
Correctness Proofs of Distributed
Termination Algorithms

KRZYSZTOF R. APT

L.l.T.P., Universite Paris 7

The problem of correctness of the solutions to the distributed termination problem of Francez [7] is
addressed. Correctness criteria are formalized in the customary framework for program correctness.
A very simple proof method is proposed and applied to show correctness of a solution to the problem.
It allows us to reason about liveness properties of temporal logic (see, e.g., Manna and Pnueli [12])
using a new notion of weak total correctness.

Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Concurrent Programming;
F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and Reasoning about
Programs.

General Terms: Algorithms, Theory, Verification

Additional Key Words and Phrases: CSP, deadlock, global invariant, weak total correctness

1. INTRODUCTION

This paper deals with the distributed termination problem of Francez [7] which
has received a great deal of attention in the literature. Several solutions to this
problem, or its variants, have been proposed, their correctness, however, has
been rarely discussed. In fact, it is usually not even explicitly stated what
properties such a solution should satisfy.

Notable exceptions in this matter are papers of Dijkstra, Feijen, and Van
Gasteren [5] and Topor [14) in which solutions to the problem are systematically
derived together with their correctness proofs. On the other hand, they are
presented in a simplistic abstract setting in which, for example, no distinction
can be made between deadlock and termination. Also, as we shall see in the next
section, not all desired properties of a solution are addressed there. Systematically
derived solutions in the abstract setting of [5] are extremely helpful in under
standing corresponding solutions presented in CSP. However, such a presentation
should not relieve us from providing rigorous correctness proofs-an issue we
address in this paper.

A preliminary version of this paper appeared in Logics and Models of Concurrent Systems, K. R. Apt,
Ed., Springer Verlag, NATO ASI Series, vol. F13, 1985.

Author's address: L.I.T.P. Universitii Paris 7, 2, Place Jussieu, 75251 Paris, France.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.

© 1986 ACM 0164-0925/86/0700-0388 $00.75

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 3, July 1986, Pages 388-405.

Correctness Proofs of Distributed Termination Algorithms 389

~learly, it would be preferable to derive the solutions in CSP together with
their_ corr_ectness proofs, perhaps by transforming accordingly the solutions first
pro~1ded m the abstract setting. Unfortunately, such techniques are not presently
available.

This paper is organized as follows. In the next section we define the problem
an~ propose t~e correctness criteria that the solutions to the problem should
satisfy. Then, m Section 3, we formalize these criteria in the usual framework
for program correctness, and in Section 4 we propose a very simple proof method
which allows us to prove the criteria. In Section 5 we provide a simple solution
to the problem, and in the next section give a detailed proof of its correctness.
Finally, in section Section 7, we assess the proposed proof method

Throughout this paper we assume that the reader is familiar with the language
of Communicating Sequential Processes (CSP), as defined in Hoare [10], and
has some experience in the proofs of correctness of very simple loop-free sequen
tial programs.

2. DISTRIBUTED TERMINATION PROBLEM

Suppose that a CSP program

P = [Pi 11- •• 11 Pn],

where for every 1 :s i :s n, P; :: INIT;: *[S;] is given. We assume that each S; is
of the form o g;,i ~ S;J for an index set r; and that

jEr;

(i) each &i contains an I/O command addressing Ph
(ii) none of the statements INIT;, S;,j contains an I/O command.

We say then that P is in a normal form. Suppose moreover that we associate
with each P; a stability condition, B;, a Boolean expression involving variables of
P; and possibly some auxillary variables. By a global stability we mean a situation
in which each process is at the main loop entry with its stability condition Bi
true.

We now adopt the following two assumptions:

(a) No communication can take place between a pair of processes while both of
their stability conditions hold.

(b) Whenever deadlock takes place the global stability condition is reached.

The distributed termination problem (see Francez [7]) is the problem of
transforming P into another program P' which eventually properly terminates
whenever the global stability condition is reached. Its formulation presupposes
that P' has a particular format so that each computation of P' can b~ restricted
to a computation of P by omitting the instructions involving.new vanables_.

We say that the global stability condition is (not) reached m a computation of
P' if it is (not) reached in its restriction to a computation of P .. In turn, _tl~e
global stability condition is reached (not reached) in a computation o~ P if ~t
holds (does not hold) in a (any) possible global state of the computat10n. \\i e
consider here partially ordered computations in the sense of [11].

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 3, July 1986-

390 Krzysztof R. Apt

We now postulate four properties that a solution P' to the distributed termi

nation problem should satisfy (see Apt and Richier [4]):

(1) Whenever P' properly terminates then the global stability condition is

reached.
(2) There is no deadlock.

(3) If the global stability condition is reached then P' eventually properly

terminates.
(4) If the global stability condition is not reached then eventually a statement

from the original program is executed.

The last property excludes the situations in which the transformed parallel

program endlessly executes the added control parts dealing with termination

detection.
In the abstract framework of [5] only the first property is proved. The second

property is not meaningful, as there deadlock coincides with termination. In turn,

satisfaction of the third property is argued informally, and the fourth property is

not mentioned.
Solutions to the distributed termination problem are obtained by arranging

some additional communications between the processes P;. Most of them are

programs, P' = [P1 II ... II Pn], in a normal form where for every i, 1 :5 i :5 n,

P; :: INIT;;
*[o ... ; g;.J - •.• ; S;.J

jEri

o CONTROL PART;

l

where ... stand for some added Boolean conditions or statements not containing

I/O commands, and CONTROL PART; stands for a part of the loop dealing with

additional communications.

