
MATHEMATICS OF COMPUTATION
Volume 77, Number 261, January 2008, Pages 447–473
S 0025-5718(07)02012-1
Article electronically published on September 13, 2007

CORRELATED ALGEBRAIC-GEOMETRIC CODES:
IMPROVED LIST DECODING OVER BOUNDED ALPHABETS

VENKATESAN GURUSWAMI AND ANINDYA C. PATTHAK

Abstract. We define a new family of error-correcting codes based on alge-
braic curves over finite fields, and develop efficient list decoding algorithms
for them. Our codes extend the class of algebraic-geometric (AG) codes via a
(nonobvious) generalization of the approach in the recent breakthrough work
of Parvaresh and Vardy (2005).

Our work shows that the PV framework applies to fairly general settings by
elucidating the key algebraic concepts underlying it. Also, more importantly,
AG codes of arbitrary block length exist over fixed alphabets Σ, thus enabling
us to establish new trade-offs between the list decoding radius and rate over a
bounded alphabet size.

The work of Parvaresh and Vardy (2005) was extended in Guruswami and
Rudra (2006) to give explicit codes that achieve the list decoding capacity
(optimal trade-off between rate and fraction of errors corrected) over large
alphabets. A similar extension of this work along the lines of Guruswami and
Rudra could have substantial impact. Indeed, it could give better trade-offs
than currently known over a fixed alphabet (say, GF(212)), which in turn,
upon concatenation with a fixed, well-understood binary code, could take us
closer to the list decoding capacity for binary codes. This may also be a
promising way to address the significant complexity drawback of the result of
Guruswami and Rudra, and to enable approaching capacity with bounded list
size independent of the block length (the list size and decoding complexity in

their work are both nΩ(1/ε) where ε is the distance to capacity).
Similar to algorithms for AG codes from Guruswami and Sudan (1999) and

(2001), our encoding/decoding algorithms run in polynomial time assuming
a natural polynomial-size representation of the code. For codes based on a
specific “optimal” algebraic curve, we also present an expected polynomial
time algorithm to construct the requisite representation. This in turn fills an
important void in the literature by presenting an efficient construction of the
representation often assumed in the list decoding algorithms for AG codes.

1. Introduction

In this work, we define a new family of algebraic codes and develop list decoding
algorithms for them. These codes are obtained by generalizing the approach of

Received by the editor July 26, 2006 and, in revised form, November 14, 2006.
2000 Mathematics Subject Classification. Primary 94B27, 12Y05, 14Q05, 14H05.
An extended abstract describing some of these results was presented at the 47th Annual Sym-

posium on Foundations of Computer Science (FOCS), 2006. This is an expanded version of the
paper, containing the proofs and algorithms in full.

The first author was supported by NSF Career Award CCF-0343672, an Alfred P. Sloan Re-
search Fellowship, and a David and Lucile Packard Foundation Fellowship.

The second author was supported in part by NSF Grant CCR-0310960.

c©2007 Venkatesan Guruswami and Anindya C. Patthak

447

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

448 VENKATESAN GURUSWAMI AND ANINDYA C. PATTHAK

Parvaresh and Vardy [11], which applied to Reed-Solomon (RS) codes to algebraic-
geometric (AG) codes. Below we describe the context and motivation for our work
followed by a description of some of our results.

1.1. Context and motivation. The basic trade-off underlying the theory of error-
correcting codes is the one between the amount of noise the codes can handle
(the error-correction radius) and the amount of redundancy the coding scheme
introduces. The latter is measured by the rate of the code, which is defined as the
number of information symbols to the length of the encoding (called block length).
In this work, we focus on worst-case errors, where we assume a bound on the
fraction of errors the channel may effect, but nothing about how the error locations
or values are distributed.

Suppose we encode messages with Rn symbols of information over an alphabet
Σ into codewords of n symbols over Σ (here R is the rate; we think of R as an
absolute constant and let the block length n → ∞). Clearly, to recover the Rn
message symbols, we need at least Rn correct symbols at the receiving end. Thus,
the absolute information-theoretic limit on a fraction of correctable errors is 1−R.
Surprisingly, a notion called list decoding offers the potential to approach this limit
(called “capacity”). Under list decoding up to a fraction p of errors, the decoder
is required to output a list of all codewords which differ from the received word
in at most a fraction p of symbols. The list size L needed for list decoding is the
maximum number of codewords that are output in the worst-case. In the limit of
L → ∞, there exist list decodable codes of rate R that can be decoded up to the
information-theoretically optimal 1 −R fraction of errors. We remark that this is
twice the fraction of errors that can be corrected with unique decoding (the case
L = 1).

The above, however, is a nonconstructive result. The codes achieving list decod-
ing capacity were random codes with decoding algorithms no better than exponen-
tial-time brute-force search (this is akin to the codes in Shannon’s original work
for stochastic channels). Recently, building on a line of work in algebraic coding
theory [14, 6, 11], explicit codes (called folded Reed-Solomon codes) that achieve
list decoding capacity with polynomial encoding/decoding complexity were given
in [4].

The work of [4] thus meets the challenge of achieving capacity for worst-case
errors. However, it has some drawbacks relating to complexity. To correct a fraction
(1−R−ε) of errors, the proven bound on the worst-case list size of the algorithm in
[4] is nΩ(1/ε). In contrast, the existential result gets within ε of capacity with list size
O(1/ε). It is an important goal to improve the list size to a constant independent
of n. The dependence of the list size on n in [4] arises because Reed-Solomon codes
need an alphabet of size at least n. This motivates one to generalize this approach
to AG codes which can have arbitrary block lengths over fixed alphabets, and
also have very nice algebraic properties. Recent advances have greatly improved
the efficiency and explicitness of constructions of AG codes [12], making this a
promising route to approach capacity with better list size and decoding complexity.

The codes in [4] are defined over a large alphabet (of size 2O(1/ε4) to get within
ε of capacity). For codes over alphabet size q for a fixed bounded constant q (say
q = 212), the best general trade-off for error correction radius vs. rate remains the
(1 − 1/q)(1 −

√
R) bound obtained in [6, 9] for AG codes. Improving this state of

affairs provides another motivation for extending the Parvaresh-Vardy approach to
AG codes.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

CORRELATED ALGEBRAIC-GEOMETRIC CODES 449

1.2. Our contribution. Motivated by the above concerns, in this work we present
a generalization of the Parvaresh-Vardy approach to all AG codes. To describe our
contribution, we begin with the variant of RS codes that was put forth in [11]. In
an RS code, the message is a polynomial, which is encoded by its evaluations at
elements of a field. In the PV-scheme, the message is a polynomial f , and then a
related polynomial h is computed (as a carefully chosen function of f – the details of
how this is done are crucial to the success of this approach), and then the encoding
comprises of the evaluations of both f and h on the field elements. This gives a
nonlinear code of half the rate compared to the original RS code. To get better
trade-offs between rate and list decoding radius for very low rates, one can use not
a pair but an M -tuple of correlated polynomials for the encoding.

In this work, we generalize this approach to all AG codes, and define the class of
correlated AG codes, based on evaluations of correlated functions from a suitable
linear space at points on an algebraic curve. This highlights the generality and
promise of the Parvaresh-Vardy approach, and elucidates its salient features in
a general setting unencumbered by specifics of a particular code. Some of the
challenges in such a generalization are discussed in Section 2.

We now describe some of the new trade-offs for list decoding our work implies.
For q an even power of a prime, and any integer m � 1, we present codes with
rate R and list decoding radius approximately 1 − (mR + 3/

√
q)m/(m+1) over an

alphabet of size qm. (Here m is the number of correlated functions used for the
encoding, and so m = 1 corresponds to list decoding the usual AG codes.) For
low rates R and large values of m, this gives an improvement over the trade-off
1− (R+1/

√
q)1/2 for the usual AG codes (the m = 1 case). In particular, for small

ε → 0, we can correct up to a fraction (1− ε) of errors with rate Ω(ε/ log(1/ε)) and
alphabet size 2O(log2(1/ε)). Contrast this with the existential result showing that
one can list decode to a radius of (1− ε) with rate Ω(ε) and alphabet size O(1/ε2).

Our decoding algorithms run in polynomial time assuming a polynomial sized
preprocessed representation of the code. With a slight weakening of the error-
correction performance, we present a different algorithm for which the preprocessing
can also be done in polynomial time. These issues concerning polynomial runtime
are further clarified in Section 1.3.

Previously the only polynomial time constructions for decoding up to radius
(1 − ε) with alphabet size poly(1/ε) achieved rate Ω(ε2) (this follows from the list
decoding of AG codes in [6]). Our results give the first codes with rate better than
Ω(ε2), say Ω(ε1.1), over an alphabet of size polynomial in 1/ε. Thus, our result
does well simultaneously on both the alphabet size vs. list decoding radius and the
rate vs. list decoding radius trade-offs.

Our codes also have a nice list recovering property which can be used in concate-
nation schemes with suitable constant-sized inner codes to get the first uniformly
constructive binary codes of rate close to ε3 list-decodable up to radius (1/2 − ε)
with list size depending only on ε and independent of n. (The construction in
[4] with a similar rate needed construction time of the form nf(ε) instead of the
f(ε)nO(1) we achieve, and their list size also depends on n.)

Guruswami and Rudra [4] extended the work of Parvaresh and Vardy by arrang-
ing for the correlated polynomials to be just the original polynomial with a “shift”.
This was the algebraic crux of their work. At this point, we do not know how to
extend this work for correlated AG codes along similar lines. Such an extension is

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

450 VENKATESAN GURUSWAMI AND ANINDYA C. PATTHAK

an important direction of future work with potentially significant impact. Indeed,
it would be a promising way to address the significant complexity drawback of the
result in [4], and to enable approaching capacity with bounded list size indepen-
dent of the block length. Moreover, it could yield codes with significantly improved
trade-offs over a fixed alphabet, which upon concatenation with a well-understood
constant-sized binary code (e.g., see [8]), could take us closer to the challenging
goal of achieving list decoding capacity for binary codes.

1.3. Complexity of encoding/decoding. Since AG codes are a whole family of
codes as opposed to a specific code, when we say we give polynomial time encoding
and decoding algorithms for them, we mean that every AG-code has a representa-
tion of polynomial size given which there are encoding/decoding procedures that
run in polynomial time. This is similar to the situation for the original list decoding
algorithm for AG codes [6, 7], and is the best one can hope for when we want to
decode every AG code of a certain type.

However, it makes sense to try to construct this requisite representation effi-
ciently for certain specific AG-codes, ideally the ones which offer the best trade-offs
for list decoding. We explicitly address this question in Section 7. For the spe-
cific “optimal” AG codes based on a tower of function fields due to Garcia and
Stichtenoth [1, 2], we give an expected polynomial time (i.e., Las Vegas) construc-
tion of the description of the code needed for our algorithms. Though not explicit
in the sense of deterministic polynomial time constructibility, the representation
is guaranteed to be correct and constructing it (a one time job) takes polynomial
time with overwhelming probability. This level of explicitness should thus suffice
for using the code. We remark that even for the algorithm of Guruswami and Su-
dan [6, 7] (that achieved a decoding radius of at most 1 −

√
R), it was not known

how to compute the required representation efficiently. Our construction thus fills
an important void in the literature on efficient decoding of AG codes, and we view
this also as an important algorithmic contribution of this work.

