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Abstract. We investigate the application of the software bounded
model checking tool CBMC to the domain of wireless sensor networks
(WSNs). We automatically generate a software behavior model from a
network protocol (ESAWN) implementation in a WSN development and
deployment platform (TinyOS), which is used to rigorously verify the
protocol. Our work is a proof of concept that automatic verification of
programs of practical size (≈ 21 000 LoC) and complexity is possible with
CBMC and can be integrated into TinyOS. The developer can automat-
ically check for pointer dereference and array index out of bound errors.
She can also check additional, e.g., functional, properties that she pro-
vides by assume- and assert-statements. This experience paper shows
that our approach is in general feasible since we managed to verify about
half of the properties. We made the verification process scalable in the
size of the code by abstraction (eg, from hardware) and by simplification
heuristics. The latter also achieved scalability in data type complexity
for the properties that were verifiable. The others require technical ad-
vancements for complex data types within CBMC’s core.

Keywords: Software Bounded Model Checking, CBMC, automatic pro-
tocol verification, embedded software, Wireless Sensor Networks, TinyOS,
abstraction, simplification heuristics.

1 Introduction

We strongly rely on embedded systems, which arewidely used in highly distributed
as well as safety-critical systems, such as structural monitoring of bridges [22],
intrusion detection [12], and many industrial use cases, e.g., using SureCross from
Banner Engineering Corp. [19] or Smart Wireless from Emerson Electric Co [10].
Hence they must become more dependable and secure.

The application of formal methods to embedded systems could be the key
to solve this. Although embedded devices carry only some hundred kilobytes
of memory, their verification is neither simple nor easily automated (cf. related
work below) because they run complex algorithms for the underlying protocols,
distributed data management, and wireless communication. In the special do-
main of wireless sensor networks (WSNs), these techniques are all combined in
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a single product, making it a challenging candidate for the application of formal
methods. In this domain, powerful and extensible development and deployment
frameworks are used, e.g., TinyOS [20]. By integrating formal methods seam-
lessly, i.e., fully automated, into such a framework, their usage by developers is
most likely. This implies automatic generation of the model (cf. Section 4.2) for
our verification process, which solves further problems:
– The development of manual artifacts is costly since the model is only required

for verification.
– Since the verification model and the implementation must stay in confor-

mance, the model must rapidly change, especially during the design phase.
Hence additional work is required.

– There is a high danger to abstract from fault-prone details, e.g., due to
missing constructs in the modeling language.

In this paper, we investigate a concast protocol [5] implementation called ESAWN
[2] (Extended Secure Aggregation for Wireless sensor Networks). It is from the
domain of WSNs and uses the development and deployment platform TinyOS.
From this implementation, we automatically generate a software behavior model
that fully comprises the protocol behavior of the sensor node. Then the model is
used to rigorously verify the protocol using the software bounded model check-
ing tool CBMC (C Bounded Model Checking) [6]. We used version 2.9, the most
recent when we started, and implemented several heuristic simplifications and slic-
ing rules (on a side branch of CBMC’s repository) to make verification possible.

Related Work. Most approaches for protocol verification in WSNs use either
a heavy abstraction from the actual implementation or only consider parts of
the model behavior. The presented work is the first, as far as we know, to use
software bounded model checking (SBMC) for verification.

The authors of [3] and [4] considers the application of verification techniques
to software written in TinyOS, or more precisely, in the TosThreads C API.
Instead on analyzing an integrative model with an operating system part and a
protocol implementation, low level services are modeled and statistically verified
against safety specifications. The verification tool employed was SATABS, which
performs predicate abstraction using SAT and can handle ANSI-C and C++
programs. In this work the overall model size checked is at most 440 LoC. In
our approach, we apply our abstraction to a more complex security protocol
consisting of 21 000 LoC and obtain a model with about 4 400 LoC, which we
subsequently check.

The T-Check tool [14] builds on TOSSIM and provides state space explo-
ration and early detection of software bugs. The authors use a combination of
model checking, random walks, and heuristics, to combat the complexity of non-
deterministic branching. Also the results show the applicability of the tool and
the fact that actual violated properties are found, this random search is not
exhaustive and purely depends on the implemented heuristics [13] for finding
liveness bugs, and the user’s experience.