For solutions of the above form we now express the four properties which we

have introduced, using the customary terminology dealing with program

correctness.

3. FORMALIZATION OF THE CORRECTNESS CRITERIA

Let p, q, I be assertions from an assertion language and let S be a CSP program.

We say that l p l S jq l holds in the sense of partial correctness if all properly

terminating computations of S starting in a state satisfying p terminate in a

state satisfying q. We say that jpj S jq l holds in the sense of weak total correctness

if it holds in the sense of partial correctness and, moreover, no computation of S

starting in a state satisfying p fails or diverges. We say that S is deadlock-free

relative top if in the computations of S starting in a state satisfying p no deadlock

can arise. If p = true, then we simply say that P is deadlock-free.

Finally, we say that Ip l S jq l holds in the sense of total correctness if it holds

in the sense of weak total correctness and, moreover, S is deadlock-free relative

top. Thus, when IP! S lql holds in the sense of total correctness, then all

computations of S starting in a state satisfying p properly terminate.

Also, for CSP programs in a normal form we introduce the notion of a global

invariant I. We say that I is a global invariant of P relative to p if in all

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 3, July 1986.

Correctness Proofs of Distributed Termination Algorithms 391

co~putations o~ P, starting in a state satisfying p, I holds whenever each process

f!i is ~t the mam loop entry. If p = true, then we simply say that I is a global
invariant of P.

Now property 1 simply means that

n

ltruej P'I /\ Bd
i=l

(1)

holds in the sense of partial correctness.

Property 2 means that P' is deadlock-free.

Property 3 cannot be expressed by referring directly to the program P'. Even

though it refers to the termination of P', it is not equivalent to its (weak) total

correctness because the starting point-the global stability situation-is not the

initial one. It is a control point that can be reached in the course of a computation.

However, we can still express property 3 by referring to the weak total

correctness of a program derived from P'. Consider the following program:

CONTROL PART =

[P1 :: *[CONTROL PARTi] 11 ... 11 Pn :: *[CONTROL PARTn]].

We now claim that to establish property 3 it is sufficient to prove for an

appropriately chosen global invariant I of P' that

n

II/\ /\ Bd CONTROL PART ltruel
i=l

(2)

in the sense of total correctness.

Indeed, suppose that in a computation of P' the global stability condition is

reached. Then, I /\ /\ ?= 1 Bi holds where I is a global invariant of P '.By assumption

(a), concerning the original program P, no statement from P can be executed any

more. Thus the part of P' that remains to be executed is equivalent to the

program CONTROL PART. Now, because of (2), property 3 holds.

Now consider property 4. As before, we express it by referring to the program

CONTROL PART. Assuming that property 2 holds, property 4 clearly holds if

n

II/\ ..., /\ Bd CONTROL PART !true) (3)
i=l

holds in the sense of weak total correctness. Indeed, (3) guarantees that if the

global stability condition is not currently holding, then every segment of the

computation that performs actions from the CONTROL PART only must either

terminate or deadlock. In the absence of deadlock this is equivalent to

property 4.
Assuming that property 2 is already established, to show property 3 it is

sufficient to prove (2) in the sense of weak total correctness. Now (2) and (3) can

be combined into the formula:

{J) CONTROL PART ltruel (4)

in the sense of weak total correctness.

ACM Transactions on Programming Languages and Systems, Vol. S, No. 3, July 1986.

392 Krzysztof R. Apt

4. PROOF METHOD

We now present a simple proof method which allows us to handle the properties
discussed in the previous section. The proof method uses to great advantage the
coarse granularity that can be imposed on CSP programs in defining the atomic
transitions due to the disjointness of processes. It can only be applied to CSP
programs being in a normal form. So assume that P = [P1 11- .. 11 Pn] is such a
program.

Given a guard g;,h we denote by b;,j the conjunction of its Boolean parts. We
say that guards g;,i and &i match if one contains an input command and the other
an output command whose expressions are of the same type. The notation implies
that these I/O commands address each other (i.e., they are within the texts of P;
and Pi, respectively, and address Pi and P;, respectively).

Given two matching guards g;,j and gj,;, we denote by Eff(g;,j, gj,i) the effect of
the communication between their I/O commands. It is the assignment whose
left-hand side is the input variable and the right-hand side is the output
expression. Finally, let

TERMINATED = /\ .., b;,j
l:Si:Sn

jEr;

Observe that TERMINATED holds upon termination of P.
Now consider partial correctness. We propose the following proof rule:

Rule 1. Partial Correctness

IPl INIT1; ... ; INITnl/l,
{I /\ b;,j /\ bi.dEff(g;,j, gj,i) ; S;,j ; Si.dII
for all i, j s.t. i E rh j E r;, and g;J, gj,i match
{plPlf /\TERMINATED}

This rule has to be used in conjunction with the usual proof system for partial
correctness of nondeterministic programs (see, e.g., Apt [1]) in order to be able
to establish its premises. If the premises of this rule hold, then we can also deduce
that I is a global invariant of P relative top. Informally, it can phrased as follows.
If I is established upon execution of all the INIT; sections and is preserved by a
joint execution of each pair of branches of the main loops with matching guards,
then I holds upon exit. Thus, I holds upon exit for such special "synchronized"
computations. Intuitively this rule is sound because due to the disjointness of
processes each terminating computation of P can be appropriately rearranged so
that it becomes a "synchronized" computation.