1.4. Organization. We describe some of the hurdles that need to be overcome in
generalizing the PV framework to AG codes in Section 2. Some basic definitions
and terminology concerning AG codes and function fields are discussed in Section 3.
We describe our actual code construction in Section 4. We describe the first of our
decoding algorithms in Section 5, and a second decoding algorithm with a better
error-correction performance in Section 6. In Section 7, we prove that for certain
“optimal” AG codes certain preprocessed information needed by our algorithms can
be computed in expected polynomial time. While this preprocessed information
suffices for the first algorithm to run in polynomial time, the second algorithm
needs further preprocessed information about the code to run in polynomial time,
but we do not know how to compute the additional preprocessed information it
needs efficiently. We describe extensions to the problem of list recovering and
constructions of binary codes for list decoding up to a fraction (1/2 − ε) of errors
in Section 8.

2. Generalizing to AG-codes: Ideas and complications

As mentioned above, in this work we propose a generalization of the Parvaresh-
Vardy coding scheme to AG codes. While fairly natural in hindsight (which a

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

CORRELATED ALGEBRAIC-GEOMETRIC CODES 451

“correct” generalization ought to be!), the generalization to AG codes is not im-
mediate, since, as we describe below, the special structure of RS codes and the
rational function field Fq(X) are used in a more than superficial way in [11].

The ability to view a low-degree polynomial (i.e., the function being evaluated)
also as a field element from some field F, and operating on it in the field F to
get another related polynomial is crucial to the PV construction. Indeed, the
decoding is performed by solving a system of polynomial equations over the field
F whose solutions contain all possible codewords that must be output. For Reed-
Solomon codes, there is a natural way to view polynomials as field elements, since
polynomials of degree < k are in one-to-one correspondence with elements of the
extension field Fq[X]/(E(X)) ≈ Fqk (where E(X) is an irreducible polynomial of
degree k over Fq). In order to generalize this framework to AG codes, we need
an injective homomorphism from the elements of the function field K that are
evaluated to give the AG-encoding (i.e., the analog of low-degree polynomials for
the RS case) to a suitable field F. We achieve this by associating with an element
f of the function field, the element of the field Fqα which is the evaluation f(R)
of f at a fixed place R of (large enough) degree α. This evaluation is then used
to obtain, from the message function f , a correlated function h such that h(R)
is a carefully chosen function of f(R). Unlike the RS case, however, for function
fields of larger genus this evaluation map restricted to the message functions is only
injective and not bijective.1 Fortunately, we are able to show (Lemma 4.2) that a
correlated function h with the desired evaluation h(R) always exists in a slightly
larger space compared to the message space to which f belongs.

The decoding algorithm follows the interpolation followed by root-finding idea
that is common to [14, 6, 11]. However, another technical complication arises in the
phase when the interpolated polynomial, say Q, is mapped into a polynomial N with
coefficients from Fqα by evaluating each of its coefficients at the place R. Following
[11], we seek to find roots in Fqα of N , and using the above-mentioned injection from
messages into Fqα , map these roots back to obtain the list of messages. It is crucial
that in this step N is a nonzero polynomial when Q is. For the Reed-Solomon case,
this is easy to achieve, since the coefficients of Q, which are polynomials over Fq

in one variable, come from a principal ideal domain (PID), i.e., a ring all of whose
ideals are generated by a single element. Therefore, the only way N can be zero
when Q is nonzero is if all coefficients of Q are divisible by the generator of the ideal
R (i.e., by a univariate polynomial E(X) of degree α). In this case we can divide
Q by the appropriate power of E(X) to get a lower-degree nonzero polynomial Q̃
which is not divisible by E(X), and then work with it instead.

However, for general function fields, the ring Ø to which the coefficients of Q
typically belong is not a PID. Therefore, even if all coefficients of Q vanish at R, they
may not share a common factor in Ø and the above approach for RS codes cannot
be applied. We circumvent this issue in two ways giving two different algorithms,
each with its own advantages, as described below.

In the first approach, we restrict the coefficients of Q to come from a much
smaller space of functions than is usually done in the interpolation based algorithms
of [14, 6, 11]. Specifically, we restrict the pole order of each of the functions to be

1A bijective map can be shown to exist provided a general divisor, instead of a divisor supported
on one point, is chosen to define the code. However, we do not know how to compute this divisor
efficiently.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

452 VENKATESAN GURUSWAMI AND ANINDYA C. PATTHAK

less than α. This ensures that no nonzero coefficient of Q evaluates to 0 at the place
R, which has degree α. Therefore, Q �= 0 implies N �= 0, as desired. This restriction
on the coefficients of Q does not come for free, however, and we need to give up a bit
on the potential performance in terms of number of errors corrected. In particular,
this approach begins to give improvements over the decoding of regular AG-codes
only when we use 3 or more correlated functions (as opposed to the case of RS
codes in [11], where a pair of functions already gives a substantial improvement).
Another fall out of our stringent restriction on the coefficients of Q is that the idea
of using large “multiplicities” in the interpolation phase actually degrades the error
correction performance of the algorithm (it does gives minor improvements for small
multiplicities, the best one being for multiplicity 3 for the case of three correlated
functions). This is in contrast to [6, 11, 4] where large multiplicities are crucial for
the claimed performance. On the flip side, this greatly helps us in Section 7 since
the construction of the requisite representation of the AG code is simpler when one
does not have to deal with multiplicities. The advantage of this approach is thus
its simplicity — the decoding algorithm needs the same representation of the code
as the encoding, and this representation can be computed in (expected) polynomial
time.

In the second approach, we do not impose additional restrictions on the co-
efficients of Q beyond the usual interpolation based algorithms. Instead, if all
coefficients of Q vanish at R, we multiply each of the coefficients of Q by a function
νc where ν is a function with a pole of order 1 at R and no poles elsewhere (such
a function must exist if the degree of R is large), and c � 1 is the minimum of the
zero orders at R of the coefficients of Q. We then reduce the resulting polynomial
Q̃ = νcQ modulo R to get a nonzero polynomial N with coefficients in Fqα and
then proceed as before. Several challenges arise in implementing this idea. First,
we need a way to represent ν and a way to compute c. Also, the coefficients of Q̃
are no longer in the ring Ø, making it difficult to represent and evaluate them effi-
ciently. Nevertheless, we prove that the coefficients of Q̃ belong to a linear space of
functions with bounded number of poles at R. We use this to compute c as well as
a representation of the coefficients of Q̃ that lets us evaluate them at R (assuming
some extra preprocessed information). The advantage of this approach is that we
can use large multiplicities in the interpolation phase and as a result there is no
degradation in error-correction radius compared to the results of Parvaresh-Vardy
(for example, using two correlated functions already suffices to go beyond regular
AG codes). The drawback is that the decoding algorithm needs more complicated,
albeit still polynomial amount of preprocessed information, and we do not know
how to perform the pre-processing in polynomial time (but given the preprocessed
information, the algorithm runs in polynomial time).

3. Background on algebraic-geometric codes

Most of the notation and terminology we use is standard in the study of algebraic-
geometric codes, and can be found in Stichtenoth’s book [13]. We briefly recapit-
ulate some key facts concerning algebraic function fields and algebraic-geometric
codes that we need for our description. Let K be a function field over Fq, denoted
K/Fq, i.e., a finite algebraic extension of the field Fq(X) of rational functions over
Fq. A subring X of K is said to be a valuation ring if for every z ∈ K, either z ∈ X
or z−1 ∈ X. Each valuation ring is a local ring, i.e., it has a unique maximal ideal.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

CORRELATED ALGEBRAIC-GEOMETRIC CODES 453

The set of places of K, denoted PK , is the set of maximal ideals of all the valuation
rings of K. Geometrically, this corresponds to the set of all (nonsingular) points
on the algebraic curve corresponding to K. The valuation ring corresponding to a
place P is called the ring of regular functions at P and is denoted ØP . Associated
with a place P is a valuation vP : K → Z∪ {∞}, that measures the order of zeroes
or poles of a function at P (with the convention vP (0) = ∞). In terms of vP , we
have ØP = {x ∈ K | vP (x) � 0} and P = {x ∈ K | vP (x) > 0}. The quotient
ØP /P is a field since P is a maximal ideal – it is called the residue field at P .
The residue field ØP /P is a finite extension field of Fq; the degree of this extension
is called the degree of P , and is denoted deg(P). For every place P , we have an
evaluation map evP : ØP → ØP /P defined by evP (z) = z(P) = z + P ; this map
is Fq-linear. We will think of evP as a map into Fqdeg(P) using an isomorphism of
the residue field to Fqdeg(P) . Thus, elements of K can be viewed as functions on
PK (hence the name function field for K); the evaluation of z ∈ K and P ∈ PK ,
denoted z(P), is either ∞ (if z /∈ ØP) or belongs to Fqdeg(P) .

The set of divisors DK of a function field K/Fq is the (additively written) free
abelian group generated by the places PK . For a divisor D =

∑
P∈PK

nP P where
all but finitely many nP are 0, its degree, denoted deg(D), is defined as deg(D) =∑

P∈PK
nP deg(P) (note that this is a finite sum). For a divisor D =

∑
P nP P , we

define the set of functions �L(D) def= {x ∈ K | vP (x) � −nP ∀P ∈ PK}; this forms a
vector space over Fq.

Theorem 3.1 (Follows from Riemann-Roch). If D ∈ DK is a divisor of K/Fq of
degree at least 2g − 1, then dim(�L(D)) = deg(D) − g + 1.

An algebraic-geometric code over Fq is obtained by evaluating a carefully chosen
subset of elements of K at places of degree one. For a place P∞ of degree one and
an integer α, the set �L((α − 1)P∞) consists of all those z ∈ K for which z has no
poles at places other than P∞, and may have a pole at P∞ of order less than α.
Typically, an AG-code is defined to be the evaluations of functions in �L((α−1)P∞)
at n distinct places P1, P2, . . . , Pn (different from P∞) of degree one. That is,

Cα,P∞ = {〈f(P1), f(P2), . . . , f(Pn)〉 | f ∈ �L((α − 1)P∞)} .

This is a linear code since �L((α − 1)P∞) is a vector space over Fq. The dimension
of Cα,P∞ is at least α − g by the Riemann-Roch theorem. Its minimum distance
is at least n − α + 1 since a nonzero function in �L((α − 1)P∞) can have at most
(α − 1) zeroes.

4. Construction of correlated AG codes

We now describe a correlated AG code construction where we use a triple of
functions in the evaluation. As mentioned above, our scheme does not get an
improvement in decoding performance (compared to regular AG-codes) when just
two correlated functions are used for the evaluation. The extension of the code,
decoding algorithm, and analysis for the case when more than three correlated
functions are evaluated as part of encoding, follows in a natural way, and are
discussed briefly in Section 5.6.

We now describe our construction of the code. Most of the notation and ter-
minology we use is standard in the study of algebraic-geometric codes, and can be

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

454 VENKATESAN GURUSWAMI AND ANINDYA C. PATTHAK

found in Stichtenoth’s book [13]. Let K be a function field over Fq correspond-
ing to a smooth, irreducible curve. Let g be the genus of K. Suppose K has at
least n + 1 places of degree one, say P1, . . . , Pn and P∞. Let k � g be arbitrary
(this assumption is mainly for convenience). We will describe a code C of block
length n over alphabet Fq3 with qk codewords. The rate of the code will thus be
r(C) = k/(3n). The code will not be linear. Let {1, β1, β2} be a basis of Fq3 over
Fq.

The messages of C will be identified with the vector space Fk
q . We specify

the code by specifying its encoding function, Enc, which will be an injective map
Enc : Fk

q →
(
Fq3

)n.
Let α = k + g. We denote by �L((α − 1)P∞) the set of functions in K that

have no poles outside the place P∞ and may have a pole at P∞ of order less than
α. Since α − 1 � 2g − 1, by the Riemann-Roch theorem, �L((α − 1)P∞) is a k-
dimensional vector space over Fq, and it is with this space that we identify our
messages. Let φ1, φ2, . . . , φk be a basis of �L((α − 1)P∞). Specifically, a message
(a1, a2, . . . , ak) ∈ Fk

q will be viewed as the element a1φ1+· · ·+akφk ∈ �L((α−1)P∞).
Therefore, we will describe our encoding function as a map

(1) Enc : �L((α − 1)P∞) → (Fq3)n .