The Anquiro tool [15] is used for the verification of WSN software written for
the Contiki OS using different levels of abstraction, which the user can select



Correctness of Sensor Network Applications 117

from. In comparison, our abstraction only eliminates direct function calls to the
hardware and assembler constructs. Thereby, our abstraction is even able to
detect erroneous packet fragmentations and reassembling errors. This is closer
to the actual implementation - at the cost of complexity. In addition, since we
use CBMC and its transformation mechanisms, we are able to directly point to
the violating line of code.

The work in [3] considers the application of verification techniques to software
written in TinyOS, or more precisely, in the TosThreads C API. Instead of
analyzing an integrative model consisting of the operating system part and the
protocol implementation, services are modeled and verified individually. The
verification tool employed was SATABS, which performs predicate abstraction
using SAT and can handle ANSI-C and C++ programs. In this work the overall
model size checked is at most 440 LoC. In our approach, we apply our abstraction
to a more complex protocol consisting of 21 000 LoC and obtain a model with
about 4 400 LoC, which we subsequently check.

Insense [18] is a composition-based modeling language which translated mod-
els in a concurrent high-level language to Promela, to enable verification of WSN
software by Spin. A complete model of the protocol under investigation has to
be created, though, even if an implementation, e.g., in TinyOS, already exists.
This is very time intensive and error prone. Though Spin is very well capa-
ble of analyzing concurrent and distributed settings, we experienced problems
with state space explosion when checking a high-level behavior model in small
topologies [21].

Structure of this paper. In Section 2, we introduce SBMC: in general, the SBMC
tool CBMC, its capability to use nondeterminism, and the complexity of SBMC.
Then we describe the heuristic improvements we contributed to make CBMC
cope with our protocol. Section 3 explains the ESAWN protocol. Section 4 in-
troduces the TinyOS platform in general and then the abstract behavior model
we generate from its NULL platform. In Section 5, we specify the additional
properties that we checked on the ESAWN protocol. The verification results are
given in Section 6. Section 7 concludes this paper.

2 Bounded Program Verification

2.1 Software Bounded Model Checking

CBMC [6] is one of the most popular SBMC implementations for C programs.
Before CBMC is described in detail, we will first review the technique SBMC.
SBMC computes a solution to the following problem: For a program P , a bound
k and a property f , does a path p within the bound k exist that violates the
property f?

A program state can be characterized by the content of the heap, stack, all
registers and a program counter. A path is a sequence of program states where a
transition between states is triggered by the C statement at the program counter.
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One interpretation of the length of a path in a program is the number of state-
ments in a program. Properties declare some error states, or invalid sequences
of program states, that shall never occur in any execution, e.g., certain values
assigned to a variable.

A SBMC problem has three possible results [7]:

1. The property f holds for all paths.
2. The property f does not hold for at least one path p′.
3. The bound k is too small for at least one path p′.

In the two latter cases, a counter-example path p′ is computed – a path having
the form of a concrete program execution. For a program that contains a finite
set of finite paths, k can always be set large enough such that a sound and
complete verification of the property f can be achieved. If the bound is chosen
too small, it can iteratively be increased.

Embedded systems (e.g., those following the MISRA C standard [1]) com-
monly use reactive systems that consist of an infinite outer loop, but within that
loop, all possible paths are bounded.

We can usually show ultimate correctness for typical properties even when
only considering these inner, finite functions (without the infinite loop around
them), such that case 3 from above does not occur. This finitization might require
underspecification (see Section 2.3 and 4.2).

2.2 CBMC

CBMC implements SBMC for C programs. Properties have to be specified by
assert(f) statements. The semantics of such a statement is that whenever a
program execution reaches the statement, the condition f must evaluate to true.
CBMC also offers assume(f) statements, which we do not need. In CBMC,
the positive integer bound denotes the maximum number of allowed loop body
executions on a path and the maximum recursive depth. The recursive depth of
a path is the number of stack frames it contains. For a given program, the bound
limits the number of statements on any path. In CBMC the bound can be set
individually for each loop occurring in the program.

The software behavior is encoded into a satisfiability (SAT) instance that is
checked using a SAT solver (Minisat2 [9] in the case of CBMC). If the SAT
problem is satisfiable, CBMC generates a concrete counter-example from the
satisfying assignment produced by the solver. If the SAT problem is not satis-
fiable, the property holds for all program executions and the program always
terminates.

2.3 Nondeterminism

In CBMC, we can set variables and return values of functions nondeterministi-
cally. Thus the model can subsume all possible behaviors of the implementation
in a simple way. It usually contains even more behaviors than the implemen-
tation, i.e., the model is over-approximated, also known as underspecified. Then
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the verification can have false negatives, i.e., false error reports. But a successful
verification implies a correct implementation, i.e., we do not have false positives.