Consider now weak total correctness. We adopt the following proof rule:

Rule 2. Weak Total Correctness

lp)INIT1; ... ; INITnlI /\ t::::: Oj,

II/\ b;,j /\ bj,i /\ z = t /\ t::::: O)Eff(g;J, gj,;) ; S;,j; Si.dI /\ o::::; t < z l
for all i, j s.t. i E I'j, j E I';, and g;J, &; match

lplPII /\TERMINATED}

where z does not appear in P or t and t is an integer-valued expression.
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 3, July 1986.

Correctness Proofs of Distributed Termination Algorithms 393

This rule has to be used in conjunction with the standard proof system for
total correctness of nondeterministic programs (see, e.g., Apt [1]) in order to
establish its premises. It is a usual modification of the rule concerning partial
correctness which guarantees lack of divergence.

Finally, consider deadlock freedom. Let

BLOCKED = /\ I• b;,j V, bj,i: 1 :s i, j :s n, i E rh j E I';, g;,j and gj,i matchj

Observe that in a given state of P the formula BLOCKED holds if and only if
no communication between the processes is possible. We now propose the
following proof rule:

Rule 3. Deadlock Freedom

I is a global invariant of P relative to p,

I/\ BLOCKED~ TERMINATED.

P is deadlock-free relative top.

The above rules are used in conjunction with a rule of auxiliary variables.
Let A be a set of variables of a program S. A is called a set of auxiliary variables

of S if:

(i) All variables from A appear in S only in assignments.
(ii) No variable of S which is not in A depends on the variables from A.

In other words, there does not exist an assignment x := t in S such that
x $. A and t contains a variable from A.

Thus, for example, lzl and ly, zl are the only nonempty sets of auxiliary
variables of the program

[P1 :: z := y ; P2! x II P2 :: P1? u ; u := u + l].

We now adopt the following proof rule first introduced in Owicki and Gries
[13].

Rule 4. Auxiliary Variables

Let A be a set of auxiliary variables of a program S. Let S' be obtained from
S by deleting all assignments to the variables in A. Then,

IPl s lql
IPl S' lql

provided q has no free variable from A.
Also, if S is deadlock-free relative top, then so is S '.
We use this rule both in the proofs of partial and of (weak) total correct

ness. Also, we freely use the well-known consequence rule which allows us to
strengthen the preconditions and weaken the postconditions of a correctness
statement jp} S lq}.

5. A SOLUTION

We now present a simple solution to the distributed termination problem. It is a
combination of the solutions proposed by Francez, Rodeh, and Sintzoff [8] and
(in an abstract setting) Dijkstra, Feijen, and Van Gasteren [5].

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 3, July 1986.

394 Krzysztof R. Apt

We assume that the graph consisting of all communication channels within P
contains a Hamiltonian cycle (i.e., a communication path visiting each process
exactly once). In the resulting ring the neighbors of Pi are Pi-1 and Pi+1, where
counting is done within jl, ... , n l cyclically.

We first present a solution in which the global stability condition is detected
by one process, say P 1 • It has the following form, where the newly introduced
variables s;, sendi, and movedi do not appear in the original program P:

For i = 1
P; :: INIT;; send; := true ;

*[o g;,j--+ S;,j
jE r;
o B;; send;; P;+ 1! true--+ send;:= false
o P;-i? s;--+ [s,--+ halt o..., s;--+ send;:= true]

l

and, for i "# 1,

P; :: send INIT;; :=false; moved;:=" false:
*[o g,,1 - moved; := true ; S;,1

j EI';
o P;-1? S;--+ send;:= true
o B;; send; ; P;+ 1! (s; f\ ..., moved;) --+send;:= false ;

moved; := false

In this program we use the halt instruction with an obvious meaning. Infor
mally, P 1 decides to send a probe true to its right-hand side neighbor when its
stability condition B1 holds. A probe can be transmitted by a process Pi further
to its right-hand neighbor when in turn its stability condition holds. Each process
writes into the probe, its current status being reflected by the variable moved;
moved turns to true when a communication from the original program takes
place and turns to false when the probe is sent to the right-hand side neighbor.
Thus, moved; indicates whether process P; has participated in a communication
from the original program since the last time it had passed the probe. P 1 decides
to stop its execution when a probe has made a full cycle remaining true. This
will happen if all the moved variables are false at the moment of receiving the
probe from the left-hand side neighbor.

We now modify this program by arranging that P 1 send a final termination
wave through the ring once it detects the global stability condition. To this
purpose, we introduce in all P;s two new Boolean variables, detectedi and done;.
The program has the following form:

For i = 1
P; :: done, send; := true ; done; :=false ; detected; :=false ;

*[o INIT;j done;, g;,1 - S,,1

j E I'p

l

o..., done;; B;; send;; P;+1! true--+ send;:= false
o..., done;; P;-1? s; -

[s, - detected; := true o -, s; --+ send; := true]
o detected; ; P;+1 ! end--+ detected; :=false
o..., done;; P;-1? end--+ done;:= true

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 3, July 1986.