It is well known that for every place P , we have an evaluation map evP : ØP →
ØP /P defined by evP (z) = z(P) = z + P ; this map is Fq-linear. Let R ∈ PK

be a place of degree α.2 We begin with the following simple lemma, which lets
us view our messages as a subset of Fqα , using their evaluations at R. Note that
�L((α− 1)P∞) ⊆ ØR since functions in �L((α− 1)P∞) have no poles outside P∞ and
thus certainly do not have a pole at R.

Lemma 4.1. The restriction of the map evR to �L((α−1)P∞) is injective. Its range
is a k-dimensional subspace of Fqα .

Proof. Indeed, if f1, f2 ∈ �L((α−1)P∞) satisfy f1(R) = f2(R), then f1−f2 has a zero
at R. Hence the zero divisor of f1 − f2 has degree at least deg(R) = α. However,
the pole divisor of f1 − f2 has degree at most α − 1 since f1 − f2 ∈ �L((α − 1)P∞).
Therefore we must have f1 − f2 = 0. Since evR is Fq-linear, and �L((α− 1)P∞) is a
k-dimensional vector space over Fq, the image evR(�L((α−1)P∞)) is a k-dimensional
subspace. �

Our plan is to use the above as follows. We can view the message

f ∈ �L((α − 1)P∞)

as the field element f(R). We can attempt to define a correlated message h whose
evaluation h(R) is an appropriate function Γ (over Fqα) applied to f(R).3 However,
for the decoding procedure, it seems important that this function Γ be nonlinear
(over Fq). The image of evR restricted to �L((α − 1)P∞) is a subspace of Fqα .
When Γ is not linear, in general there may not exist h ∈ �L((α − 1)P∞) satisfying

2We note that a place of degree d exists for all d such that (qd − 1) > 2qd/2g, and d = α � 2g
satisfies this condition.

3More generally, following the PV-scheme, we can let (f(R), h(R)) belong to some curve, but
this will improve parameters slightly at best.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

CORRELATED ALGEBRAIC-GEOMETRIC CODES 455

h(R) = Γ(f(R)).4 The following crucial lemma shows that such an h exists provided
we allow slightly bigger pole order at P∞.

Lemma 4.2. The image of �L((α + 2g − 1)P∞) under evR equals Fqα .

Proof. Let D be the divisor (α + 2g − 1)P∞. We wish to show that the restriction
of evR to �L(D), denote it by H : �L(D) → Fqα , is surjective. Note that H is an
Fq-linear map, so the image of H, Im(H), is a subspace of Fqα . We will show that
Im(H) has dimension α, and this will show that H is surjective.

The image Im(H) is isomorphic to the quotient �L(D)/ ker(H) where ker(H) is
the kernel of H. Recalling that H(z) = 0 iff evR(z) = 0, we have ker(H) =
{z ∈ �L(D) | z has a zero at R}. Thus we have ker(H) = �L(D − R). Therefore,
dim(Im(H)) = dim(�L(D)/�L(D − R)) = dim(�L(D)) − dim(�L(D − R)).

Now, by the Riemann-Roch theorem, dim(�L(D)) = (α +2g− 1)− g +1 = α + g,
and dim(�L(D − R)) = deg(D − R) − g + 1 = ((α + 2g − 1) − α) − g + 1 = g. It
follows that dim(Im(H)) = α, as desired. �

Before we finally describe the encoding function, we need one other notation. For
each γ ∈ Fqα , we fix an arbitrary preimage in �L((α+2g−1)P∞), denote it I[γ], that
satisfies evR(I[γ]) = γ. (Such a preimage exists by Lemma 4.2.) The code will be
parameterized by integers s1, s2 � 1 (which will be specified later when we analyze
the decoding algorithm). For f ∈ �L((α − 1)P∞), we define the ith coordinate of
Enc(f), for i = 1, 2, . . . , n, by

(2) Enc(f)i = f(Pi) + β1 · I[f(R)s1](Pi) + β2 · I[f(R)s2](Pi)

(recall that {1, β1, β2} is a basis of Fq3 over Fq). In other words, the encoding
consists of the evaluation f(Pi) and also the evaluations h1(Pi) and h2(Pi) where
hi is a specific function that satisfies hi(R) = f(R)si for i = 1, 2 (the raising to the
sith power happens in the field Fqα).

Parameters. Note that the rate of C is k/(3n) and its distance d is at least
n − α + 1 = n − k − g + 1. Its alphabet size is q3.

Encoding complexity. The above encoding can be performed in polynomial time,
provided (i) we can efficiently compute functions in �L((α+2g−1)P∞) at the places
P1, P2, . . . , Pn and R, and (ii) we can compute the preimage I[γ] ∈ �L((α+2g−1)P∞)
of arbitrary γ ∈ Fqα efficiently. Since the space �L((α + 2g − 1)P∞) is an (α + g)-
dimensional Fq-vector space, both of these tasks can be solved in polynomial time
using elementary linear algebra, assuming we have a basis for �L((α + 2g − 1)P∞)
together with the evaluations of the basis functions at Pi as well as at R. This is
the representation which we assume for our code, and in Section 7 we will describe
how to construct this representation for a specific family of AG codes.

5. Interpolation based decoding: The first algorithm

We now turn to list decoding the above code construction. We recollect the
notation of relevant parameters in the construction:

• block length n;
• places P1, . . . , Pn, P∞ of degree 1;

4For the Reed-Solomon case, g = 0, and hence α = k and so the image evR(�L((α − 1)P∞)) =
Fqα , and so such an h ∈ �L((α − 1)P∞) satisfying h(R) = Γ(f(R)) will always exist.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

456 VENKATESAN GURUSWAMI AND ANINDYA C. PATTHAK

• message length k (over Fq); α = k + g; messages correspond to functions in
�L((α − 1)P∞);

• a place R of degree α;
• the powering exponents s1, s2 (these will be specified later).

The list decoding problem for radius n − t amounts to solving the following
function reconstruction problem:

Input: Triples (yi, z1i, z2i) ∈ F3
q , for i = 1, 2, . . . , n.

Output: All functions f ∈ �L((α − 1)P∞) for which the triple of functions
(f, h1 = I[f(R)s1], h2 = I[f(R)s2]) satisfies f(Pi) = yi, h1(Pi) = z1i and
h2(Pi) = z2i for at least t values of i ∈ {1, 2, . . . , n}.

5.1. High level idea behind the algorithm. Let A denote the ring
⋃

��0 �L(�P∞)
of all functions in K that have no poles other than possibly at P∞. The basic
idea, following the interpolation based decoding procedure of [14, 6, 11], is to find
a nonzero polynomial Q in the polynomial ring A[Y, Z1, Z2] such that all triples
(f, h1, h2) that meet the above output condition are roots of Q. The properties we
would like from the interpolation polynomial Q ∈ A[Y, Z1, Z2] are as follows (here
� is a suitable integer parameter):

(1) Q is nonzero.
(2) For all f, h1, h2 ∈ �L((α + 2g − 1)P∞), Q(f, h1, h2) ∈ �L((� − 1)P∞).5

(3) For every i = 1, 2, . . . , n, for all (f, h1, h2) which satisfy f(Pi) = yi, h1(Pi) =
z1i and h2(Pi) = z2i, Q(f, h1, h2) has a zero at Pi.

Such a Q can be found in the same way as in [6] (except even simpler, since we only
insist on simple zeroes and not zeroes of higher multiplicities), by finding a nonzero
solution to an appropriate homogeneous linear system over Fq. The following simple
lemma shows the utility of such a polynomial Q.

Lemma 5.1. Let Q satisfy the above conditions. Let f, h1, h2 ∈ �L((α+2g−1)P∞)
satisfy f(Pi) = yi, h1(Pi) = z1i and h2(Pi) = z2i for t values of i. If t � �, then
Q(f, h1, h2) = 0.

Proof. The function Q(f, h1, h2) has at most (� − 1) poles, and it has a zero at Pi

for each i for which f(Pi) = yi, h1(Pi) = z1i and h2(Pi) = z2i, and thus at least t
zeroes. If t � �, this implies that Q(f, h1, h2) = 0. �

However, once such a Q is found, it will have exponentially many roots in general,
so finding all of them and looking for valid triples (f, h1, h2) among them is not an
option. Instead, we reduce the polynomial Q modulo the place R, by evaluating
each of its coefficients at R, to obtain a polynomial N ∈ Fqα [Y, Z1, Z2]. At this step,
as mentioned earlier, we have to be careful that N remains a nonzero polynomial.

If (f, h1, h2) is a root of Q, clearly the evaluation (f(R), h1(R), h2(R)) is a root
of N . This together with the fact that hi(R) = f(R)si for i = 1, 2 implies that f(R)
is a root of the univariate polynomial N(Y, Y s1 , Y s2), call it T (Y). By Lemma 4.1,
the message f ∈ �L((α−1)P∞) is uniquely recoverable from its evaluation f(R), and
so all the solution messages f (and hence the triples (f, h1, h2)) can be found by
checking amongst the roots of the polynomial T . One additional point to be careful

5It will actually suffice for us to require that Q(f, h1, h2) ∈ �L((� − 1)P∞) whenever f ∈
�L((α − 1)P∞) and h1, h2 ∈ �L((α + 2g − 1)P∞). But for sake of uniformity and simplicity, we
ensure this also for f from the larger space �L((α + 2g − 1)P∞).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

CORRELATED ALGEBRAIC-GEOMETRIC CODES 457

about is that T does not become the zero polynomial (even though N(Y, Z1, Z2) is
nonzero). This is ensured by a suitable, large enough choice of s1, s2.

5.2. Formal description of the decoding algorithm. We now specify the de-
coding algorithm outlined in Section 5.1 formally. Recall that the input to the
decoding algorithm is a string consisting of triples (yi, z1i, z2i) ∈ F3

q , and the al-
gorithm should find all codewords with agreement t or more with the input string
(the parameter t will come out from the analysis). In what follows, φ1, φ2, . . . , φk

denotes a basis of �L((α − 1)P∞) (recall that this is a k-dimensional vector space
over Fq).

Step 0: Compute integer parameters p, � where

(3) �
def= p(α + 2g − 1) + α (so that

� − α

α + 2g − 1
= p) ,

and p satisfies k
(
p+3
3

)
> n, say

(4) p
def=

⌊(6n

k

)1/3⌋
.

Step 1: Find a nonzero trivariate polynomial Q[Y, Z1, Z2] with coefficients
in
�L((α − 1)P∞) of total degree p, i.e., of the form

Q[Y, Z1, Z2] =
∑

j,j1,j2
j+j1+j2�p

(k∑
r=1

ρr,j,j1,j2φr

)
Y jZj1

1 Zj2
2 ,

by finding the value of the unknowns ρr,j,j1,j2 ∈ Fq, such that for each
i = 1, 2, . . . , n, the constant term of the polynomial

Q(i)[Y, Z1, Z2]
def= Q[Y + yi, Z1 + zi1, Z2 + zi2]

vanishes at Pi.
Note that these conditions enforce a homogeneous linear system of equa-

tions over Fq in the unknowns ρr,j,j1,j2 .

Step 2: Compute the polynomial N ∈ Fqα [Y, Z1, Z2] by evaluating each of
the coefficients of Q (which are functions in �L((α− 1)P∞)) at the place R.