2.4 Complexities

Covering all program states within the bound means that many values of the
heap, stack, registers and program counter need to be considered (especially
when nondeterminism is used). This leads to a combinatorial explosion of ex-
ponential size, called the state space explosion. The SAT problem encoding the
SBMC problem has at least as many variables as the number of bits poten-
tially addressed in the C program. Though the SAT problem is NP-complete,
real world instances of SAT problems can be solved surprisingly fast. We found
that the generated SAT instances of the investigated protocol posed a problem to
Minisat2 simply because of their size. The problems were solved rather efficiently
when we used preprocessing before calling Minisat2. For this, we engineered the
following heuristic improvements into CBMC.

2.5 Extending CBMC Optimization Heuristics

Even for simple execution scenarios of our large scale program, e.g., one message
shall be correctly processed, the size of the propositional formula that CBMC
generates surpasses 4 GB. Therefore we extended CBMC with optimization
heuristics, which respect non-simple types as arrays, pointers and structures
and use slicing rules (enabled by the option -slice) and with simplifications
that stem from the domain of compiler optimizations (enabled by the option
-use-sd). They strongly reduce the problem size and complexity and are applied
after the code is transformed into a more rudimentary, intermediate language
(see below), but before it gets encoded into a SAT problem. The simplifications
use the following steps, detailed in the following paragraphs:

– Constant propagation for arrays, pointers and structures, which can be com-
puted efficiently in an unwound program.

– Expression simplification that uses the additional information generated by
the constant propagation.

– Simplifying guards for statements by early satisfiability detection, using the
above expression simplification.

SSA Encodings in CBMC. In order to solve the bounded software model
checking problem, CBMC facilitates inlining (resp. unwinding of function calls
and loops) up to an upper bound. CBMC also introduces single static assign-
ments (SSA, see for example [17]) in the transformed program: Every assignment
is replaced by a versioned assignment such that each identifier is assigned at most
once. In order to transform a sequence of n assignments to a symbol, n new iden-
tifiers are introduced by appending a version number to the original identifier.
Read accesses are replaced by read accesses to the currently active version. At
program points where two control-flows join, e.g., the end of an IF block, a new
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int x = 0; x0 = 0;

if (x==0) if (x0==0)

x = x + 2; becomes x1 = x0 + 2;

assert(x==0); // phi:

x2 = (x0==0) ? x1 : x0;

assert(x2==0);

Fig. 1. Exemplary SSA translation

phi assignment is introduced that determines which version should be used for
the consecutive read accesses (cf. Figure 1).

In SSA form, use-definition chains are easily computed, which will in the
following be used for constant propagation. In CBMC, the SSA statements have
guards, i.e., necessary and sufficient conditions for the statements to be executed.

Field- and Array-Sensitive Constant Propagation. Many implementa-
tions (like the ESAWN protocol) rely on heavy use of arrays, pointers and struc-
tures. CBMC already contains many optimizations, but does not yet facilitate
constant propagation for non-simple data types before the generation of the SAT
problem: Hence sequences as a[0] = 0; if (a[0] == 0) are not simplified. In
contrast to the built-in approach, we have implemented the propagation on the
level of the SSA representation of the program by flattening these complex data
types.

Expression Simplifier. Using the additional information generated by the
constant propagation, we have added an expression simplifier. Any expression
that can be simplified by one of the three following rules is replaced by its
simplified expression. It has to be noted that all expressions are side-effect free
at this level of encoding:

– Boolean expressions with Boolean operands: If an expression has Boolean
type and any Boolean operand must evaluate to a constant true or false,
the expression is simplified, e.g., expr && false becomes false and false?
expr1:expr2 becomes expr2. Additional cases where more than one operand
evaluates to a constant are also simplified.

– Boolean comparisons: Cases where Boolean operands have non-Boolean type
operands are also simplified, e.g., c <= c becomes true, with c being a
constant or versioned identifier.

– Integer expressions with constant integer or Boolean operands: Arithmetic
expressions +,-,*,/,<<,>>where all operands are constants are simplified
according to their C semantics.

