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Correlated Eigenvalues of Multi-
Soliton Optical Communications
Wen Qi Zhang  1, Tao Gui2, Qun Zhang3, Chao Lu4, Tanya M. Monro1,5, Terence H. Chan3, 

Alan Pak Tao Lau  2 & V. Shahraam Afshar1,5

There is a fundamental limit on the capacity of fibre optical communication system (Shannon Limit). 
This limit can be potentially overcome via using Nonlinear Frequency Division Multiplexing. Dealing 
with noises in these systems is one of the most critical parts in implementing a practical system. In 

this paper, we discover and characterize the correlations among the NFT channels. It is demonstrated 
that the correlation is universal (i.e., independent of types of system noises) and can be exploited to 
maximize transmission throughput. We propose and experimentally confirm a noise model showing 
that end-to-end noise can be modelled as the accumulation of noise associated with each segment of 
optical communication which can be dealt with independently. Also, each point noise can be further 
decomposed into different components, some of which are more significant (and even dominating) than 
others. Hence, one can further approximate and simplify the noise model by focusing on the significant 
component.

Data tra�c has been growing at a rate of more than 60% per year1. Such astronomical growth has sparked an 
urgent need to signi�cantly increase the network transmission capacity, posing a critical technical challenge for 
system designers.

One main fundamental challenge to further enhance data transmission bandwidth is to manage fibre 
nonlinearities2.

Signal propagation across an optical �bre is governed by the nonlinear Schrödinger equation. �e channel 
is nonlinear, unlike other typical transmission media such as copper wires and radio waves2. Traditionally, �bre 
nonlinearities are o�en regarded as channel impairments, and hence should be eliminated or mitigated. Instead 
of dealing with �bre nonlinearities directly, existing schemes are o�en based on a “�awed” approach in that they 
apply “o�-the-shelf ” methods originally developed for classical linear time-invariant radio frequency channels 
(typically with additive white Gaussian noise). �is approach ignores the detail of the underlying �bre physics, 
and attempts to draw loose analogies between macroscopic channel impairments (e.g. dispersion caused by a lin-
ear multipath channel) encountered in microwave channels with those in optical channels (e.g. dispersion due to 
wavelength-dependent refractive index, �bre geometry or nonlinearities). In essence, nonlinearities are assumed 
to be weak and hence can be treated and suppressed as small perturbations3,4.

�e underlying premise behind this perspective is that signals are processed o�en in the time domain and/
or the (linear) frequency domain (where signals are obtained by applying linear transformation such as Fourier 
transform on the time-domain signals). However, fibre nonlinearities cannot be completely eliminated by 
invoking these linear signal processing techniques, leading to undesirable inter-symbol interference (ISI) and 
inter-channel interference (ICI)4. As a result, it was noted that �bre nonlinearities can impose a fundamental limit 
(known as linear Shannon limit) on the data transmission capacity3.

A di�erent paradigm to the problem has received a lot of attention in the past few years. In this paradigm, 
�bre nonlinearity and dispersion e�ect are merely seen as ordinary physical characteristics needed to be managed 
directly, rather than simply evading them as disadvantages5–10. In particular, their approaches are based on the 
use of nonlinear Fourier transform (NFT), or direct scattering transform11–13. Higher order dispersion e�ects are 
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o�en ignored, and the linear loss term is assumed to be perfectly compensated by the distributed Raman ampli-
�cation (DRA).

Mathematically, the NFT provides a systematic method for solving the class of integrable nonlinear 
Schrödinger equation, whereas, in engineering perspective, NFT can “decompose” the nonlinear �bre channel 
into multiple independent subchannels in the (nonlinear) spectral domain. To a great extent, it mirrors the widely 
used wavelength-division multiplexing (WDM), a technology which multiplexes multiple optical carrier signals 
and transmitted in a single optical �bre. �e fundamental di�erence between WDM and NFT based approach is 
in how the “modes” or “subchannels” are de�ned.