Step 3: Compute the univariate polynomial T ∈ Fqα [Y] where T [Y] def=
N [Y, Y s1 , Y s2].

Step 4: Compute all the roots in Fqα of T . For each root γ ∈ Fqα of T , do
the following:

• Compute the unique f ∈ �L((α−1)P∞), if any, such that f(R) = γ (this
can also be accomplished by solving a linear system, with unknowns
being the coefficients a1, . . . , ak of the basis elements φ1, . . . , φk where
f = a1φ1 + · · · + akφk).

• If such an f exists, test if the encoding of f , Enc(f) that is defined in
(2), agrees with the input triples on at least t locations. If so, output f .

5.3. Runtime analysis.

Lemma 5.2. The above algorithm can be implemented to run in polynomial time,
given an appropriate representation of the code, that consists of:

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

458 VENKATESAN GURUSWAMI AND ANINDYA C. PATTHAK

(i) The evaluation of the basis elements φ1, . . . , φk of �L((α − 1)P∞) at the
places P1, . . . , Pn, as well as at a place R of degree α.

(ii) The evaluation of ψ1, . . . , ψ2g at the places P1, . . . , Pn, R, where φ1, . . . , φk,
ψ1, . . . , ψ2g forms a basis of �L((α + 2g − 1)P∞).

Proof. Our goal is to describe why the above information suffices for efficient de-
coding. With the information in (i), one can perform

• Step 1 using the values of φi’s at P1, . . . , Pn by solving a homogeneous
linear system over Fq;

• Step 2 using the values of the φi’s at R; and
• the computation of f (if any) satisfying f(R) = γ in Step 4, again using

the values of the φi’s at R.
Using the information in (ii) one can compute the map I : Fqα → �L((α+2g−1)P∞)
and thus compute Enc(f) in Step 4 and check which of the f ’s that are found must be
output. The root-finding in Step 4 can be performed in deterministic poly(n, q, α)
time. Therefore, the overall runtime will be polynomial in the block length n. �

5.4. Analysis of error-correction performance. In this subsection, our goal is
to prove the following concerning the performance of the above decoding algorithm.

Theorem 5.3. For the choice of parameters p = �(6n/k)1/3, s1 = p + 1 and s2 =
p2+p+1, the above decoding algorithm correctly finds all codewords c = 〈c1, . . . , cn〉
of C which satisfy ci = yi + β1zi1 + β2zi2 for at least t values of i ∈ {1, 2, . . . , n},
for

(5) t = k + g +
(

6
(
1 +

3g − 1
k

))1/3

·
(
(k + 3g − 1)2n

)1/3

.

The number of codewords the algorithm outputs in the worst-case is at most

p(p2 + p + 1) � 3p3 � 18n/k.

We will prove Theorem 5.3 by a sequence of lemmas.

Lemma 5.4. For parameters p, � defined in Step 0 of the algorithm, Step 1 of the
algorithm finds a nonzero polynomial Q[Y, Z1, Z2] of total degree p that satisfies the
interpolation conditions of Section 5.1.

Proof. Step 1 of the algorithm finds a polynomial Q[Y, Z1, Z2] of total degree p

whose coefficients lie in �L((α − 1)P∞). The coefficient of Y jZj1
1 Zj2

2 is expressed
using the unknowns ρr,j,j1,j2 for 1 � r � k. The total number of unknowns is thus k

times the number of trivariate monomials of total degree at most p, which is
(
p+3
3

)
,

and thus equals k
(
p+3
3

)
. The number of homogeneous linear conditions imposed on

the unknowns is n, one for each place Pi. Therefore, if k
(
p+3
3

)
> n, the number of

unknowns exceeds the number of constraints, and so a nonzero Q can be found.
It remains to prove that any Q that is found satisfies the following two conditions:
(a) for all f, h1, h2 ∈ �L((α + 2g − 1)P∞), Q(f, h1, h2) ∈ �L((� − 1)P∞), and
(b) for each i = 1, 2, . . . , n, if f, h1, h2 evaluate to yi, zi1, zi2 respectively at Pi,

then Q(f, h1, h2) vanishes at Pi.
Condition (a) is immediate. Indeed, each monomial of Q has degree p and each
coefficient of Q belongs to �L((α − 1)P∞). Therefore, for

f, h1, h2 ∈ �L((α + 2g − 1)P∞),

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

CORRELATED ALGEBRAIC-GEOMETRIC CODES 459

Q(f, h1, h2) will have at most (α − 1) + p(α + 2g − 1) = � − 1 poles at P∞, and no
poles elsewhere.

For (b), we note the following:

evPi

(
Q(f, h1, h2)

)
= evPi

(
Q(i)(f − yi, h1 − zi1, h2 − zi2)

)
= evPi

(
Q(i)(f − f(Pi), h1 − h1(Pi), h2 − h2(Pi))

)
= 0

where the last equality follows since by construction of Q, the constant term of
Q(i)(Y, Z1, Z2) vanishes at Pi, and the functions f − f(Pi), h1 − h1(Pi) and h1 −
h2(Pi) all clearly vanish at Pi. �

Lemma 5.5. If Q �≡ 0, then N ∈ Fqα [Y, Z1, Z2] obtained in Step 2 is a nonzero
polynomial of total degree at most p. Moreover, if Q(f, h1, h2) = 0 for some func-
tions f, h1, h2 ∈ ØR, then N(f(R), h1(R), h2(R)) = 0.

Proof. Q has total degree at most p, and hence so does N . Also, any nonzero
coefficient of Q evaluates to a nonzero value at R since the map evR is injective
by Lemma 4.1. Therefore, if Q �≡ 0, then N is a nonzero polynomial. Since the
evaluation map evR : ØR → Fqα is a homomorphism, N(f(R), h1(R), h2(R)) equals
the evaluation of Q(f, h1, h2) at R, and so must equal 0 if Q(f, h1, h2) = 0. �

Lemma 5.6. If p � 1, s1 > p, s2 > s1p, and N [Y, Z1, Z2] is a nonzero polynomial
of total degree at most p, then the polynomial T [Y] = N [Y, Y s1 , Y s2] is a nonzero
polynomial of degree at most s2p.

Proof. The claim about the degree of T is obvious, so we just need to show that T is
nonzero. Define the polynomial S[Y, Z2]

def= N [Y, Y s1 , Z2]. Now S ≡ 0 iff Z1 − Y s1

divides N [Y, Z1, Z2]. But this is impossible since the total degree of N is at most
p < s1. Therefore, S is a nonzero polynomial of total degree at most s1p. Now, the
polynomials T, S are related by T [Y] = S[Y, Y s2]. Therefore, T ≡ 0 iff Z2 − Y s2

divides S[Y, Z2]. Again this is impossible since the degree of S is at most s1p < s2.
We conclude that T must be a nonzero polynomial. �

Combining the above lemmas, it is easy to conclude that:

Lemma 5.7. For �, p defined as in Step 0, and the choices s1 = p + 1 and s2 =
p(p+1)+1, for every f ∈ �L((α− 1)P∞), the following holds: If Enc(f) agrees with
the input word on � or more places, then f(R) is a root of T , and thus f will be
found and output in Step 4 of the algorithm. Moreover, the algorithm will output
at most p3 + p2 + p such functions f .

Proof. By Lemma 5.4 and Lemma 5.1, each f ∈ �L((α−1)P∞) for which Enc(f) has
agreement � � with the input word, satisfies Q(f, h1, h2) = 0, where h1 = I[f(R)s1]
and h2 = I[f(R)s2]. By Lemma 5.5, N(f(R), h1(R), h2(R)) = 0. Hence

T (f(R)) = N(f(R), f(R)s1 , f(R)s2) = N(f(R), h1(R), h2(R)) = 0 .

Thus f(R) is a root of T . By Lemma 5.6, T is a nonzero polynomial of degree at
most s2p. It follows that the number of solutions f output by the algorithm is at
most s2p = p3 + p2 + p. �

Proof of Theorem 5.3. Theorem 5.3 follows immediately from Lemma 5.7 and the
choice of � in (3): � = α + (α + 2g − 1)p where p = (6n/k)1/3 and α = k + g. �

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

460 VENKATESAN GURUSWAMI AND ANINDYA C. PATTHAK

For small rates, the result of Theorem 5.3 improves over the list decoding algo-
rithm for AG codes in [6] which corrects up to n −

√
(k + g − 1)n errors.

5.5. Consequences. So far our construction applies to any function field. We
conclude this section by stating the following corollary to Theorem 5.3 obtained by
plugging in function fields with the best possible ratio of g/n. Specifically, for q
a square, we will use a sequence of function fields with increasing genus for which
g/n is at least 1√

q−1 [15, 1]. (The claim about the polynomial time constructibility
of the codes follows from Section 7.)

Theorem 5.8. For q a square prime power and every R, 1√
q−1 < 3R < 1− 1√

q−1 ,
there is a family of codes over alphabet size q3 of rate R, relative distance at least

1 − 3R − 1√
q−1 , and which is list decodable up to a fraction

(
1 − 3R − 1√

q−1 −

6
(
R+ 1√

q−1

)2/3
)

of errors6 using lists of size at most 6/R. Furthermore, there is

a natural representation of the codes, computable in expected polynomial time, for
which the encoding as well as list decoding up to this radius can be performed in
polynomial time.

For decoding up to a fraction of errors approaching 1, we get the following
corollary. (We say a code of block length n is (ρ, L)-list decodable if for every
received word there are at most L codewords within distance ρn from it.)

Corollary 5.9. For all small enough ε > 0, there is a family of Q-ary codes for
Q = O(1/ε9) which has rate Ω(ε3/2) and which is (1 − ε, O(1/ε3/2))-list decodable.
Furthermore, the codes have a representation, computable in expected polynomial
time, that permits polynomial time encoding and list decoding up to radius (1 − ε).

The above corollary can be contrasted with regular AG codes that are list de-
codable up to radius (1 − ε) using the algorithm in [6]. Those codes had a worse
rate of Θ(ε2), but their alphabet size was O(1/ε4). The above gives the first codes
with a rate better than Ω(ε2) for list decoding up to a fraction (1−ε) of errors over
an alphabet of size polynomial in 1/ε.

5.6. Extension to higher order correlations. We can modify the basic con-
struction of Section 4 by using m � 4 correlated functions f, h1, h2, . . . , hm−1 to
perform the encoding. The function f ∈ �L((α − 1)P∞) will be the message, and
the functions hi ∈ �L((α + 2g − 1)P∞) will be defined by hi = I[f(R)si] for suitable
choices of s1, s2, . . . , sm−1. The rate of the code is k/(mn) and its distance at least
n − k − g + 1.

For the decoding, in order to find a nonzero interpolation polynomial Q, the
parameter p in (4) must now satisfy k

(
p+m

m

)
> n since the number of monomials

in a total degree p m-variate polynomial equals
(
p+m

m

)
. The above condition is

satisfied for the choice p = �(m!n/k)1/m. The choice of � remains the same as in
(3). For the choice s1 = p + 1 and si = psi−1 + 1 for i � 2 � m − 1, a decoding
algorithm similar to the one in Section 5.2, finds all codewords with agreement at

6When the stated fraction of errors is nonpositive, the stated bound becomes trivial. So the
result is meaningful only for small rates R.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

CORRELATED ALGEBRAIC-GEOMETRIC CODES 461

least t with any input word, where

(6) t = k + g +
(

m!
(
1 +

3g − 1
k

)) 1
m

·
(
(k + 3g − 1)m−1n

) 1
m

.

The size of list output will be at most sm−1p =
∑m

i=1 pi � mpm. Using the above
with the function fields of best possible g/n ratio, we get the following generaliza-
tions of Theorem 5.8 and Corollary 5.9.