The last rule can be extended to float and double type variables. As the
ESAWN implementation does not use such types, they are not yet implemented.
As we will show later, the above rules provide necessary simplifications for the
verification of the ESAWN implementation.
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Early Satisfiability Detection. The above simplifier can be effectively used to
simplify guards for statements. If a guard always evaluates to false, a statement
can be removed from the encoding as it cannot be executed anyway. If a reachable
guard evaluates to true and the statement expresses an assert statement that
evaluates to false, the program cannot be verified. The heuristic can often
detect the reachability and stops further encoding with an according message.
If the assert statement is always true it can be removed.

The effectiveness of early satisfiability detection lies in the fact that the un-
winding bounds for loops are unknown and can only be determined by many
runs of CBMC. For loops that are executed a fixed number of times, i.e., most of
the ESAWN loops, the heuristic detects that loop bounds are chosen too small.
Hence the overall process of finding the correct loop bounds is greatly improved.

We have 32 loops in total. For one loop, we were able to infer the required
unwindings: It belongs to a memset function, which has to be iterated very
often when duplicating memory locations. Consequently, we set the required
unwindings to a sufficiently high and safe value of 20. The unwindings for the
other loops were determined iteratively by automatically running the unwind-
ing check provided by CBMC, and incrementing the unwinding setting if the
unwinding-assertion failed.

3 The ESAWN Protocol

The protocol under investigation is called ESAWN [2]. It offers means to handle
the transportation and aggregation of messages in sensor networks from many
senders to one receiver, so called concasts. By using an end-to-end authenticity,
the transport of sensible data is possible even in the presence of multiple ma-
licious nodes under the control of an adverse acting entity. The protocol runs
in two phases: First an initialization is necessary, before the actual probabilistic
concast can be performed in the second phase.

We first consider the second phase, in which the actual sensor data is passed
around and aggregated all along the way to the sink, the root node. In this
phase, packets of type ESAWN are used. Since the packets are relayed down the
aggregation tree via intermediate nodes, their entries are encrypted such that
only the destination can decode its contents (see Section 5.2).

For the concast with probability, each node checks the authenticity of each
received aggregate only with a fixed probability p. Otherwise it just assumes
that the aggregate is authentic. Since authentication is costly, this is a trade-off
between low energy consumption (low p) and high probability of authenticity
(high p).

To be able to check for authenticity, a node sends its information to a fixed
number w of additional child nodes, called witnesses. The employed concast saves
additional energy by buffering packets and sending them all together later on
using an aggregation function fagg.

An example setup is given in Figure 2 where 5 nodes are used. The leaf node
n0 triggers the probabilistic concast by sending a packet (with its data value D0)
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to its successor on the aggregation path n1. Since this node could be cheating,
additional packets are sent to node n2 and n3, which act as witnesses to assure
the proper behavior of node n1. The nodes ni (i ∈ {1, ..3}) are collecting all
incoming packets, then check authenticity with probability p and finally, if all
incoming packets were authentic, send out packet aggi = fagg(aggi−1, Di) (with
Di being the new data value from ni and agg0 := D0). The root node n4 finally
collects all data. It is located at the base station and accessible by the user.

n0 n1 n2 n3 n4

leaf node

root node

D0

D0

D0

D1, agg1

D1, agg1

D1, agg1

D2, agg2

D2, agg2

D3, agg3

Fig. 2. ESAWN scenario of an aggregation tree with w = 2 witnesses

In the initialization phase, the parameter settings and the aggregation tree are
made known to all nodes in the network. For this task, the ESAWN protocol uses
STATUS packets, which are also encrypted (see Section 5.1). So the number of
nodes (num nodes), probability p and the number of witnesses w are sent around
in the network using SET packets. In addition, the aggregation tree is spread using
packets of type SETAGG which contain the parent ids for each node. Finally, a
packet of type GO triggers the second phase of the protocol. The GO packet con-
tains a value specifying the frequency at which nodes send their data (0 means only
one concast). Further packet types exist, which we do not consider since they play
only a minor role for the verification of relevant global properties.

4 TinyOS Platform and Model Abstraction

4.1 The TinyOS Platform

TinyOS is an open source operating software for embedded devices and widely
used for programming embedded devices. Its component based architecture and
event driven execution model make it very suitable for resource constrained hard-
ware systems with respect to memory, computation power and energy shortness.