Correctness Proofs of Distributed Termination Algorithms 395

and for i -¥- 1

P; :: INIT;; send, :=false ; moved; := false ; done, :=false ; detected; :=false ;
* [o, done; ; g;,; - moved; := true ; S;,1

j E !';

o...., done; ; P;-1? s; - send;:= true
o--, done; ; B; ; send;; P;+1 ! (s;--, moved,) - send; :=false ;

moved; := false
o--, done;; P;-1? end - detected;:= true; done,:= true
o detected;; P;+1! end - detected;:= false

l

We assume that end is a signal of a new type not used in the original program.
(Actually, to avoid confusion in the transmission of the probe, we also have to
assume that in the original program no messages are of type Boolean. If this is
not the case, then we can always replace the probe by a Boolean-valued message
of a new type.)

6. CORRECTNESS PROOF

We now prove correctness of the solution given in the previous section using the
proof method introduced in Section 4. We do this by proving properties 1-4 of
Section 2 as formalized in Section 3.

PROOF OF PROPERTY 1. We first modify the program given in the previous
section by introducing in process P 1 auxiliary variables received1 and forward1 .

The variable received1 is introduced in order to distinguish the situation when s1

is initially true from the one when s1 turns true after the communication with
Pn. The variable forward 1 is used to remember whether or not P 1 sent the end
signal to P2 • Note that this fact cannot be expressed by referring to the variable
detected1• This augmented version of P 1 has the following form:

P1 :: INIT1; send1 :=true; done1 :=false; detected;:= false;
received1 := faL~e ; forward1 := false ;
*[o--, done1 ; gl,j - s],j

jE ri

l

o--, done1 ; B1 ; send1 ; P2! true - send1 :=false
o --, done1 ; P,,? s1 - received1 := true ;

[s1-" detected1 :=true o--, s1 - send1 :=true]
o detected1 ; P2 ! end - forward1 :=true;

detected1 :=false
D...., done1; Pn? end - done1 :=true

Other processes remain unchanged. Call this modified program R. In order to
establish property 1, it is sufficient, by rule 4, to find a global invariant of R
which upon its termination implies A i=i Bi.

We do this by establishing a sequence of successively stronger global invariants
whose final element is the desired I. We call a program Eff(g[,h g},i); Sf.1; Sf,;,
corresponding to a joint execution of two branches of the main loops with
matching guards in a program being in a normal form, a transition. For a
convenient expression of loop invariants, we identify the Boolean values false,
true with 0 and 1, respectively. To avoid excessive use of brackets we assume

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 3, July 1986.

396 Krzysztof R. Apt

that "-" binds weaker than other connectives. Let

n

Ii = L send; :S 1.
i=i

Then li is clearly a global invariant of R: it is established by the initial
assignments and is preserved by every transition, as the setting of a send variable
to true is always accompanied by changing another send variable from true to
false. Now consider

/ 2 =Vi> 1 [s; /\ send; - Vj(l :S j < i ~ Bj) V 3j ;?!:: i movedj]
/\ [si /\ receivedi - 'r/j (1 :S j :S n ~ Bj)].

We now claim that li /\ 12 is a global invariant of R. First note that 12 is
established by the initial assignments in a trivial way.

Next, consider a transition corresponding to a communication from the original
program P. Assume that initially Ii /\ 12 and that the Boolean conditions of the
guards hold.

Now consider the first conjunct of 12 • If, initially, for no i > l does s; /\ send;
hold, then this conjunct is preserved since the transition does not alter
s; or send;. Suppose now that initially for some i > l, s; /\ send; holds. If
initially also 3j ~ i moved; holds, then this conjunct is preserved. If initially
Vj (1 :S j < i - Bj) holds, then, by assumption (a) in Section 2, at least one of
the processes involved in the transition has an index ;?!:: i. The transition sets its
moved variable to true which establishes 3j ;?!:: i movedi.

The second conjunct of 12 is obviously preserved-if initially si /\ receivedi
does not hold, then it does not hold at the end of the transition either. If initially
Si /\ receivedi holds, then also Vj (1 ::;, j :S n ~ Bj) initially holds, and again, by
assumption (a) of Section 2, the discussed transition cannot take place.

Now consider a transition corresponding to a sending of the probe from P; to
P;+i (1 :s i :S n). Suppose that at the end of the transition sk /\ sendk for some k
(1 < k :Sn) holds. Due to the global invariant Ii and the form of the transition,
we can conclude that k = i + L Thus, in the initial state, B; /\ s; /\ -, moved; /\
send; holds. Now, due to 12 , initially

Vj (1 :S j < i - Bi) V 3j ;?!:: i movedj

holds. Thus, initially

Vj (1 :S j < i + l - Bj) V 3j ;?!:: i + l movedj

holds. This formula is not affected by the execution of the transition. Thus, at
the end of the transition, the first conjunct of / 2 holds.

Now suppose that at the end of the transition si /\ receivedi holds. If initially
si /\ receivedi holds, then also Vj (1 s j :Sn - Bi) initially holds. Now suppose
that initially s1 /\ receivedi does not hold. Then the transition consists of sending

. the probe from Pn to Pi. Therefore, initially Bn /\ sn /\ -, movedn /\ sendn holds, ~nd because of 12, Vj (1 sj :s n -Bi) initially holds as well. But this formula is
tpreserved by the execution of the transition. So at the end of the transition the ~~cond conjunct of 12 holds.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 3, July 1986.