Theorem 5.10 (Main). For q a square prime power, an integer m � 3, and every
R satisfying 1√

q−1 < mR < 1 − 1√
q−1 , there is a family of codes over alphabet

size qm with rate R, relative distance at least 1 − mR − 1√
q−1 , and which is list

decodable up to a fraction
(

1 − mR − 1√
q−1 − (4m!)1/m

(
mR + 3√

q−1

)1−1/m
)

of

errors using lists of size at most m!/R. Moreover, there is a natural representation
of the codes, computable in expected polynomial time, for which the encoding as well
as list decoding up to this radius can be performed in polynomial time.

For decoding up to a fraction of errors approaching 1, we get the following
corollary.

Corollary 5.11. For all ε > 0 and all integers m � 3, there is a family of Q-ary
codes for Q = O((m/ε)

2m2
m−1) which has rate Ω(1

m2 · εm/(m−1)) and which is (1 −
ε, O(m2m!(1/ε)m/(m−1)))-list decodable. Moreover, the codes have a representation,
computable in expected polynomial time, that permits polynomial time list decoding
up to radius (1 − ε).

The above gives the first codes with rate better than Ω(ε2) for list decoding
up to a fraction (1 − ε) of errors over an alphabet of size polynomial in 1/ε. To
maximize the rate as a function of ε (which we think of as a small constant), we
can pick m = Θ(log(1/ε)) in the above corollary.

Corollary 5.12. For all ε > 0, there is a family of Q-ary codes for

Q = (1/ε)O(log(1/ε))

which has rate Ω(ε/ log2(1/ε)) and which is (1−ε, (1/ε)O(log log(1/ε)))-list decodable.
Moreover, the codes have a natural representation, computable in expected polyno-
mial time, that permits polynomial time encoding as well as polynomial time list
decoding up to radius (1 − ε).

6. A second decoding algorithm

We now describe our second decoding algorithm, which uses the second approach
described in Section 2 to address the problem of all coefficients of the interpolated
polynomial vanishing at R. We consider only the case of two correlated functions to
keep the exposition simple. The idea can be extended to three or more correlated
functions in a straightforward way. Note that for a technical reason, we needed three
or more correlated functions for the algorithm in Section 5 to give an improvement
over AG codes. Here no such technicalities arise. We therefore first restate the
problem in its two correlated functions version.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

462 VENKATESAN GURUSWAMI AND ANINDYA C. PATTHAK

Input: Pairs (yi, zi) ∈ F2
q , for i = 1, 2, . . . , n.

Output: All functions f ∈ �L((α − 1)P∞) for which the tuple of functions
(f, h = I[f(R)s1]) satisfies f(Pi) = yi, h(Pi) = zi for at least t values of
i ∈ {1, 2, . . . , n}.

6.1. High level idea behind the algorithm. We follow the same interpolation
based decoding idea from Section 5. However, in a major departure here we allow
higher multiplicities as in [6]. In the interpolation step, we try to fit the data points
{(Pi, yi, zi)}n

i=1 by a polynomial Q(Y, Z) ∈ K[Y, Z] with the following properties
(for suitable parameter choices for �, r):

(1) Q is nonzero.
(2) For all f, h ∈ �L((α + 2g − 1)P∞), Q(f, h) ∈ L(�P∞).
(3) For every i ∈ [n], for all f, h ∈ �L((α + 2g − 1)P∞) which satisfy f(Pi) = yi,

h(Pi) = zi, Q(f, h) has a zero of multiplicity r at Pi i.e., vPi
(Q(f, h)) � r.

The following lemma is analogous to Lemma 5.1.

Lemma 6.1. Let Q satisfy above conditions. Further, let f, h ∈ �L((α+2g−1)P∞)
satisfy f(Pi) = yi and h(Pi) = zi for at least t values of i ∈ [n], and rt > �; then
Q(f, h) ≡ 0.

Proof. By Property 2 of the interpolated polynomial Q, vP∞(Q(f, h)) � −�. How-
ever, at least on t points it holds that f(Pi) = yi and h(Pi) = zi. Therefore∑n

i=1 vPi
(Q(f, h)) � r · t > �. Hence Q(f, h) must be identically zero. �

As before, we then reduce the polynomial Q modulo the place R, by evaluating
each of its coefficients at R, to obtain a polynomial N(Y, Z) ∈ Fqα [Y, Z]. At this
step, as mentioned earlier, we would be stuck if N is the zero polynomial. To solve
this problem, we exploit the following facts. Since the degree of R is large, there
exists a function, say ν, that has a pole of order one at R and has no other pole. (To
see this, observe that if deg(R) is large, then by Riemann-Roch �L(R) is nonempty.
Hence there exists a rational function that has pole of order one at R and nowhere
else.) Also, each coefficient of Q has at most w = ��/α zeroes at R. Therefore,
if N ≡ 0, there must exist a minimum c, 1 � c � w, such that Q̃ = νcQ has a
coefficient that does not vanish at R. Clearly if Q(f, h) ≡ 0, then Q̃(f, h) ≡ 0 as
well. Therefore, if we can find Q̃ and reduce it modulo R, we will get a nonzero
polynomial N such that N(f(R), h(R)) = 0. Further setting T (Y) = N(Y, Y s1) as
before, we would have T (f(R)) = 0, and the task of finding all message functions
f reduces to finding all the roots of the univariate polynomial T . Again, we need
to make sure that the reduction does not produce the zero polynomial. This is
ensured as in the algorithm before by choosing a suitably large s1.

The whole issue, therefore, is how to find Q̃ = νcQ with the stated property. The
coefficients of νcQ all belong to the linear space �L(�P∞ +wR). It turns out that we
can find c, and evaluate all coefficients of Q̃ at R using linear algebra in this linear
space, assuming preprocessed information about the evaluations of functions in a
suitable basis of �L(�P∞ + wR) at R. This yields a polynomial time decoding algo-
rithm given access to a polynomial amount of preprocessed information concerning
the code — details follow.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

CORRELATED ALGEBRAIC-GEOMETRIC CODES 463

6.2. Formal description of the decoding algorithm using multiplicities.
We now formally specify our second decoding algorithm (that was outlined in Sec-
tion 6.1). Recall that the input to the decoding algorithm is a set of n pairs
(yi, zi) ∈ F2

q , and the algorithm should find all functions f ∈ �L((α−1)P∞) such that
(f(Pi), h(Pi)) = (yi, zi) for at least t values of i ∈ {1, 2, . . . , n}, where h = I[f(R)s1]
is the function in �L((α + 2g − 1)P∞) correlated with f . The agreement parameter
t will come out from the analysis. In what follows, φ1, φ2, . . . , φk denotes a basis of
�L((α − 1)P∞) (recall that this is a k-dimensional vector space over Fq).

Our algorithm will run in polynomial time assuming some polynomial amount
of preprocessed information about the code, as described below (� is a parameter
as defined in (9), b = � − g + 1, and w

def= � �
α):

(1) The evaluation at the places P1, P2, . . . , Pn, R of a basis B of �L(�P∞) with
increasing pole orders at P∞, i.e., functions ψ1, . . . , ψb such that

• ∀j ∈ [b] vP∞(ψj) � 1 − g − j and
• ∀j ∈ [b − 1] vP∞(ψj) > vP∞(ψj+1).

The first α + g of these functions ψ1, . . . , ψα+g form a basis of

�L((α + 2g − 1)P∞)

and their evaluations are all that is needed for the encoding. For the de-
coding, we also need evaluations of the rest of the basis functions, as well
as additional information described next.

(2) The coefficients for a change of basis that expresses B in terms of a zero-
increasing basis of �L(�P∞) w.r.t. place Pi for each i = 1, 2, . . . , n. Formally,
coefficients γi,j,h ∈ Fq for i = 1, 2, . . . , n and 1 � j, h � b such that there
exist θ

(i)
1 , . . . , θ

(i)
b ∈ K∗ with vPi

(θj) � j − 1 satisfying

(7) ψj =
b∑

h=1

γi,j,hθ
(i)
h .

Lemma 6.5 asserts the existence of such basis θ
(i)
1 , . . . , θ

(i)
b for each i.

(3) The following information about a basis B′ = {ψ1, ψ2, . . . , ψb} ∪ {ζij | 1 �
i � α, 1 � j � w} for �L(�P∞ + wR) (this basis extends the basis B which
we had for �L(�P∞)). For some ν ∈ �L(R) that has one pole at R and no
poles at any other place (such a ν exists by the Riemann-Roch theorem if
deg(R) = α > g), assume we know the expansion in the basis B′ (i.e., the
b + wα coefficients in Fq) for each of the functions ψiν

c for 1 � i � b and
1 � c � w. (Note that each such function belongs to �L(�P∞ + wR) since
ψi ∈ �L(�P∞) and νc ∈ �L(cR) ⊆ �L(wR).)

Armed with this preprocessed representation of the code, we are now ready to
describe the algorithm in detail.

Step 0: Compute integer parameters r, � where

(8) r
def=

⌈
α + 3g + 2 3

√
n(α + 2g − 1)2

t − 3
√

n(α + 2g − 1)2

⌉

and

(9) �
def= rt − 1.

Set b
def= � − g + 1 and σ

def= � �−g
α+2g−1.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

464 VENKATESAN GURUSWAMI AND ANINDYA C. PATTHAK

Step 1: (Interpolation step) Find a nonzero bivariate polynomial Q[Y, Z]
with coefficients in �L(�P∞) of total degree σ, i.e., of the form

(10) Q[Y, Z] =
∑

j2+j3�σ
j2,j3�0

b−(α+2g−1)(j2+j3)∑
j1=1

ρj1,j2,j3ψj1Y
j2Zj3 ,

by finding the value of the unknowns ρj1,j2,j3 ∈ Fq, such that for each
i ∈ [n], the polynomial Q(i)[Y, Z] def= Q[Y + yi, Z + zi] vanishes at (Pi, 0, 0)
with multiplicity r.

(Using the representation of each basis function ψji
in the zero-increasing

basis for Pi as assumed in (7), we can find such a Q by solving a homoge-
neous linear system of equations over Fq in the unknowns ρj1,j2,j3 . See the
proof of Lemma 6.4 for details.)

Step 2: Compute the polynomial N ∈ Fqα [Y, Z] by evaluating each of the
coefficients of Q (which are functions in �L(�P∞) expressed in the basis
{ψ1, . . . , ψb}) at the place R. If N �≡ 0, proceed to Step 5.

Step 3: (Dealing with N ≡ 0) Define the set of nonzero coefficients of Q

E
def= {ηij | Q[Y, Z] =

∑
ij

ηijY
iZj , 0 �= ηij ∈ �L(�P∞)}.

Now compute

c∗
def= min

ηij∈E
max

c∈{0,1,...,w}
{c | νcηij when expanded in basis B′

has zero coefficients for all ζij}.

(Note that having zero coefficients for all ζij implies that the function has
no pole at R. Also, c∗ � 1 since each ηij has a zero at R and so can
be multiplied by a positive power of ν and still not have a pole at R.)
The above computation of c∗ can be done by simply checking when the
expansion of ηijν

c in basis B′ has zero coefficients for all the ζij ’s.

Step 4: Compute the polynomial N [Y, Z] def= (νc∗Q[Y, Z])(R) ∈ Fqα [Y, Z]
using the given evaluations of each ψi at R (by the definition of c∗ all
coefficients of νc∗Q are regular at R). Note that N �= 0 by the definition
of c∗.

Step 5: Compute the univariate polynomial T ∈ Fqα [Y] where

T [Y] def= N [Y, Y s1].