TinyOS is an operating system and a software development platform that of-
fers means to deploy the implementation on various hardware platforms through
a modular design. So once a protocol, e.g., ESAWN, is implemented, it can be
deployed automatically to the desired sensor type. With many possible combi-
nations of interacting components, automatic verification within TinyOS is the
solution for checking that the resulting composition behaves as expected.
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In more detail, software in TinyOS is initially written in nesC, a C dialect hav-
ing special constructs for embedded devices. Before the software can be deployed
on sensor nodes, it is firstly translated from the modular description in nesC into
an intermediate ANSI C representation, which includes specific constructs for
interaction with the hardware. The C code could theoretically be used as model
for the verification process already. But an abstraction is required when con-
sidering the size and complexity of the C code: Essentially, the hardware part,
which includes register assignments and interrupt handling, would inhibit a suc-
cessful verification process because of state space explosion. Due to this reasons
another approach – described in the following section – is required. It abstracts
appropriately from the hardware part by generating an abstract behavior model.

4.2 A Behavior Model Abstraction

The NULL Platform. The NULL platform is a hardware model included in
the TinyOS environment. It can be used to generate a hardware independent
software behavior model. In particular the platform can be understood as a
skeletal structure containing only the functionality of the protocol plus some
overhead in form of the scheduling functions for jobs and the job queue. But
all hardware specific functions (e.g., for the UART and LEDs) are removed, i.e.,
empty function bodies are generated. Since this abstraction exactly comprises the
pure protocol behavior under investigation, it is safe. Besides strongly reducing
complexity, this abstraction has the major advantage that we do not have to
take hardware platforms into account when specifying properties.

Abstract behavior model. We made four modifications to the NULL plat-
form for our verification: instrumentation with assert() statements, a so-called
autostart function, rudimentary packet transportation functionality and a task
loop finitization:

The autostart function imitates some of the omitted hardware functionality,
most of all the input from the environment. The function makes parameters
known to a node by inserting them in its receive queue. Tasks can be enqueued
to the task queue to let the node perform certain actions like sleep, start the
processing of packets, etc. Essentially the autostart function brings us in the
favorable position to bring the nodes in any state.

Since the NULL platform is hardware independent, also functionality that
transports packets to the transceiver chip is lost. Since all protocols for WSNs
depend excessively on packet sending and receiving, our generation rudimentarily
inserts this into the function bodies of the sending and receiving functions that
are empty in the NULL platform.

Task loop finitization changes the scheduler which periodically executes the
task loop: The protocol usually does not terminate because of its controller-like
nature: As long as the sensor nodes are active, new packets are generated and
processed. The original task loop is hence infinite. By limiting the execution
number of the task loop, a bounded model is obtained that is well suited for
verification since its complexity is limited. In consequence, the model will run
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either until all tasks from the task queue are processed or an upper bound is
reached, which we compute with injected code and check via assertions. If fin-
ished, it simply stops the node. In the course of this finitization, we are also able
to further reduce the scheduler’s complexity by replacing the complex functions
for initializing the scheduler queue and the assignment of the empty task element
by the necessary core functionality in the autostart function. With the help of
nondeterminism for our correctness proofs, it is sufficient to show that individual
packets are transported and processed in accordance with the protocol. Hence
regarding the finite task loop is sufficient. Having only finitely many terminating
paths, CBMC’s verification is sound and complete. An overview of the generated
model is depicted in Figure 3.

Fig. 3. Abstraction from TinyOS

Sensors are also not present in the NULL platform. But the implementation of
the ESAWN protocol was using the node’s IDs as sensor data to be transmitted,
anyways, for clarity reasons. Since the IDs are unique, this approach also reduces
the verification complexity.

We modified the NULL platform with manual intervention, but the modifica-
tions for the task loop finitization and packet transportation can be automated
straightforwardly, e.g., by introducing a verification platform into TinyOS. The
autostart function cannot be completely automated, since the initialization de-
pends on the protocol and contains the configuration we want to consider.

With these modifications to the NULL platform, we get our abstract behavior
model. From originally 21 000 lines of C code, as in the example of a real hardware
platform (MicaZ nodes), the abstract behavior model only contains 4 400 lines
of C code and CBMC statements.

