformations. Another direction is to check more sets of
diagrams which may require more sophisticated encoding techniques.

Acknowledgments We thank Carsten Fuhs for pointing us to ITRS and his
support on AProVE and the anonymous reviewers for their valuable comments.
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