Roughly speaking, WDM employs Fourier Transform (FT) such that each wavelength (or its corresponding 
linear frequency) is essentially a “transmission mode”. When signal-to-noise ratio (SNR) is low and nonlineari-
ties are not severe, interference among these modes are negligible. However, as data rate (and also signal power) 
increases, nonlinearities become signi�cant and the transmission modes de�ned by FT can now signi�cantly 
interfere with each other. �is signi�cantly limits the performance of the �bre-optic communications systems, 
especially in long-haul transmissions. In6, NFT was used instead of FT, such that the resulting nonlinear normal 
modes will not interfere with each other even in the presence of nonlinear e�ects.

�is idea of decoupling a nonlinear channel into multiple independent subchannels plays the central role 
in NFT based communications. As a result of the channel decomposition, one can separately design commu-
nications for each individual subchannel, and hence greatly reduce the system complexity. Also, inter-channel 
interference is eliminated with a proper allocation of the (nonlinear) spectrum to users at least in the noise-free 
scenario. �is scheme is called nonlinear frequency division multiplexing (NFDM)6.

�e development of NFT-based transmission systems is only in its infancy stage at the moment. Some prelim-
inary experimental works have already been done to demonstrate the concepts. �e spectrum of a time domain 
signal, a�er applying the NFT, is composed by discrete and continuous spectrum. Both continuous6,14–17 and 
discrete18–23 spectra have been proposed for optical transmission systems. Using a discrete 1-, 2-, 3-eigenvalue 
con�guration together with on-o� keying, Dong et al.18, have achieved 1.5 Gbps transmission over 1800 km. In24 
a two-eigenvalue signal together with QPSK modulation has been used to achieve 4 Gbps transmission rate over 
640 km, followed by QPSK on 7 discrete eigenvalues achieving 14 Gbps transmission rate25. 16 QAM modulation 
on single discrete eigenvalue is then reported to upgrade the data rate to 24 Gbps26. On the other hand, experi-
mental studies of pure continuous spectral modulation have recently been demonstrated by Le et al.17,27–29 and 
most recently a demonstration of joint continuous and discrete spectrum modulation is reported30. Particularly29, 
demonstrated that the continuous spectrum based NFDM system have 1 dB performance advantage over the 
conventional OFDM transmission with 32 Gbps transmission rate over 1464 km.

As mentioned above, NFT based methods lead to channel decomposition with zero inter-channel interfer-
ence. Unfortunately, perfect channel decomposition is only theoretically possible in the absence of noise. In prac-
tice, noise can be generated in the transmitter and the receiver (e.g., quantization, clipping), and also during 
propagation in the �bre (e.g., due to in-line or point ampli�cation). �ese noises will induce correlations among 
individual subchannels, a�ecting the capacity of the transmission system. Despite the crucial role of noise in 
determining the actual capacity of an NFT-based transmission system, e�ects of noise on NFT continuous and 
discrete spectra have only been studied in limited cases. Zhang et al.31, have studied the e�ect of propagation 
noise (with Gaussian distribution) on the spectral amplitudes and the discrete eigenvalue of the channel output 
when the input is a fundamental soliton. Correlation and signal-dependent noise have been considered in1,30,32. 
Derevyanko et al.1, have developed an approximated noise (with Gaussian distribution) model for continuum 
spectra NFT based transmission and estimated a lower bound for the capacity. Based on their model, they �nd 
the noise properties of NFT continuous spectra a�er propagating through a �bre in presence of noise. �e sta-
tistics of scattering vectors due to noise has been considered in33 and investigating the covariance of discrete 
eigenvalues has been identi�ed as an interesting problem in NFT. In34, transmission of second order solitons with 
QPSK-modulated discrete spectral amplitude have been studied and the statistic of amplitude phase variation has 
been compared with those of eigenvalues. �e e�ect of noise on phase-modulated signals (with continuous and 
discrete spectrum) have been considered in30, and it has been concluded that encoding more bits on discrete part 
seems to be feasible.