Simulation. Besides verification, the abstract behavior model can also be used
for simulation: We enriched the abstract behavior model with debugging state-
ments and executed it. A few internal variables of TinyOS that were set nondeter-
ministically in the model were now set to various specific values. This simulation
can be strengthened by setting these variables automatically (e.g., randomly) until
a desired coverage is reached, to even better complement the verification process.
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5 Specification

After acquiring the abstraction in Section 4.2, we start specifying properties.
These properties need to be local, since we only have a limited scope of a single
node since the original code is intended for deployment. This means we cannot
specify properties that include two or more nodes, only the behavior of one node
at a time can be verified. Correctness is shown with local properties by non-
deterministically setting the network into all relevant states using our powerful
autostart function and then checking the according desired behavior at a single
node (cf. the exemplary REQ4 below). This is achieved using assert() state-
ments incorporated into the sources, to be able to check additional properties,
i.e., monitor the behavior and stop the execution in case of an error. In Section
5.3 we will show a solution for global properties. We formulate the desired func-
tional behavior as requirements (REQ), which are all translated into properties
that are verifiable by CBMC using CBMC’s assert functions. These assertions
check whether the corresponding variables (e.g., a node’s locally stored param-
eter w or outgoing packet queue) are set correctly. The assertions are either
located after a node’s computation or within the alarm function that is built
into the protocol. This instrumented function is then able to indicate wrong
behavior of the protocol, potential attacks and also erroneous packets.

5.1 STATUS Packets

The entries of the STATUS packets are encrypted with an RC5 cipher. To
avoid state space explosion, the encryption procedure was automatically removed
for the abstract behavior model without changing the underlying protocol, i.e.,
nodes send their data as plain text.

For the autostart function, we chose an initialization of the network as de-
scribed in Section 3 (cf. Figure 2), so w = 2 and num nodes = 5. p was set to
1, so we check with the strictest possible authentication and can fully avoid the
complexity caused by probability, i.e., the random variables and the function
computing the seed. Whether the values are set correctly by the autostart func-
tion is checked via the assertions for the following three requirements, which are
categorized by packet type.

The first requirement covers packets of type SET , which are sent initially
by the base station to make protocol parameters known to the network. The
following property states that a node processes this type of packet correctly:

SET (num nodes, w, p) sets variables correctly (REQ1)

The second requirement considers packets that make the aggregation tree public
using SETAGG packets. For this reason each node is informed about its succes-
sor nodes that it will send packets to. The SETAGG packets contain the fields
node id and parent id and must be sent to every node in the network.

SETAGG(node id, parent id) sets variables correctly (REQ2)
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The following requirement is about protocol conform behavior after receiving a
GO packet: Only leaf nodes initiate concasts and the frequency value f in the
GO packet (cf. page 122) must be respected.

correct action upon reception of GO(f) (REQ3)

We omit the trivial requirements for the packet type RESET , which causes a
hard reset of the node, and ALARM , which is simply forwarded.

5.2 ESAWN Packets

Entries of ESAWN packets are encrypted using symmetric keys (cf. SKEY [23]).
Again, we consider unencrypted packets instead. Similarly to STATUS packets,
we also split the correct handling of ESAWN packets into several requirements.

Firstly, we require that ESAWN packets are correctly transported. This also
implies that packets have been correctly aggregated and are correctly forwarded
(e.g., correct computation of the relay count). As aggregation function fagg the
sum is used (fagg(a, b) = a+int b). We check this requirement exemplary for the
packet P that contains D1, agg1 sent to n2:

correct reception of packet P (REQ4)

Secondly, we require that ESAWN packets are correctly authenticated (which
also implies correct aggregation). For this, a node ni has to alarm if any of the
last w aggregates is incorrect (n0 to nw can only check fewer aggregates):

(∃j ∈ {1, .., w} : aggi−j − Di−j �= aggi−j−1) ⇐⇒ alarmi (REQ5)

Finally, we must also check that this alarmi, a certain alarm function built into
ni, behaves correctly, i.e., issues an ALARM packet to be sent. We do this by
checking whether ALARM packets are put in the outgoing packet queue outni

of ni:
alarmi =⇒ ALARM packets in outni (REQ6)

5.3 Global Properties

Global properties can achieve stronger and more comfortable formulations, for
instance: if some node alarms, then eventually the sink will receive
an ALARM packet. Since we are verifying the derived code that can be deployed
on a sensor node, the verification process cannot handle multiple nodes so far,
i.e., it does not consider distributed settings where messages are interchanged.
To imitate this, we implemented simple multitasking between nodes: When the
current node sends out a packet, a switch between nodes takes place. For this, we
modified TinyOS’ send routine: The local variables of the current node are saved
and the local variables of the destination node are loaded. The packet being sent
is enqueued into the receive queue. With this, a distributed network behavior
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can be imitated to some degree, with packets being sent to their destination
without delay.