Step 6: Compute all the roots in Fqα of T . For each root γ ∈ Fqα of T , do
the following:

• Compute the unique f ∈ �L((α−1)P∞), if any, such that f(R) = γ (this
can also be accomplished by solving a linear system, with unknowns
being the coefficients a1, . . . , ak of the basis elements φ1, . . . , φk where
f = a1φ1 + · · · + akφk).

• If such an f exists, test if the encoding of (f, I[f(R)s1]) agrees with
the input tuples on at least t locations. If so, output f .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

CORRELATED ALGEBRAIC-GEOMETRIC CODES 465

6.3. Runtime analysis of the algorithm. The above algorithm can be imple-
mented to run in polynomial time using the preprocessed information assumed in
the previous section along with the following assumed representation.

Lemma 6.2. The above algorithm can be implemented to run in polynomial time,
given an appropriate representation of the code, that consists of:

(i) The evaluation of the basis elements of �L(�P∞) with increasing pole orders
(i.e., functions ψ1, . . . , ψb) at the places P1, . . . , Pn, as well as at a high
degree place R of degree α.

(ii) The coefficients for a change of basis that expresses B in terms of zero-
increasing basis of �L(�P∞) w.r.t. place Pi for each i = 1, . . . , n.

(iii) An explicit basis B′ = {ψ1, . . . , ψb}∪{ζij |1 � i � α, 1 � j � w} of �L(�P∞+
wR) as well as expansion of ψiν

c for 1 � i � b, 1 � c � w in the basis B′.

Proof. Clearly the encoding is efficient given the information in (i). Thus we need
to show that the above information suffices for an efficient decoding.

• Step 1 is essentially solving a homogeneous linear system over Fq using the
representation (given in (ii)) of each basis functions in the zero-increasing
basis for Pi.

• Step 2 uses the given evaluations (given in (i)) of ψi’s at the high degree
place R.

• Step 3 uses the information given in (iii) and hence is efficient.
• Step 4 uses the information given in (i), i.e., it uses evaluations of the basis

functions in �L(�P∞) at R.
• Step 5 is a simple substitution.
• Step 6 can be solved efficiently by a root finding algorithm that runs in

deterministic poly(q, n, α) time, followed by elementary linear algebraic op-
erations.

Thus the overall runtime will be polynomial in the block length n. �

6.4. Analysis of error-correction performance.

Theorem 6.3. For the choice of s1 = σ + 1, the decoding algorithm of Section 6.2
correctly finds all the codewords c = 〈c1, . . . , cn〉 of C which satisfy ci = yi + βzi

for at least t values of i ∈ [n], for t > 3
√

n(k + 3g − 1)2. Moreover, for some c > 1,
if t � c 3

√
n(k + 3g − 1)2, then the list output by the algorithm has size at most

O((c
c−1)2(n/k)2/3).

We will prove Theorem 6.3 by a sequence of lemmas.

Lemma 6.4. For parameters r, � defined in Step 0 of the algorithm, Step 1 finds a
nonzero polynomial Q[Y, Z] satisfying the following two conditions:

(1) For all f, h ∈ �L((α + 2g − 1)P∞), Q(f, h) ∈ L(�P∞).
(2) For every i ∈ [n], for all f, h ∈ �L((α+2g−1)P∞) which satisfy f(Pi) = yi,

h(Pi) = zi, Q(f, h) has a zero of multiplicity r at Pi i.e., vPi
(Q(f, h)) � r.

Proof. First note that by the way Q is expressed in equation (10), for any f, h ∈
�L((α + 2g − 1)P∞) it holds that

vP∞(Q(f, h)) � (vP∞(ψj1) + j2 · vP∞(f) + j3 · vP∞(h))

� 1 − g − j1 − (α + 2g − 1)(j2 + j3) � −� .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

466 VENKATESAN GURUSWAMI AND ANINDYA C. PATTHAK

Also clearly Q(f, h) has no poles outside P∞. Therefore, the first of the two required
conditions is satisfied. To get the second condition, we begin with a lemma from
[6], that allows for a change into a basis with an increasing number of zeroes at any
desired place Pi.

Lemma 6.5. Given functions ψ1, . . . , ψb ∈ L(�P∞) of distinct orders at P∞ satisfy-
ing vP∞(ψj) � 1−g−j and a rational point Pi �= P∞, there exists θ

(i)
1 , . . . , θ

(i)
b ∈ K∗

with vPi
(θj) � j − 1 and γi,j,h ∈ Fq for all j, h with 1 � j, h � b such that

(11) ψj =
b∑

h=1

γi,j,hθ
(i)
h .

Using the above we will express the condition that “Q(i)[Y, Z] def= Q[Y +yi, Z+zi]
vanishes at (Pi, 0, 0) with multiplicity r” as a collection of homogeneous linear
equations in the unknowns ρj1,j2,j3 describing Q. Expressing Q[Y, Z] in the basis
θ
(i)
h for 1 � h � b, we get

(12) Q[Y, Z] =
∑

j2+j3�σ
j2,j3�0

b−(α+2g−1)(j2+j3)∑
j1=1

b∑
h=1

ρj1,j2,j3γi,j1,hθ
(i)
h Y j2Zj3 .

The shifting to yi, zi is achieved by defining Q(i)[Y, Z] def= Q[Y +yi, Z+zi]. Note that
the terms in Q(i)[Y, Z](Pi) that are divisible by Y uZv contribute (u + v) towards
the multiplicity of (Pi, 0, 0) as a zero of Q(i), or equivalently, the multiplicity of
(Pi, yi, zi) as a zero of Q. Then

(13) Q(i)[Y, Z] =
∑

j4+j5�σ
j4,j5�0

b∑
h=1

w
(i)
h,j4,j5

θ
(i)
h Y j4Zj5 ,

where

(14) w
(i)
h,j4,j5

def=
j2+j3�σ∑

j2=j4
j3=j5

b−(α+2g−1)(j2+j3)∑
j1=1

(
j2
j4

)(
j3
j5

)
yj2−j4

i zj3−j5
i ρj1,j2,j3γi,j1,h.

Thus we want w
(i)
h,j4,j5

= 0 for all h � 1, j4 � 0, j5 � 0 such that j4 + j5 + (h− 1) �
(r − 1), which is a collection of

(
r+2
3

)
linear constraints. For all the n places

P1, . . . , Pn, we have in total n
(
r+2
3

)
homogeneous linear constraints. Thus, we can

find the polynomial Q by solving a linear system.
We now prove that the second condition is satisfied:

Lemma 6.6. Suppose we find a polynomial Q satisfying w
(i)
h,j4,j5

= 0 for all h �
1, j4 � 0, j5 � 0 such that j4 + j5 + (h − 1) � (r − 1), and all i. Then, if f, h ∈
�L((α + 2g − 1)P∞) satisfy f(Pi) = yi and h(Pi) = zi, then Q(f, h) has a zero of
multiplicity r at Pi i.e., vPi

(Q(f, h)) � r.

Proof. We have Q(f, h) = Q(i)(f − yi, h− zi) = Q(i)(f − f(Pi), h− h(Pi)), so that

Q(f, h) =
∑

j4+j5�σ;j4,j5�0

b∑
h=1

w
(i)
h,j4,j5

θ
(i)
h (f − f(Pi))j4(h − h(Pi))j5 .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

CORRELATED ALGEBRAIC-GEOMETRIC CODES 467

Note that f(Pi), h(Pi) ∈ Fq, so the above is a well-defined function in K. Since
w

(i)
h,j4,j5

= 0 for j4 + j5 + (h − 1) < r, vPi
(θ(i)

h) � (h − 1), vPi
((f − f(Pi))j4) � j4

and vPi
((h − h(Pi))j5) � j5, we obtain vPi

(Q(f, h)) � r, as claimed. �

We have thus shown that the polynomial satisfies both the conditions required
in the statement of Lemma 6.4. It remains to argue that the polynomial Q is in fact
nonzero. Recall that the total number of linear constraints is n · r(r + 1)(r + 2)/6.
On the other hand the number of unknowns ρj1,j2,j3 equals the number of triples
(j1, j2, j3) such that j2, j3 � 0, j2 + j3 � σ, and 1 � ji � b − (α + 2g − 1)(j2 + j3).
This number is easily seen to be at least (α+2g−1)σ(σ+1)(σ+2)/6. Recall that a
system of homogeneous equations always has a nonzero solution when the number
of unknowns is larger than the number of constraints. Thus in order to ensure that
a nonzero Q[Y, Z] exists, we only need to ensure that

(15)
(α + 2g − 1)σ(σ + 1)(σ + 2)

6
� n · r(r + 1)(r + 2)

6
+ 1.

The L.H.S is at least (α + 2g − 1)σ3/6 and σ � �−g
α+2g−1 − 1, so the above condition

is met if we set �
def= rt − 1 and choose r so that it holds that

(� − α − 3g + 1)3

(α + 2g − 1)2
� n(r + 2)3,

i.e., (rt − α − 3g) � 3
√

n(α + 2g − 1)2 · (r + 2).

To satisfy the above we can pick

(16) r =

⌈
α + 3g + 2 3

√
n(α + 2g − 1)2

t − 3
√

n(α + 2g − 1)2

⌉
,

which is exactly the choice made in Step 0 of the algorithm. Thus the choice
of r, � ensures a nonzero Q[Y, Z]. This proves that the interpolation step finds a
polynomial Q[Y, Z] satisfying all the required conditions. �

Lemma 6.7. If Q �≡ 0, then N [Y, Z] ∈ Fqα [Y, Z] obtained in Step 4 is a nonzero
polynomial of total degree at most σ. Moreover, if Q(f, h) = 0, for some functions
f, h ∈ OR, then N(f(R), h(R)) = 0.

Proof. First note that if Q[Y, Z](R) is a zero polynomial, then ∀ηij ∈ E, vR(ηij) > 0.
Let c be the minimum order corresponding to some ηi∗j∗ . Then it certainly holds
that vR(νcηi∗j∗) = 0 and ∀vR(νcηij) � 0. Hence, (νcQ[Y, Z])(R) �≡ 0. Note that
this c is exactly the c∗ chosen in Step 3. Further note that since each ηij ∈ �L(�P∞),
hence c∗ � � �

degR = � �
α. Thus N [Y, Z] �≡ 0. The evaluation map evR : OR →

Fqα is a homomorphism, so N(f(R), h(R)) equals the evaluation of νc∗Q(f, h) at
R. Since Q(f, h) = 0 by assumption, we have N(f(R), h(R)) = 0. �

Lemma 6.8. If σ � 1, s1 = σ+1 > σ and N [Y, Z] is a nonzero polynomial of total
degree at most σ, then the polynomial T [Y] = N [Y, Y s1] is a nonzero polynomial of
degree at most s1σ.

Proof. The claim on the degree of T is straightforward. Therefore, we show that it
is nonzero. Assume otherwise. Then (Z − Y s1)|N [Y, Z], which is impossible since
the degree of N [Y, Z] < s1. �

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

468 VENKATESAN GURUSWAMI AND ANINDYA C. PATTHAK

Proof of Theorem 6.3. We first prove correctness, i.e., all messages f that should
be output are indeed output by the algorithm. Let f, h ∈ �L((α+2g−1)P∞) be such
that h(R) = f(R)s1 and f(Pi) = yi, h(Pi) = zi for at least t points. Combining
Lemma 6.1 and Lemma 6.4, we have that the polynomial Q found in Step 1 is
nonzero and satisfies Q(f, h) = 0. Using Lemma 6.7, we have f(R), h(R) satisfy
N(f(R), h(R)) = 0 for the nonzero polynomial N . Since s1 > σ, T is a nonzero
polynomial. Finally, since h(R) = f(R)s1 , we have T (f(R)) = N(f(R), f(R)s1) =
N(f(R), h(R)) = 0. Hence f(R) appears as a root in Step 6. We conclude that f
appears as an output of the algorithm.