Correctness Proofs of Distributed Termination Algorithms 397

The other transitions do not affect 12 • So 11 A 12 is indeed a global invariant of

R. We do not have as yet that, upon termination of R, 11 /\ 12 implies /\?.,.1 B;.

But it is now sufficient to show that upon termination of R the conjunction

s1 /\ received1 holds.

Now consider

la = detected1 - s1 /\ received1.

It is straightforward to see that 13 is a global invariant of R. Next, let

/4 = forward1 - s1 /\ received1.

Then 13 /\ 14 is a global invariant of R. Indeed, when forward1 becomes true,

initially detected1 holds, so by virtue of 13, s1 A received1 initially holds. But

s1 /\ received1 is not affected by the execution of the transition in question.

Now we show that, upon termination of R, forward1 holds. To this end, consider

ls= done2 - forward1.

Clearly, ls is a global invariant: done2 and forward1 become true in the same

transition. Now let

5

l=/\l;.
i=l

Then l is the desired global invariant: upon termination of R, done2 holds, and

done2 /\ l implies /\?=1 Bi.

PROOF OF PROPERTY 2. We now also modify processes Pi for i :F-1, by introducing

in each of them the auxiliary variable forwardi for the same reasons as in P1.

The augmented versions of Pi (i :F- 1) have the following form:

P; :: INIT;i send; := false ; moved; := false ; done; := false ;
detected; := false ; forwardi := false ;
*[o ..., donei ; g;,j - moved; := true ; siJ

jEri
o..., donei; P;-1? Si - send;:= true
o..., done;; B;; send;; Pi+1!(si A..., moved)-+ send;:= false:

moved; := false

o..., donei; P;-1? end-+ detected;:= true;
donei := true

o detectedi; P;+1! end-+ forward;:= true;
detectedi := false

Call this augmented version of the program S. We now prove that Sis deadlock

free. In the subsequent proofs it will be more convenient to consider the second

premise of rule 3 in the equivalent form:

I A, TERMINATED --+ ..., BLOCKED.

Let, for i = 1, ... , n,

TERMINATED;== done;/\..., detected;.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 3, July 1986.

398 Krzysztof R. Apt

Note that, if in a deadlock situation of S, TERMINATED; holds, then P; has
terminated. The following natural decomposition of..., TERMINATED allows us
to carry out a case analysis .

..., TERMINATED~
[• TERMINATED1 /\\:Ji (i # 1 - TERMINATED;)]

V 3i (1 < i:::: n /\ --, TERMINATED; /\ TERMINATED;+1)

V Vi• TERMINATED;,

where due to our convention of cyclic counting within II, ... , n j, n + 1 is
identified with 1.

Case 1. It corresponds to a deadlock situation in which P1 did not terminate
and all P; for i # 1 have terminated. Let

16 = --, detectedn /\ donen - forwardn,

17 = forwardn - done1.

It is straightforward to see that le and 11 are global invariants of S. Now let

18 = done2 - forward1,
n

ls = detected1 - 2: send; = 0,
i=l
n

110 = forward1 - 2: send; = 0,
i=l

111 = forward1 - --, detected1.

Then ls, 19 , 19 /\ 110,]9 /\ 110 /\ 111 are all global invariants of S. To see this,
consider by way of example 19 /\ 110 /\ 111 under the assumption that]9 /\ 110 is
already shown to be a global invariant. It is obviously established by the initial
assignments of S. In view of the invariance of 19 /\ 110 , the only transition which
can falsify le /\ 110 /\ 111 is the one involving reception of the probe by P 1• But
then intially send" holds, so by 110 initially • forward1 holds. The transition does
not change the value of forward1. So forward1 remains false and In holds at the
end of the transition. Now let

11

J= /\ !;.
i=6

J is a global invariant of S. Observe now that

J /\ TERMINA TEDn - done1

due to 16and11, and

J /\ TERMINATED2 - -, detected1

due to ls and 111 • Thus,

J /\ TERMINATED2 /\ TERMINATEDn -TERMINATED1 •

That is,

J /\ [• TERMINATED1 /\ Vi (i # 1 - TERMINATED;)]

is unsatisfiable.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 3, July 1986.

Correctness Proofs of Distributed Termination Algorithms 399

Case 2. This corresponds to a deadlock situation in which for some i,

1 < i :5 n, Pi did not terminate, whereas Pi+l has terminated. Let some i,

1 < i :S n, be given. Let

112 = donei+1 _,.forward;,

/13 = detected; _,. donei,

f14 = forward; _,. done; /\, detected;.

It is straightforward to see that 112, 113 , and 113 /\ 114 are global invariants. Let

K = 112 /\ 113 /\ 114·

Then K is a global invariant and

K /\ TERMINATEDi+i -TERMINATED;

results from 112 and 114 . Thus

K /\, TERMINATED; /\ TERMINATEDi+i

is unsatisfiable.

In fact, we show that neither case 1 nor case 2 can arise.

Case 3. This corresponds to a deadlock situation in which none of the processes

have terminated. Let

115 = done1 _,. forwardn.

115 is a global invariant. Also, ! 12 for all i s.t. 1 < i < n and ! 13 /\ 114 for all i s.t.