The trade-off of using global properties is an increased complexity. Therefore,
we successfully verified only very simple ones and will use more powerful global
properties only in future work after local properties no longer cause problems
(cf. next section).

6 Verification Results

For the verifications, we used CBMC version 2.9 with our additional heuristics
(cf. Section 2.5), some bug fixes related to complex data types and compiled for
64bit processors because some verifications required a lot of memory (see below).

Table 1. Verification results for STATUS packets for a valid loop unwinding of 4

SET packets SETAGG packets GO packets

check passes |claims|
REQ1 yes 6
unwinding yes 37
bounds yes 60
pointer no 181

check passes |claims|
REQ2 no 4
unwinding yes 37
bounds yes 60
pointer no 177

check passes # |claims|
REQ3 yes 4
unwinding yes 37
bounds yes 59
pointer no 175

As described in the previous section, the generated code is manually instru-
mented with the assertions that specify REQ1 to REQ6. All other assertions
are inserted automatically by CBMC. The first verification step is finding the
required number of loop unwindings using the according assertions to be sure
the verification of the other properties is complete.

Table 1 displays the performed verifications for the STATUS messages, their
results and number of required claims, which are CBMC’s internal assertions.
For the verification, we fixed node n2, which exhibits all the behavior relevant to
our verification. An unwinding depth of 4 is sufficient. The properties for code
safety detect array index out of bounds and bad pointer dereferences. All checks
had to be performed for each REQ since the autostart function was adjusted to
each REQ. The pointer checks failed for every packet type. Debugging the source
code of CBMC showed that this is not a failure of the protocol, but CBMC does
not find correct symbols during its pointer-analysis.

For REQ1 and REQ3, all other checks are successful. The assertions for REQ2
are violated: The cause seems to be that CBMC is unable to handle arrays of
structures, which are heavily used for the queues. This is one example where
CBMC does not scale related to data type complexity.

Besides verifying these properties, we raised our confidence in the correctness
of ESAWN by successful simulation (cf. 4.2) and fault injections in the code and
in the assertions, all of which CBMC found.

Unfortunately, we were not able to verify REQ4 to REQ6 because the un-
winding checks were problematic: At first we had difficulties setting the loop
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unwindings just as high as necessary, which is crucial. For instance, when we
set the unwindings to 11 for all loops, CBMC requires 30GB of RAM (and over
3 hours) to detect that not enough unwindings were made. For 12 unwindings,
CBMC gives segmentation faults because 32GB are exceeded. We solved the dif-
ficulty of finding the smallest possible unwinding value for each loop by searching
automatically. But as the search is very time consuming, it is important to start
with sensible values. When we used --unwind 6 --unwindset 1:20, i.e., un-
windings 20 for the first loop (memset, which needs to be able to copy values
sufficiently often) and unwindings 6 for all others, verification came much fur-
ther with much less memory: With 2.5GB, CBMC reached the stage passing
to decision procedure. Unfortunately, CBMC then halts with the error mes-
sage unexpected array expression: typecast. Because CBMC aborted with
a typecast exception, we tested whether the unwindings might be sufficient by
injecting a fault into one of our assertions for REQ4 to REQ6. But these verifi-
cations also caused typecast exceptions. This shows again that CBMC does not
scale with data type complexity.

CBMC offers two possibilities when enough unwindings cannot be reached
efficiently: Firstly, paths with more unwindings can simply be ignored. But this
leads to a bad testing coverage: In our case, a lot of packets in the queue need
to be processed for initialization. Thus the processing of the ESAWN packets –
and therefore their bugs – would not be reached. Secondly, we could have used
nondeterminism at points where the maximum unwindings are reached, and
possibly over-approximate (cf. Section 2.3). In our case, we would need to gen-
erate packets nondeterministically. Because of CBMCs difficulties with complex
data types, it cannot create them nondeterministically. Hence the only solution
would be the cumbersome manual implementation of nondeterministically gen-
erating a protocol-conform sequence of packets whenever maximum unwindings
are reached. But that would counteract our intent of a fully automatic verifi-
cation process. We also tried the current CBMC version 3.6. Since it does not
include our heuristics (cf. Section 2.5), we encountered segmentation faults, e.g.,
when passing the problem to propositional reduction, already with 4 unwindings.
We alternatively tried VCC [8], a SBMC tool similar to CBMC and currently
developed at Microsoft Research. We experienced similar problems as in the first
steps with CBMC: Pointer constructs present in the generated model could not
be handled correctly and resulted in a syntax error while parsing. This shows
that handling complex data types in SBMC tools is currently problematic, but
a necessary improvement for verifying realistically complex programs.