Regarding the claim about the list size, the size of the list output is at most
the degree T which is at most s1σ = O(σ2) = O(�2/α2) = O((rt/α)2). With
the choice of r as in (16), when t � c 3

√
n(k + 3g − 1)2, this bound is at most

O((c
c−1)2(n/k)2/3), as claimed. �

6.5. Extension to multivariate interpolation. The algorithm presented in Sec-
tion 6 can be easily extended to a multivariate setting. Therefore, we only give the
necessary parameters. We assume t > m+1

√
n(α + 2g − 1)m and g � 2. Then we

set R def= k/(mn) = (α − g)/(mn), σ
def= � �−g

α+2g−1, b
def= � − g + 1 � aσ + 1. Further

we define a set if indices {si|i = 0, 1, . . . , m − 1} recursively as follows: s0
def= 1 and

si
def= si−1σ + 1.
In order to ensure rt > �, we set (assuming m > 2)

r
def=

⌈
α + 3g + m m+1

√
n(α + 2g − 1)m

t − m+1
√

n(α + 2g − 1)m

⌉
,

�
def= rt − 1.

The degree of N gives an easy bound on the list size which is � σ·max{s1, · · · , sm−1}
� (σ +1)m = Θ(σm). Moreover, the alphabet size can easily be seen to be Q = qm.

6.6. Consequences. Since the above construction applies to codes arising from
any function field, plugging in the function field with the best possible ratio of g/n,
and also using m � 2 correlated functions, we get the following result.

Theorem 6.9 (Main). For every finite field of size q, with q being a square, an
integer m � 2, every c > 1, and every R, 1√

q−1 < mR < 1− 1√
q−1 , there is a family

of codes over alphabet size qm of rate R, relative distance at least 1−mR− 1√
q−1 , and

which is list-decodable up to a fraction 1− c ·
(

3√
q−1 + mR

)m/(m+1)

of errors using

list size at most O
((

cm
c−1

)m

· R−m/(m+1)
)
. Furthermore, there is a polynomial

sized representation of the codes given which encoding and list decoding up to this
radius can be performed in polynomial time.

For decoding up to a fraction (1− ε) of errors, with the choice m = Θ(log(1/ε))
in the above theorem, we get the following.

Corollary 6.10. For all ε > 0, there is a family of Q-ary codes with Q =
(1/ε)O(log(1/ε)) which has rate Ω(ε/log(1/ε)) and which is (1−ε, (1/ε)O(log log(1/ε)))-
list decodable. Furthermore, the codes have a polynomial sized representation that
permits encoding and list decoding up to radius (1 − ε) in polynomial time.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

CORRELATED ALGEBRAIC-GEOMETRIC CODES 469

7. Constructing the representation of codes

We now show how to construct the representation needed for encoding/decoding
in polynomial time (as outlined in Section 5.3) for codes based on a tower of function
fields proposed by Garcia and Stichtenoth [2]. We begin with the description of
this tower of function fields.

Let q0 be a prime power and F = Fq2
0
. The tower of function fields Fi, i =

0, 1, 2, . . . , is defined as a sequence of Artin-Schreier extensions. We begin with
F0 = F (x0), the field of rational functions in x0. For i � 1, Fi is an algebraic
extension of Fi−1 of degree q0:

(17) Fi = Fi−1(xi) where xq0
i + xi =

xq0
i−1

xq0−1
i−1 + 1

.

The above tower meets the Drinfeld-Vlădut bound, and thus leads to AG codes with
best rate vs. distance trade-offs. In [12], a polynomial time algorithm is presented
to compute the generator matrix of such an AG code. All we need to add to this
to achieve the representation needed in Section 5.3 are the evaluations of the basis
elements at some place R of a specified large degree, and the evaluations of 2g extra
functions at the code places P1, P2, . . . , Pn and at R. This turns out to be not so
straightforward. We begin with a description of some of the basic facts about the
function fields Fm. The description assumes some basic knowledge of splitting of
places in field extensions.

The genus g(Fm) of Fm satisfies g(Fm) � qm+1
0 . Let Ω = {γ ∈ F | γq0 + γ = 0}

denote the set of trace zero elements. For θ ∈ F , let P
(0)
θ denote the unique zero of

x0 − θ in F0. Let P
(0)
∞ denote the unique pole of x0 in F0. The place P

(0)
∞ is totally

ramified in the tower, i.e., in each Fm there is precisely one place, P
(m)
∞ , that lies

above P
(0)
∞ and moreover this place has degree one. We will use AG codes based

on Fm by using as a message space �L((α − 1)P (m)
∞).

We now describe the places where the message functions are evaluated for the
encoding. Each of the q2

0−q0 places P
(0)
θ for θ ∈ F \Ω splits completely in the tower

and thus has qm
0 places of degree one lying above it in Fm. Let n = (q2

0 −q0)qm
0 and

let P1, P2, . . . , Pn be the set of all places of Fm that lie above P
(0)
θ for θ ∈ F \ Ω.

We use the places P1, P2, . . . , Pn as the evaluation places for encoding. Note that
n/g(Fm) � (q0 − 1) and hence the code meets the Drinfeld-Vlădut bound.

Let Rm be the ring of functions that have a pole only at P
(m)
∞ . As shown in [12],

every function Rm has an expression of the form

(18) xl
0 ·

⎛
⎝(m−1)q0+1∑

e0=0

q0−1∑
e1=0

· · ·
q0−1∑
em=0

ceg0
xe0

0 xe1
1 · · ·xem

m

π1 · · ·πm−1

⎞
⎠

where l � 0, ce ∈ F , and for 0 � k < m, gk = xq0−1
k +1 and πk = g0g1 · · · gk. More-

over, for any n′, Shum et al. [12] present an algorithm running in time polynomial
in n′, n that outputs a basis of �L(n′P

(m)
∞) in the above form, together with evalu-

ations of the basis elements at P1, P2, . . . , Pn. We note that this latter evaluation
part is easily done once the basis elements are represented in the form (18), since for
each Pi, evaluating at Pi amounts to substituting appropriate values from F \Ω for

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

470 VENKATESAN GURUSWAMI AND ANINDYA C. PATTHAK

x0, x1, . . . , xm.7 Likewise, it suffices to find out the evaluations of x0, x1, . . . , xm at
a place R of degree α in Fm. We now proceed towards this goal, and Theorem 7.2
below asserts that this can be done.

The places of degree α in F0 = F (x0) are in one-one correspondence with irre-
ducible polynomials of degree α over F . The place corresponding to an irreducible
polynomial p0(x0) ∈ F [x0] is equal to

Pp0(x0)
def=

{
a(x0)
b(x0)

: a, b ∈ F [x0], p0(x0)|a(x0), p0(x0) � b(x0)
}

.

The following lemma shows that one can find a place of degree α in Fm by finding
a place of degree α in F0 that has a place of degree α lying above it in the extension
[Fm : F0].

Lemma 7.1. For every D � max{m + 6, 16}, there are at least q2D
0

2D·qm
0

places of
degree D in F0 that have a place of degree D lying above them in Fm.

Proof. Let g = g(Fm) be the genus of Fm; we know g � qm+1
0 . Let TD denote the set

of places in Fm of degree D. By the Hasse-Weil bound, it is known that the number
of places BD = |TD| of degree D in Fm satisfies |BD − q2D

0 /D| < (2 + 7g)qD
0 /D;

cf. [13, Corollary V.2.10]. It follows that BD � q2D
0 /D − 8gqD

0 /D � q2D
0 /D −

8qm+1+D
0 /D � q2D

0
2D .

Let T ′
D ⊆ TD be those places of degree D in Fm that do not lie above a place of

degree D in F0. Let B′
D = |T ′

D|. The number ND of places of degree D in F0 which
have a place of degree D lying above them in Fm satisfies ND � (BD − B′

D)/qm
0 ,

since the degree of the extension [Fm : F0] = qm
0 and so at most qm

0 places of Fm

lie above any place of F0.
Now, if P̃ ∈ T ′

D, then the place P̃0 lying below it in F0 must have degree D0

at most D/2 (since D0 must divide D and is not equal to D). It follows that
B′

D � qm
0 nD/2 where nD/2 is the number of places of degree at most D/2 in F0.

Clearly nD/2 �
∑D/2+1

i=1 (q2
0)

i � qD+4
0 .

Hence qm
0 ND � BD−B′

D � q2D
0 /D−8qm+1+D

0 /D−qm+D+4
0 � q2D

0 /D−2qm+D+4
0

and this latter quantity is easily seen to be at least q2D
0
2D when

D � max{m + 6, 16}. �

We are now ready to prove that the evaluations of the basis functions of �L(n′P
(m)
∞)

at some place of large degree in Fm can be efficiently found. Recall that the block
length n of the code is n = (q2

0 − q0)qm
0 .

Theorem 7.2. There is a randomized algorithm that on input integers n′, α with
5 log n � α � n, outputs in expected poly(n, n′) time the evaluations of a set of
basis functions of �L(n′P

(m)
∞) at some place R ∈ PFm

with deg(R) = α.

Proof. Applying Lemma 7.1, when 5 log n � α � n, if we pick a monic polynomial
p0(x0) over Fq2

0
of degree α, then with probability at least 1

2αqm
0

� 1
2n2 , the degree

α place Pp0(x0) ∈ PF0 will have a place of degree α above it in Fm. Suppose that
given an irreducible polynomial p0(x0) of degree α we could check in poly(n) time
whether the place Pp0(x0) has some place Rp0(x0) of degree α above it in Fm, and if

7If we begin with x0 = γ ∈ F \Ω, and solve the equations in (17) in sequence for x1, x2, . . . , xm,
then for all solutions, we will have each xi ∈ F \ Ω; cf. [2, Lemma 3.9].

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

CORRELATED ALGEBRAIC-GEOMETRIC CODES 471

so, also output the evaluations of x0, x1, . . . , xm at the place Rp0(x0). Then we can
simply pick a random monic polynomial of degree α, check it is irreducible (which
can be done in deterministic polynomial time), and run the above check, and repeat
the process until we succeed in finding a place of degree α in Fm together with the
evaluations of x0, x1, . . . , xm at that place. This process will succeed in expected
O(n2) trials of the initial monic polynomial.

Therefore, it remains to check whether a given degree α irreducible p0(x0) ∈
F [x0] has a place of degree α above it in Fm, and if it does, to find the evaluations
of x0, . . . , xm at one of those places. Let L = F [x0]/(p0(x0)); L is isomorphic to the
finite field Fq2α

0
. Let ζ0 ∈ L be the residue of x

q0
0

x
q0−1
0 +1

modulo p0(x0). A well-known

theorem of Kummer (cf. [13, Theorem III.3.7]), when applied to the tower (17),
implies that Pp0(x0) has some place of degree α above it in Fm iff the sequence of

equations xq0
1 + x1 = ζ0 and xq0

i+1 + xi+1 = x
q0
i

x
q0−1
i +1

for 1 � i < m has a solution

xi = ζi ∈ L for 1 � i � m. Moreover, in such a case, there is a place Rp0(x0) of
degree α in Fm such that the evaluation of xi at the place equals ζi for 0 � i � m.