In this paper, we investigate–both experimentally and through simulation–the noise properties of optical 
communications systems based on input optical pulses with discrete NFT eigenvalues (multi-soliton). In particu-
lar, we consider second and third order solitons, with only two and three discrete eigenvalues, respectively, and 
square pulses with both discrete and continuous eigenvalues. �ere are four main aspects of our contributions:

 1. Unlike in the case of fundamental solitons, analysis of eigenvalue perturbation for multi-soliton or even 
for general signals is very limited. In this paper (Section 2), We demonstrate that the discrete eigenvalues 
of a multi-soliton signal propagating through the network are correlated, regardless of the di�erent types 
of noise that have been introduced at di�erent stages of signal preparation, propagation, and detection. We 
also show that such correlation properties can be used to maximize the transmission throughput so that 
input signal constellation can be optimized to support high data transmission rate. In addition, we also 
show that the correlation between discrete eigenvalues depends on what we de�ne as the nonlinear phase.

 2. In order to explain perturbation properties of eigenvalues, particularly the correlation among discrete 
eigenvalues, we propose a model (Section 4.1 and 4.2) for discrete eigenvalue perturbation such that the 
perturbation of eigenvalues can be written as the sum of individual eigenvalue perturbations caused by the 
injection of the noise in each �bre segment.

 3. We show that the noise e�ects do not accumulate and noise associated with each segment of optical 
communication can be dealt with independently. �e innovative aspect of our model is the modelling 
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assumption that the individual eigenvalue perturbations are essentially insensitive to the noises injected 
before or a�er the segments. As a result, these small individual eigenvalue perturbations can be modelled 
as independently distributed. As an important consequence of this, we show both experimentally and nu-
merically that the angle of the principal eigenvector of the covariance matrix is related to nonlinear phase 
di�erence. We are not aware that this model has been considered in existing literature.

 4. We identify and demonstrate that the e�ect of noise can be decomposed into di�erent components and 
show that the noise components along the signal have more dominating e�ect than others. �is provides 
more insights into the reason behind the eigenvalues correlation and also suggests that one can further 
approximate and simplify noise e�ects by focusing on those dominating noise components.

Basic Principle
The noisy signal evolution across an optical fibre is often modelled as the following stochastic nonlinear 
Schrödinger equation (SNLSE)
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where = −j 1 . �e function A(s, l) is the complex envelope of the signal propagating along the �bre. �e 
parameter β2 is the group velocity dispersion (GVD) coefficient. The GVD coefficient for silica fibres is 
β2 = −2 × 10−23 s 2 km−1 when the input wavelength is 1.55 µm. �e parameter γ is the nonlinear coe�cient. �e 
positive real number  denotes the length of the optical �ber. �e term jκN(τ, l) represents the optical noise �eld, 
which could be modelled as a zero mean circularly symmetric complex white Gaussian noise process35,36 with
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where we use “*” to denote the complex conjugate, and δ(x) means Dirac delta function, and κ is a coe�cient that 
determines the strength of the noise.
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we obtain the normalised SNLSE
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Under the model (5), the e�ect of noise in soliton parameters was studied. In particular, the statistics of the 
eigenvalue was reported in37,38, and the arrival time jitter, namely Gordon-Haus e�ect, was studied in the cele-
brated paper39. �e research about soliton transmission control, regarding the issue of timing jitter, can be found 
in40–43. �e Gordon-Mollenauer e�ect, referring to the soliton phase jitter, was investigated in44, and the work 
about its statistics in solitonic dispersion phase shi� keying systems was studied in45–47.

Let L be an operator on q(t, z) where
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�e eigenvalues of the operator L are invariant in z as the signal q(t, z) propagates through the �bre. In the 
de�nition of the NFT, we suppress the variable z because it is only useful when we need to derive the spatial signal 
propagation through an optical �bre. �roughout this paper, we assume that ∈q t L( ) ( )1  and q(t) → 0, t → ∞.

�e NFT of a signal q(t) is de�ned via the spectral analysis of the operator L. Speci�cally, we need to solve the 
eigenvalue problem