7 Conclusion

7.1 Summary

We have described a proof of concept for an automatic verification process for
realistically large and complex sensor network applications that can be integrated
into the software design process. To be able to handle such large scale programs,
the process must be automatic and requires the abstractions and heuristics we
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provided. It generates an abstract behavior model that is then verified by CBMC.
We were able to prove correctness for the SET and GO packets, but not for
the SETAGG and ESAWN packets, due to technical difficulties in CBMC, e.g.,
unsupported arrays of structures, pointer bugs and typecast exceptions. It shows
that, in our case, CBMC does not scale well with the complexity of data types.
Since we learned from our case study that this is very important for the successful
verification of programs of practical size, CBMC (and VCC) can improve by not
only supporting flat C data types, such as a single struct or array, but also their
closure, i.e., nested types. A different solution is using a simpler intermediate
language, e.g., LLVM (see Section 7.2).

Many of the technical difficulties in CBMC were caused by large function
parameters (≈ 500 byte) in the source code of ESAWN. In some cases, this
can be considered a design flaw in ESAWN since frequent, unnecessary copying
(because of C’s call-by-value evaluation) is inefficient. We have informed the
developer of ESAWN about this.

Our heuristics (cf. Section 2.5) improved the scalability in data type com-
plexity, and even more the scalability in the size of the code: Without them,
state space explosion prevents verification of even the simplest instances for the
ESAWN protocol. A general lesson learned is that recent advances in compiler
optimizations for the generation of runtime code can also improve static analysis
mechanisms in real world settings, which is another argument for LLVM.

Our abstractions (cf. Section 4.2) also improve scalability in the size of the
code and additionally allow hardware independence. Using our heuristics and
abstractions, we have seen that, in general, CBMC is powerful enough to be
employed in the verification process for large scale programs.

7.2 Future Work

As further SBMC tools emerge and improve, we can use our case study as bench-
mark for them, e.g., for NEC’s VeriSol via F-Soft [11]. We can also consider
unbounded model checking tools, e.g., use our generation of the abstract behav-
ior model and apply SATABS afterwards, in the line of the recently published
paper [3]. If this approach is infeasible, a combination of SBMC and predicate
abstractions (cf. [16]) might be able to cope with our large protocol. At our
institute, we are currently developing a new SBMC tool which will be based on
the LLVM compiler toolkit. We expect that with this new tool, many of the
technical difficulties can be avoided, and also better scalability can be achieved.

Promising enhancements in our abstract behavior model are: Firstly, improv-
ing multitasking between nodes for verifying global properties. We can reduce
the large memory requirement by not storing the local variables (e.g., w, p and
the whole aggregation tree) of all simulated nodes independently, but compactly
or even only once. We can also implement a more general multitasking that al-
lows several leaf nodes and delayed transmission of packets. This is achieved by
using one extended scheduling function that comprises all jobs of all simulated
nodes. With these improvements, all distributed properties we have verified with
the tool Spin in [21] using hand-written models will be verifiable automatically.
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Secondly, we can use an alternative to setting p = 1: By settling for a quantita-
tive instead of a qualitative inspections, i.e., by using CBMC’s nondeterminism
instead of probabilistic choices, we are able to avoid the complexity of using
probability and still investigate all possibilities of the probabilistic concast. The
trade-off in this approach is the loss of quantitative results and the additional
complexity that nondeterminism might cause.

Thoroughly investigating the protocol’s robustness is another important re-
search direction, made possible by the powerful autostart function. Since it
can set all state variables to arbitrary values, also hazardous situations can be
constructed.

Incorporating our generation scheme (simulation features inclusive) as a veri-
fication platform into TinyOS will enable many developers of WSN protocols to
easily check correctness of their implementations.
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LNCS, vol. 5578, pp. 223–240. Springer, Heidelberg (2009)

19. SureCross Wireless Industrial I/O Sensor Network Applications,
http://www.bannerengineering.com/en-us/wireless/surecross_web_appnotes

20. TinyOS: An open-source OS for the networked sensor regime (March 2010),
http://www.tinyos.net

21. Werner, F., Steffen, R.: Modeling Security Aspects of Network Aggregation Pro-
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