1 < i :S n are global invariants. Let

n-1 n

L = /15 /\ /\ 112 /\ /\ U13 /\ /14).
i=2 i=2

Then L is a global invariant and

L /\ 3i (i =;t. 2 /\ done;)_,. 3i TERMINATEDi,

due to /15, f\i;;;l 112 and /\'i=2 /14. Thus,

L /\ Vi...., TERMINATED_,. Vi (i =;t. 2 _,.....,done;).

Hence,

L /\ 'iii...., TERMINATED;/\ done2

_,. detected2 /\, done3 _,.

...., BLOCKED, since P2 and P3 can communicate.

It remains to consider the case when, done2 holds. Let

n

[16 = L send; = 0 _,. s1 /\ received1,

/ 17 = ~~ 1 /\ received1 /\, detected1 _,. forwardi,

! 18 = forward1 _,. done2.

Then / 16 , ! 17 , and 118 are global invariants.

(5)

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 3, July 1986.

40-0 Krzysztof R. Apt

Let BLOCKED(?) stand for the formula BLOCKED (defined in Section 4)
constructed for the original program P from Section 2. Assumption (b) of Section
2 states that whenever deadlock is reached, the global stability condition holds,
and simply means that

n

<P == BLOCKED(P) ~ /\ B;
i=l

is a global invariant of P. But by the form of S, <P is also a global invariant of S,
as the added transitions do not alter the variables of P. Thus

M == L /\ 116 /\ 111 /\ l1s /\ <P

is a global invariant of S.
We now have

M /\ Vi-, TERMINATED;/\• done2 /\ BLOCKED~ (by (5))
M /\ 'Vi-, done;/\ BLOCKED~ (by the form of S)
M /\ 'Vi-, done; /\ BLOCKED /\ BLOCKED(P) ~ (since <P is a part of M)
M /\ 'Vi-, done;/\ BLOCKED /\ M=1 B;---,). (by the form of S)
M /\ 'Vi • done; /\ l:f=1 send; = 0 /\ • detected1 ---,). (since Irn, f17, and
I1s are parts of M)

'Vi, done; /\ done2

which is a contradiction. This simply means that

M /\'Vi• TERMINATED;/\• done2 ~-,BLOCKED,

which concludes the proof of case 3.
By rule 3, S is now deadlock-free where J /\ K /\ M is the desired global

invariant. By rule 4, P' is deadlock-free.

PROOF OF PROPERTIES 3 AND 4. As shown in Section 3, it suffices to find a
global invariant I such that Ill CONTROL PART ltruej holds in the sense of
weak total correctness.

We first modify the program CONTROL PART by introducing in process P1
an auxiliary variable count1 which is used to count the number of times process
Pr has received the probe. Other processes remain unchanged. Thus, the processes
have the following form:

For i = 1
P; :: count; := 0 ;

*[•done;; B;; send;; P;+1! true - send;:= fa/,se
o •done; ; P;-1? s; - count, := count;+1 ;

o [s; - detected; := true o -, s; - send; := true]
o detected; ; P;+, ! end - detected; := false
o--; done;; P;-1? end - done;:= true

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 3, July 1986.

Correctness Proofs of Distributed Termination Algorithms 401

and for i #- 1

Pi::*[• done;; P;-1? S;--? send;:= true

o-, done;; B;; send;: P;+ 1! (s; A-, moved;)~
send; := false ;
moved; := false

o-, done;; P;-1? end~ detectedi :=true:

done; := true
o detected; ; P;+1 ! end ~detected; :=false

We call this program T. For the global invariant l of P ', we choose the formula

11 (i.e., L7=1 send; :s 1). We now establish a sequence of successively stronger

global invariants of T (all relative to 11). 11 itself is clearly a global invariant of

T. Let

119 = 'Vi> 1 [count1 = 1 /\ send;--? 'Vj (1 < j < i--?..., movedi].

11 /\ 119 is clearly a global invariant of T. First, it is obviously established by the

initial assignment to count1. Second, it is preserved by every transition of T, as

no movedi variable is ever set to true, and whenever a send; variable for i > 2 is

set to true, then moved;-1 is set of false. Also, when count1 becomes 1, then send1

becomes true and, by invariance of 11, no send; for i > 1 can be true. Let

120 = count1 = 2--? 'Vj (1 < j :S n---+..., movedj).

Then, 11 /\ 119 /\ 120 is a global invariant: when count1 becomes 2, then initially

due to 119 , 'Vj (1 < j < i ---+ ..., movedi) holds. In addition, at the end of the

transition,..., movedn holds. Moreover, no moved; variable is ever set to true.

Let

121 = 'Vi > 1 (count1 = 2 /\ sendi---+ s;).

Now consider 11 /\ /\ J;19 Ii and suppose that, by an execution of a transition,

send; is set to true when count1 = 2. If i = 2, then s2 holds, as s2 is always set to

true. So assume that i > 2. Then, initially, by 120and1211 s;-1 /\..., moved;-1 holds.

At the end of the transition, s; = s;-1 /\ ..., moved;-1, so s; holds as desired.

Also, when count1 becomes 2, then for the same reasons as in the case of /19,

no send; for i > 1 can be true. This shows that 11 /\ /\];19 ii is a global invariant.

Now let
n

122 = count1 = 3 -+ L send; = 0.
i=l

Then, 11 /\ /\J;, 19 lj is a global invariant. Indeed, when at the end of a transition

count1 becomes 3, then initially on account of /19, 120, and 1211 sendn /\ Vi< n

..., send;/\ sn /\..., movedn holds. Thus, at the end of the transition, s1 /\ detected1

/\ 'Vi..., send; holds.
Also, L?=i send;= 0 is preserved by every transition. Finally, let

123 = count1 :s 3.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 3, July 1986.