λ=Lv v

at �rst, which is equivalent to the ordinary di�erential equation (ODE)
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called the scattering problem. Using boundary conditions
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we obtain a solution of (7).
Let v(t, λ) = [v1(t, λ), v2(t, λ)]Τ. �e coe�cients a(λ) and b(λ) are called scattering data, which can be obtained 

by calculating
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�e nonlinear Fourier transform of a function q(t) is de�ned with the help of the scattering data. �e NFT of 
a signal q(t) is composed of its spectrum and the corresponding spectral amplitudes. �e spectrum is composed 
of the discrete and continuous spectrum. �e discrete spectrum is a set of isolated complex points called (dis-
crete) eigenvalues, which are zeros of the scattering data a(λ) on the upper half complex plane 
  ∈ >+ c c{ : Im( ) 0}. �e continuous spectrum is the real line . �e corresponding spectral amplitudes 
are de�ned as follows. �e discrete spectral amplitude subject to an eigenvalue λ ∈ +
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It is well known that the spectrum of the signal keeps invariant as a signal propagates through an optical �bre 

in the noise-free case. �e spatial evolution of the spectral amplitudes are summarised as follows:
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where Q(c)(λ, z) and Q(d)(λk, z) are respectively a continuous and a discrete spectral amplitude at position z, and 

z > 0, and λ− j4 k
2 is the NFT channel gain coe�cient and λ−e j z4 k

2

 as the channel gain. Here, we also de�ne the phase 
of Q(c)(λ, z) and Q(d)(λk, z) as nonlinear phase.

Results: Eigenvalue correlation
Pulse propagation experiments and simulations were carried out using pulses with only two discrete eignevlues 
ranging from λ1 = 0.3 j to 0.75 j and λ2 = 0.9 j to 1.35 j in steps of 0.15 j.

Figure 1 shows the experimental setup for the eigenvalue correlation transmission system. �e transmitter 
(TX) comprises a 92 GSa/s arbitrary waveform generator (AWG) providing a drive signal for an IQ modulator 
which generates 1 GBd optical soliton pulses train in a single polarization. �e outputs of the modulator are 

Figure 1. Experimental setup. ECL: external cavity laser; AWG: arbitrary waveform generator; AOM: acousto-
optic modulator; EDFA: erbium doped �ber ampli�er; NZ-DSF: non zero dispersion shi�ed �ber; OBPF: 
Optical band pass �lter; LO: local oscillator; PC: polarization controller.
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ampli�ed and launched into a recirculating �bre loop. Since the theory of NFT is based on the integrability prop-
erty of the lossless nonlinear Schrödinger equation, a short span of 50 km NZ-DSF �ber (with α = 0.19 dB/km, 
β2 = −5.01 ps2km−1 and γ = 1.2 W−1km−1) has been considered in the recirculating loop to minimize perturba-
tion of signal power evolution along the link. An EDFA is placed a�er the �bre to compensate the span loss and 
ensure the same launched power a�er each loop. A �at-top optical �lter with a 3 dB bandwidth of 1 nm is used 
inside the loop to suppress the out-of-band ampli�ed spontaneous emission (ASE) noise. At the receiver, the 
signal is �rst aligned in a particular polarisation by a polarisation controller and then detected by an integrated 
coherent receiver. �e output electrical waveforms are sampled by a digital storage scope (with a sampling rate of 
80 GSa/s and a bandwidth of 33 GHz) followed by o�-line digital signal processing (DSP).

Figure 2 shows the experimental and simulated received signal distributions of the group of 2-soliton pulses 
(with di�erent set of λ1 and λ2, |Q| = 1 and initial nonlinear phase, de�ned in Section 2, of zero) a�er propagating 
a distance of 400 km, equivalent of 8 times circulation within the �ber loop. For each pulse set (λ1, λ2) simula-
tions were run for 500 times, with noiseless input pulses but distributed random noise within the �bre. A�er 
propagation, the eigenvalues of these 500 outputs were then calculated using a forward di�erence method6, see 
Simulation section in Methods 5.1. Figure 2a,b show the experimental and simulation distribution of each set of 
eigenvalues a�er propagation, respectively. A circular distribution of the two eigenvalues are expected for totally 
uncorrelated eigenvalues. However, the results show a linear-like distribution, which indicates a positive correla-
tion. To quantify this, we have calculated the sample correlation coe�cient between Im(λ1) and Im(λ2) for each 
set of eigenvalues and represented them in Fig. 2c,d, for experimental and simulation results, respectively. Note 
that the sample correlation between n samples of (xi, yi) for i = 1, …, n is de�ned as

∑ − −

−

= x x y y

n s s

( )( )