Now, for any ζ ∈ L represented in the basis {1, x0, . . . , x
α−1
0 } over Fq2

0
, one can

find all solutions in L of a single equation zq + z = ζ in poly(α) time by solving a
linear system with 2α unknowns over Fq0 . This is because zq0 + z is a linearized
polynomial and is a Fq0-linear function on L; cf. [10, Chap. 3, Sec. 4]. It follows
that one can find all solutions (ζ1, . . . , ζm) ∈ Lm to x1, . . . , xm that satisfy the
above equations in qm

0 · poly(α) = poly(n) time, by solving at most qm
0 linearized

polynomial equations. If no such solution exists, the particular choice p0(x0) fails.
Otherwise, we can use an arbitrary one of those solutions (ζ0, ζ1, . . . , ζm) as the
evaluations of x0, . . . , xm respectively at a place of degree α. �

8. Extension to list recovering and binary codes

8.1. List recoverable codes.

Definition 8.1. A code C ⊆ Σn is (γ, l, L)-list recoverable if for every sequence
of sets S1, S2, . . . , Sn, where each Si ⊆ Σ has at most l elements, the number of
codewords c ∈ C which satisfy ci ∈ Si for at least γn values of i ∈ {1, 2, . . . , n} is
at most L.

Note a code being (ρ, L)-list decodable is the same thing as it being (1−ρ, 1, L)-
list recoverable, so the above notion is more general than list decoding. The name
list recovering was coined in [3], and this notion has played a crucial role in new
constructions of list-decodable codes since.

We now make the following observation. The algorithm in Section 5.2 can be
trivially generalized to handle the case when there is a set Si consisting of possibly
more than one triple (yi, zi1, zi2) for each location i. We simply need to add a
constraint for each such triple in the interpolation of Step 2, so that the total
number of constraints will now be the total number of triples N (or in other words
the total size of all the Si’s). It immediately follows that we get an algorithm for
list recovering that works with agreement t as in (5) with N replacing the block
length n. Of course, a similar generalization also holds for the m-variate decoding
algorithm and the agreement bound of (6). Plugging this into function fields with
g/n = 1/(

√
q−1)+o(1), and performing some straightforward computations, we can

get the following results. We note that Corollary 5.11 is a special case obtained by

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

472 VENKATESAN GURUSWAMI AND ANINDYA C. PATTHAK

setting l = 1 and γ = ε. Corollary 8.3 is obtained using the choice m = �log2(l/γ)�
in Theorem 8.2.

Theorem 8.2. For all integers l � 2, for all γ > 0 and all integers m � 3,
there is a family of Q-ary codes for Q = O((ml1/m/γ)2m2/(m−1)) which has rate
Ω(γ/m2 · (γ/l)1/(m−1)) and which is (γ, l, L)-list recoverable for

L = O(m2 · m! · (l/γ)m/(m−1)).

Moreover, the codes have a natural representation, computable in expected poly-
nomial time, that permits polynomial time encoding as well as polynomial time
(γ, l, L)-list recovering.

Corollary 8.3. For all integers l � 2 and all γ > 0, there is a family of Q-
ary codes for Q = lO(log log(l/γ)) · (1/γ)O(log(1/γ)) which has rate Ω(γ/ log2(l/γ))
and which is (γ, l, L)-list recoverable for L = (l/γ)O(log log(l/γ)). Moreover, the codes
have a natural representation, computable in expected polynomial time, that permits
polynomial time encoding as well as polynomial time (γ, l, L)-list recovering.

A similar generalization of the algorithm in Section 6.2 is possible.

8.2. Binary codes for list decoding up to radius (1/2− ε). We now consider
the problem of constructing binary codes for list decoding up to radius (1/2 − ε),
for small ε > 0. Using the list recoverable codes of Corollary 8.3 with parameters
l = O(1/ε2) and γ = ε/2 as the outer code in a concatenation scheme with a
constant-sized binary inner code with Q codewords and rate Ω(ε2) and that is
(1/2 − ε/2, l)-list decodable, we can show the following.

Theorem 8.4. For every ε > 0, there is a family of binary codes of rate
Ω(ε3/ log2(1/ε)) that is (1/2 − ε, (1/ε)O(log log(1/ε)))-list-decodable. The codes can
be constructed in expected polynomial time and admit a polynomial time encoding
algorithm as well a polynomial time list decoding algorithm for radius (1/2 − ε).

Generalizing the algorithm from Section 6.2, we can achieve a better rate of
Ω(ε3/ log(1/ε)) though the construction needs some preprocessed information.

We remark that the recent construction of [4] achieves a rate of Ω(ε3) for
(1/2 − ε, L)-list-decodable codes, but their construction time as well as list size
L is nΩ(1/ε3). In contrast, our codes are uniformly constructive, i.e., can be con-
structed and decoded in time f(ε)nO(1) with exponent of n independent of ε, and
achieve a list size independent of the block length.

9. Concluding remarks

We have generalized the Parvaresh-Vardy approach to all algebraic-geometric
codes. These new codes are obtained by evaluating several functions from a function
field, which are correlated in a carefully specified way, at some rational points on
the algebraic curve. Some complications arise in the higher genus case compared
to RS codes (the genus 0 case), but we showed how to handle these with a minor
loss in error-correction performance.

The scheme of evaluating correlated functions/messages to perform the encoding
is quite general and can also be applied to Chinese Remainder codes (in fact for
these codes there is a precise parallel with Reed-Solomon codes), and more generally
to “ideal-based” codes [5]. Details are quite straightforward now that we have
abstracted the salient features of the algorithm for general AG-codes.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

CORRELATED ALGEBRAIC-GEOMETRIC CODES 473

Acknowledgments

We thank Farzad Parvaresh and Alexander Vardy for sending us an early draft
of their paper. The first author thanks Henning Stichtenoth for useful discussions
on the splitting behavior of places in towers of function fields. The second author
thanks Felipe Voloch for helpful comments and suggestions. We also thank an
anonymous referee for his/her valuable comments.

References

1. Arnaldo Garcia and Henning Stichtenoth, A tower of Artin-Schreier extensions of function

fields attaining the Drinfeld-Vlădut bound, Inventiones Mathematicae 121 (1995), 211–222.
MR1345289 (96d:11074)

2. , On the asymptotic behavior of some towers of function fields over finite fields, Journal
of Number Theory 61 (1996), no. 2, 248–273. MR1423052 (97i:11067)

3. Venkatesan Guruswami and Piotr Indyk, Expander-based constructions of efficiently decod-
able codes, Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science
(FOCS), 2001, pp. 658–667. MR1948755

4. Venkatesan Guruswami and Atri Rudra, Explicit capacity-achieving list-decodable codes, Pro-
ceedings of the 38th ACM Symposium on Theory of Computing, May 2006, pp. 1–10.
MR2277125

5. Venkatesan Guruswami, Amit Sahai, and Madhu Sudan, Soft-decision decoding of Chinese
Remainder codes, Proceedings of the 41st IEEE Symposium on Foundations of Computer
Science (FOCS), 2000, pp. 159–168. MR1931814

6. Venkatesan Guruswami and Madhu Sudan, Improved decoding of Reed-Solomon and
algebraic-geometric codes, IEEE Transactions on Information Theory 45 (1999), 1757–1767.
MR1720630 (2000j:94033)

7. Venkatesan Guruswami and Madhu Sudan, On representations of algebraic-geometric codes,
IEEE Transactions on Information Theory 47 (May 2001), no. 4, 1610–1613. MR1830110
(2002b:94046)

8. Ralf Koetter and Alexander Vardy, Soft decoding of Reed Solomon codes and optimal weight
assignments, ITG Fachtagung (Berlin, Germany), January 2002.

9. , Algebraic soft-decision decoding of Reed-Solomon codes, IEEE Transactions on In-

formation Theory 49 (2003), no. 11, 2809–2825. MR2027561 (2004k:94093)
10. Rudolf Lidl and Harald Niederreiter, Introduction to finite fields and their applications, Cam-

bridge University Press, Cambridge, MA, 1986. MR860948 (88c:11073)
11. Farzad Parvaresh and Alexander Vardy, Correcting errors beyond the Guruswami-Sudan ra-

dius in polynomial time, Proceedings of the 46th IEEE Symposium on Foundations of Com-
puter Science (FOCS), 2005, pp. 285–294.

12. Kenneth Shum, Ilia Aleshnikov, P. Vijay Kumar, Henning Stichtenoth, and Vinay Deolalikar,
A low-complexity algorithm for the construction of algebraic-geometric codes better than the
Gilbert-Varshamov bound, IEEE Transactions on Information Theory 47 (2001), no. 6, 2225–
2241. MR1873198 (2003e:94110)

13. Henning Stichtenoth, Algebraic function fields and codes, Universitext, Springer-Verlag,
Berlin, 1993. MR1251961 (94k:14016)

14. Madhu Sudan, Decoding of Reed-Solomon codes beyond the error-correction bound, Journal
of Complexity 13 (1997), no. 1, 180–193. MR1449766 (98f:94024)

15. Michael A. Tsfasman, Serge G. Vlădut, and Thomas Zink, Modular curves, Shimura curves,
and codes better than the Varshamov-Gilbert bound, Math. Nachrichten 109 (1982), 21–28.
MR705893 (85i:11108)

Department of Computer Science & Engineering, University of Washington, Seattle,

Washington 98195

E-mail address: venkat@cs.washington.edu

Department of Computer Science, University of Texas at Austin, Austin, Texas 78712

E-mail address: anindya@cs.utexas.edu

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=1345289
http://www.ams.org/mathscinet-getitem?mr=1345289
http://www.ams.org/mathscinet-getitem?mr=1423052
http://www.ams.org/mathscinet-getitem?mr=1423052
http://www.ams.org/mathscinet-getitem?mr=1948755
http://www.ams.org/mathscinet-getitem?mr=2277125
http://www.ams.org/mathscinet-getitem?mr=1931814
http://www.ams.org/mathscinet-getitem?mr=1720630
http://www.ams.org/mathscinet-getitem?mr=1720630
http://www.ams.org/mathscinet-getitem?mr=1830110
http://www.ams.org/mathscinet-getitem?mr=1830110
http://www.ams.org/mathscinet-getitem?mr=2027561
http://www.ams.org/mathscinet-getitem?mr=2027561
http://www.ams.org/mathscinet-getitem?mr=860948
http://www.ams.org/mathscinet-getitem?mr=860948
http://www.ams.org/mathscinet-getitem?mr=1873198
http://www.ams.org/mathscinet-getitem?mr=1873198
http://www.ams.org/mathscinet-getitem?mr=1251961
http://www.ams.org/mathscinet-getitem?mr=1251961
http://www.ams.org/mathscinet-getitem?mr=1449766
http://www.ams.org/mathscinet-getitem?mr=1449766
http://www.ams.org/mathscinet-getitem?mr=705893
http://www.ams.org/mathscinet-getitem?mr=705893

	1. Introduction
	1.1. Context and motivation
	1.2. Our contribution
	1.3. Complexity of encoding/decoding
	1.4. Organization

	2. Generalizing to AG-codes: Ideas and complications
	3. Background on algebraic-geometric codes
	4. Construction of correlated AG codes
	Parameters
	Encoding complexity

	5. Interpolation based decoding: The first algorithm
	5.1. High level idea behind the algorithm
	5.2. Formal description of the decoding algorithm
	5.3. Runtime analysis
	5.4. Analysis of error-correction performance
	5.5. Consequences
	5.6. Extension to higher order correlations

	6. A second decoding algorithm
	6.1. High level idea behind the algorithm
	6.2. Formal description of the decoding algorithm using multiplicities
	6.3. Runtime analysis of the algorithm
	6.4. Analysis of error-correction performance
	6.5. Extension to multivariate interpolation
	6.6. Consequences

	7. Constructing the representation of codes
	8. Extension to list recovering and binary codes
	8.1. List recoverable codes
	8.2. Binary codes for list decoding up to radius (1/2-)

	9. Concluding remarks
	Acknowledgments
	References