13 .HicJ:t!11;;qk

'entrumv(X)(Wisl,i1,!k ~ <M ~fon-mlk:a..
Amll~1'1'dmn

402 Krzysztof R. Apt

Then

2:l

N = /1 /\ /\ lj
j=l9

is a global invariant of T.
Indeed, when at the beginning of a transition, count1 is 3, then on account of

I 22 no sending of the probe can take place, thus count1 cannot be incremented.
We thus showed that count1 is bounded.

We can now prove formula (4) of Section 3. Indeed, consider the premises of
rule 2 for the program T. Choose Ii for p, Ii, the global invariant N of T, for I,
and the expression

n

5n + 3 - [(n + l)counti + L done; + holds(send)]
i=I

for t, where holds(send) is the smallest j for which sendj holds if it exists, and 0
otherwise.

We have already shown that N is a global invariant. It is thus sufficient to
show that t is always nonnegative and is decremented by each transition. But for
all b;,j and bj,i mentioned in the premises of rule 2,

N /\ b;,j /\ bj,i ~ t > 0,

so t is initially positive. Clearly, t is decremented by every transition and

N~t::=:O,

so t remains nonnegative after every transition. Thus by rule 2,

IPITltruel
holds in the sense of weak total correctness, so by rule 4, formula (4) from Section
3 holds.

This concludes the correctness proof.

7. ASSESSMENT OF THE PROOF METHOD

The proof method proposed in Section 4 is so strikingly simple to state that it is
perhaps useful to assess it and to compare it critically with other approaches to
proving the correctness of CSP programs. First of all, we should explain why the
introduced rules are sound.

Rules 1 and 2 are sound because the CSP programs considered in Section 4
are equivalent to a certain type of nondeterministic program. Namely, consider
a CSP program P of the form introduced in Section 2. Let

T(P) = INIT1 ; ... ; INIT n ;

*[o b;,; A b;.;-> Eff(&h g;,;) ; S;,;; SJ,i] ;
(i,j) EI'

[TERMINATED-> skip]

where r = j(i, j); i E rj, j EI';, g;,j, and&; match I.
Note that upon exit of the main loop of T(P), BLOCKED holds (which does

not necessarily imply TERMINATED). It is easy to see that P and T(P) are
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 3, July 1986.

Correctness Proofs of Distributed Termination Algorithms 403

equivalent in the sense of partial correctness semantics (i.e., when divergence,
failures, and deadlocks are not taken into account). Now both rules 1 and 2
exploit these equivalences.

Now consider rule 3. In a deadlock situation every process is either at the main
loop entry or has terminated. Thus a global invariant holds in a deadlock
situation. Moreover, the formula BLOCKED /\ .., TERMINATED holds in a
deadlock situation as well. Thus the premises of rule 3 do indeed ensure that no
deadlock (relative top) can arise.

Finally, rule 4 is sound because auxiliary variables affect neither the control
flow of the program (by requirement (i)) or the values of the other variables (by
requirement (ii)).

It is worthwhile to point out that the rule of auxiliary variables is not needed
in the correctness proofs. This follows from two facts. First, it is not needed in
the context of nondeterministic programs, as the theoretical completeness results
show (see [l]). And second, due to the equivalence between P and T(P) and the
form of the rules, every correctness proof of T(P) can be rewritten as a correctness
proof of P. However, as we have seen in the previous section, this rule is very
helpful in concrete correctness proofs.

It is true that the proposed proof method can only be applied to CSP programs
in a normal form. On the other hand, many CSP programs exhibit this form.

Let us now relate our proof method to two other approaches to proving
correctness of CSP programs-those of Apt, Francez, and De Roever [3] and of
Manna and Pnueli [12].

When discussing the first approach, it is more convenient to consider its
simplified and more comprehensive presentation given in [2]. The approach of
[2] is based on the use of proofs from a set of assumptions. First, correctness of
individual processes is proved from the assumptions about its subparts containing
I/O commands (called bracketed sections). When proving correctness of a whole
program, these assumptions are discarded when they satisfy a certain test (called
a cooperation test).

Now consider a CSP program in the special form with all INIT; parts being
empty. Let each branch of the main loop constitute a bracketed section. Given a
bracketed section, (S), associated with a branch that starts with a Boolean
condition b within the text of process Pi, choose the assumption {bj (S) ltruel
for the proof of the I true} P; !TERMINATED;}. Then it is easy to see that

A; I- jtruel Pi {TERMINATED!,

where A; stands for the set of chosen assumptions and ... I- ... denotes provability
in the sense of partial correctness from a set of hypotheses. Now the premises of
rule 1 are equivalent to the set of conditions stating that the chosen sets of
assumptions cooperate w.r.t. the global invariant I. In their presentation, use of
the communication axiom, formation rule, and arrow rule is combined.

This shows that (under the assumption that all INIT; parts are empty) proof
rule 1 can be derived in the proof system considered in [2]. This provides another,
very indirect proof of its soundness.

Consider now proof rule 2. The main difference between this rule and the
corresponding set of rules of [2] is that termination is proved here in a global

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 3, July 1986.