( 1)

i
n

i i

x y

1

where (1) x , y  are sample means of x and y, and (2) sx and sy are the sample standard deviations of x and y.
Both experimental and simulation results show the following common characteristics that indicate the corre-

lated nature of NFT eigenvalues:

 (1) Both experiment and simulation show positive correlation represented by elongated elliptical shapes with 
a slightly di�erent orientation of major axis. From a signal design point of view, and as we demonstrated 

Figure 2. Experimental (a), and simulated (b) distribution of eigenvalues a�er 400 km transmission. �e 
di�erent colours are used to help distinguish di�erent input eigenvalue pairs. (c) and (d), experimental and 
simulated contour plot of correlation coe�cient, respectively.
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through a simulation below, one can appropriately leverage such correlation properties by using more 
compact arrangment of NFT eigenvalues in the direction of the minor axis of the elliptical distribution and 
achieve a higher spectral e�ciency.

 (2) In both cases, correlation decreases as λ2 increases or λ1 decreases.

�e angle of the scattering ellipsis’ orientation in Fig. 2(a,b) is partially related to λ1, λ2 as well as propagation 
distance and nonlinear phase. �e details of such relations are provided in Section 4.2.

Some discrepancies between experimental and simulation results are also observed. Qualitatively, the ori-
entation of the distributions of the two eigenvalues and their correlation are di�erent for experiment and sim-
ulations results. �is could be explained by noting that in simulations, we only consider white Gaussian noise 
added during the propagation along the �bre. In the experiment, however, apart from the noise generated during 
propagation, noises are also induced during the pulse generation stage (e.g., when using the AWG to generate 
the electrical signals and the IQ modulator to generate optical signals) and detection stages. In general, di�erent 
types of noise can a�ect a signal at di�erent stages of generation, propagation, and detection. In Supplementary 
Material 1, we show the simulations of the di�erent e�ects of di�erent types of noise. �e results demonstrated 
that correlations between eigenvalues of a signal commonly exist.

Correlations of NFT eigenvalues has a signi�cant impact on designing an NFT-based �bre optic network. In 
Supplementary Material 4, we consider an example illustrating how to exploit such correlations to improve the 
performance of a system. �e concept also does great help to the symbol decision. An example of utilising the 
correlation to improve BER is shown below using the experimental dataset (Fig. 2(a)). Figure 3(a) shows a grid 
overlay on top of the constellation that is used to decode the signal conventionally. �e vertices of the grids are 
0.225, 0.375, 0.525, 0.675 and 0.825 for the x-axis and 0.825, 0.975, 1.125, 1.275 and 1.425 for the y-axis. A symbol 
is decoded correctly if it falls into its corresponding grid. However, if assuming the noise are in correlated 2-D 
Gaussian distribution, one can apply the covariance matrix to normalise the Euclidean distance by using the fol-
lowing equation to decode the signal:

− − −
= ...

−S U C S Uiargmax{exp( ( ) ( ) )}
i

i i
T

1, ,16

1

where S = (xi, yi)|i=1, …, 16 denotes the received (Im(λ1), Im(λ2)) which has 16 di�erent possibilities. Ci is calculated 
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where cov(⋅) denotes the covariance matrix. Ui is the variance of S which can be calculated as:

=U E x E y( ( ), ( )),i i i

where E(⋅) denotes expectation.
�e BER of the two decode method is plotted in Fig. 3(b). By taking advantage of the correlation, BER of the 

same data set is 10 fold smaller than the conventional method.
Remark: �e above example is used only to demonstrate how correlations can be exploited to increase data rate.

Figure 3. Distribution of eigenvalues for constellation of 2-soliton pulses a�er propagating for 0.1 
normalized distance. (a) Conventional decoding method of de�ning a grid over the constellation chart from 
the experimental data set. (b) Bit error rate (BER) calculated using both the conventional method and the 
correlational method for di�erent propagation length.
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Further simulation studies reveal that the correlation exists in systems with larger number of discrete eigen-
values, e.g. 3. Figure 4 shows a case with 3 discrete eigenvalues 0.5 j, 1.5 j and 2.5 j. �e subplots of Fig. 4 show the 
correlation between eigenvalues λ1 and λ2, λ1 and λ3, λ2 and λ3 as well as a distribution of the eigenvalues in a 3-D 
parameter space. Similar correlations can also be found in systems with even more eigenvalues.

One fundamental challenge in designing eigenvalue communications system is to characterise the noise in the 
discrete eigenvalues. In the previous section, we have discussed the correlation of discrete eigenvalues for short 
distance (of normalised length 0.1) experimentally and numerically. To interpret or explain such correlation 
among eigenvalues, we propose a model for eigenvalue perturbation and examine how additive noises a�ect the 
eigenvalues in the following section. Based on the model, we observe that the eigenvalues are signi�cantly a�ected 
by the same “noise component” which matches the signal itself. As a result, the perturbation of the eigenvalues 
can be greatly correlated.

To better illustrate the idea, consider a simple additive noise model:

= +y t x t n t( ) ( ) ( )

where x(t) is a signal in the time domain and n(t) is an additive white Gaussian noise. If we look at two di�erent 
linear frequencies f1 and f2, let Y(f), X(f) and N(f) be the ordinary (linear) Fourier Transform of y(t), x(t) and n(t), 
then Y(f1) − X(f1) = N(f1) and Y(f2) − X(f2) = N(f2). �e interesting fact is that N(f1) and N(f2) are independent of 
each other (corresponding to two independent harmonic components of the white noise n(t)). In other words, the 
harmonic noise component at frequency f1 will have no e�ects on the perturbation Y(f2) − X(f2). Similar is true for 
the harmonic noise component at frequency f2 on the perturbation Y(f1) − X(f1).

However, this is no longer the case for the eigenvalues of y(t) in the NFT domain. In the following section, we 
consider a model for eigenvalue perturbation, using which our simulation shows that the eigenvalue perturbation 
is greatly a�ected by a noise component that matches the signal x(t). As a result, the eigenvalue perturbation 
becomes correlated.

Results: Modeling eigenvalues perturbation
In the following, we will develop a full model of eigenvalue perturbation, based on our two observations on prop-
erties of NFT discrete eigenvalue perturbation in an optical communication system:

Figure 4. Correlations between all possible pairs of eigenvalues for a 3-eigenvalue input signal. �e bottom 
right �gure shows correlation of all eigenvalues in 3 dimensional parameter space.
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 1. Split Step Method for noise; deterministic (due to nonlinearity and dispersion) and stochastic (e.g., due to 
all signal ampli�cation) noise e�ects can be separated, in a similar fashion as linear and nonlinear process-
es in Split Step Method, and

 2. No noise hysteresis;, the e�ect of noise associated with each segment of optical communication can be 
dealt with independently.

Note that the Split-Step Method is a classical technique to numerically evaluate how a signal propagates along 
a �bre. Its central idea is to divide the �bre into many consecutive segments such that one can “separately” model 
and consider the e�ects of di�erent channel impairments (i.e., �bre nonlinearity, chromatic dispersion and noise). 
Our eigenvalue model is based on the same methodology. However, as the �bre nonlinearity and the chromatic 
dispersion as a whole will not perturb the eigenvalues (the beauty and also the fundamental property of NFT), we 
only need to consider the e�ect of additive noise on eigenvalue perturbation. A key advantage of our model is that 
we can now model the eigenvalue perturbation as an accumulated sum of many smaller perturbations introduced 
in each �bre segment. Furthermore, we observe and model that these perturbations are essentially independent, 
and hence leading to a much simpler model.

First, we will state the framework based on which the eigenvalue noise perturbation model is developed. 
When a signal propagates along a �bre, it will be distorted by various channel impairments such as noises and 
�bre nonlinearity and dispersion, causing its shape to change during propagation. In this paper, we will assume 
that the �bre loss can be perfectly compensated by inline distributed ampli�cation. To model the process, we treat 
a �bre as a concatenation of many short �bre segments. As each segment is short, �bre nonlinearity and noise 
can o�en be modelled separately. Under this model, when a signal propagates in a segment, it will undergo two 
phases. In the �rst phase, it will be distorted by �bre nonlinearity, assuming that the segment is noiseless. �en 
in the next phase, a white Gaussian noise (whose power is proportional to the length of the �bre segment) will be 
added. �e resulting signal will then become the input of the next segment, and the same process will continue 
until it reaches the end of the �bre, see Fig. 5.