404 Krzysztof R. Apt

fashion-expression t can contain variables from various processes. To cast this
reasoning into the framework of [2], one needs to consider for each process P; a
modified version of t in which variables of other processes are replaced by
auxiliary variables. Once this is done, the premises of rule 2 can be reformulated
appropriately and rule 2 can be derived.

Now proof rule 3 is nothing else but a succinct reformulation of the correspond
ing approach of [2] where the bracketed sections are chosen as above.

The way the INIT; parts are handled is based on the observation that these
program sections can be moved outside the scope of the parallel composition. In
the terminology of Elrad and Francez [6], [INIT1 II ... II INIT n] is a commu
nication-closed layer of the original program.

In the approach of [2] and [3], bracketed sections can be chosen in a different
way, thus shifting slightly the emphasis from global to more local reasoning (for
example by reducing / 11 to a local loop invariant). This cannot be done in the
framework of the method proposed here.

Comparison with [12] can be made in a more succinct way. In [12], two types
of transitions are considered in the case of CSP programs: local transitions and
communication transitions. All proof rules refer to this set of transitions. When
applied to CSP programs, their INV-rule becomes very similar to our rule 1. The
main difference is that in our framework the only allowed transitions are those
consisting of the joint execution of a pair of branches of the main loops with
matching I/O guards. Such a choice of transitions does not make much sense in
the framework of (12], where programs are presented in a flowchart-like form
and thus have no structure. Appropriate combinations of IND and TRNS rules
become from this point of view counterparts of rules 2 and 3.

The main difference lies in the way properties 3 and 4 stated in Section 2 are
proved. According to the terminology of temporal logic (see, e.g., (12]), these are
liveness properties. Using temporal logic they are proved by setting up a chain of
inevitable events leading to the final one which is to hold eventually. In our
approach, liveness properties are formulated as a combination of a weak total
correctness statement and a deadlock freedom. This results in a different presen
tation of the proof.

From this discussion, it becomes clear that the proof method presented in
Section 4 does not differ in essence from the approaches of [2, 3] and (12]. It
simply exploits the particular form of CSP programs to which it is restricted.

ACKNOWLEDGMENTS

We would like to thank C. Delporte-Gallet and A. Pnueli for their interesting
and helpful discussions on the subject of this paper. Also, we are grateful to all
three referees for their detailed reports.

REFERENCES

1. APT, K. R. Ten years of Hoare's logic; a survey, part II. Theor. Comput. Sci. 28 (1984), 83-109.
2. APT, K. R. Proving correctness of CSP programs: a tutorial. In Proceedings of the International

Summer School "Control Flow and Data Flow: Concepts of Distributed Programming," NATO ASI
Series, vol. Fl4, M. Broy, Ed., Springer-Verlag, New York, 1985, 441-474.

3. APT, K. R., FRANCEZ, N., AND DE ROEVER, W. P. A proof system for Communicating Sequential
Processes. ACM Trans. Program. Lang. Syst. 2, 3 (1980), 359-385.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 3, July 1986.

Correctness Proofs of Distributed Termination Algorithms 405

4. APT, K. R., AND RICHIER, J. L. Real-time clocks versus virtual clocks. In Proceedings of the
International Summer School "Control Flow and Data Flow: Concepts of Distributed Program
ming," NATO ASI Series, vol. F14, M. Broy, Ed., Springer-Verlag, 1985, 475-503.

5. DIJKSTRA, E. W., FEIJEN, W. H., AND VAN GASTEREN, A. J. M. Derivation of a termination
detection algorithm for distributed computations. lnf. Process. Lett. 16, 5 (1983), 217-219.

6. ELRAD, T. E., AND FRANCEZ, N. Decomposition of distributed programs into communication
closed layers. Sci. Comput. Program. 2, 3 (1982), 155-174.

7. FRANCEZ, N. Distributed termination. ACM Trans. Program. Lang. Syst. 2, 1(1980),42-55.
8. FRANCEZ, N., RODEH, M., AND SINTZOFF, M. Distributed termination with interval assertions.

In Proceedings of the International Colloquium on Formalization of Programming Concepts, Lecture
Notes in Computer Science, 107, (Peniscola, Spain), Springer-Verlag, New York, 1981.

9. GRUMBERG, 0., FRANCEZ, N., MAKOWSKY, J., AND DE ROEVER w. P. A proof rule for fair
termination of guarded commands. In Algorithmic Languages, J. W. de Bakker and J. C. Van
Vliet, Eds., North-Holland, Amsterdam, 1981, 399-416.

10. HOARE, C. A. R. Communicating sequential processes. Commun. ACM 21, 8 (1978), 666-677.
ll. LAMPORT, L. Time, clocks, and the ordering of events in a distributed system, Commun. ACM

21, 7 (1978), 558-565.
12. MANNA, Z., AND PNUELI, A. How to cook a temporal proof system for your pet language. In

Proceedings of the Symposium on Principles of Programming Languages (Austin, Tex., 1983),
ACM, New York.

13. Ow1cK1, S., AND GRIES, D. An axiomatic proof technique for parallel programs I. Acta lnf. 6, 1
(1976), 319-340.

14. TOPOR, R. W. Termination detection for distributed computations. lnf. Process. Lett. 18, 1
(1984), 33-36.

Received November 1984; revised December 1985; accepted December 1985.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 3, July 1986.