Modelling a �bre as a concatenation of short segments is only the �rst step. Due to �bre nonlinearities and the 
coupling e�ects between noises and signals, it is still challenging to derive an analytic model to characterise the 
eigenvalues perturbations. In the following, we aim to simplify the model.

Simplification 1: Noise Decoupling. One of the challenges in deriving a model for characterising the per-
turbation of discrete eigenvalues is due to the coupling e�ects of stochastic signal dependent noises (e.g., due to 
inline ampli�cation) and the distortion due to nonlinearities and dispersions. In the following, we propose a new 
simpli�cation paradigm to decouple the two noise e�ects. Our proposed simpli�cation is based on the observa-
tion that perturbation of eigenvalues at the end of the �bre can be accurately modelled by “summing up” all the small 
perturbations of eigenvalues in the segments.

Suppose the input to the �bre is q0(t). Divide the �bre into M segments and let qm(t) be the output of the signal 
a�er propagating m segments (or equivalently the input to the (m + 1)th segment). De�ne Λm as the set of discrete 
eigenvalues of qm(t). Let g(Λm) be a (scalar or vector valued) function of Λm of interest.

Notice that

∑Λ − Λ = Λ − Λ .
=

−g g g g( ) ( ) ( ) ( )M
m

M

m m0
1

1

Therefore, we can characterise the perturbation g(ΛM) − g(Λ0) by characterising the perturbation 
g(Λm) − g(Λm−1) for all m, see Fig. 5 and Table 1.

Observing each individual term, the perturbation g(Λm) − g(Λm−1) is caused by the injection of a noise at 
the mth segment. First, we want to point out that the perturbation depends on both the injected noise nm(t) and 
the input of the segment qm−1(t) (which in turn also depends on the noises added in the previous segments). 

Figure 5. Channel Model: Fiber is considered as a concatenation of M segments. �e perturbation of 
eigenvalues (or their function values) is modelled as the accumulation of many perturbations caused by the 
addition of noises in each segment. Each perturbation εm is further modelled as independent, depending only 
on the deterministically distorted signal q t( )

m
.t
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However, we claim that; the in�uence due to the noise added in the previous segments are insigni�cant (and hence 
can be ignored).

Let q t( )
m

 be the output of the signal a�er propagating through mth segments, assuming there are no noises. 
Hence, q t( )

m
 is a deterministic signal. Due to �bre nonlinearity, its shape will vary with m. However, the discrete 

eigenvalues for all q t( )
m

 remained unchanged. Let nm(t) be the noise added in the m segments,

= +q̂ t q t n t( ) ( ) ( ) (15)m m m

and Λ̂m be its set of discrete eigenvalues. In other words, q̂
m

 is obtained by propagating q0(t) noiselessly across m 
segments, followed by the addition of the noise nm(t). See Fig. 5. We claim that Λ − Λˆg g( ) ( )m 0  is in indeed a good 
approximation for g(Λm) − g(Λm−1).

Let ε = Λ − Λˆg g( ) ( )m m 0 , then εΛ − Λ ≈ ∑ =g g( ) ( )M m
M

m0 1  or equivalently,

∑ εΛ ≈ Λ + .
=

g g( ) ( )
(16)

M
m

M

m0
1

Bene�ts. �e above approximation points out that the end-to-end perturbation is now modelled as the sum of 
a collection of independently distributed local perturbations (as q

m
 is deterministic and the noise nm(t) is inde-

pendently distributed for all m). �e main bene�t of the model is its simplicity, decoupling the stochastic noises 
(caused by inline ampli�cation) from the deterministic dispersion and nonlinearities.

To be more precise, we have already seen that the local perturbation of the eigenvalues

Λ − Λˆg g( ) ( )m 0

depends on m (and more precisely the signal that enters the m �bre segment, i.e., q t( )
m

). �is same argument also 
applies to the local perturbation that

Λ − Λ −g g( ) ( )m m 1

also depends on the signal qm−1(t) which is stochastic in nature due to the noises added in the previous m − 1 seg-
ments. In that case, the stochastic random noise and the deterministic dispersion and nonlinearities will couple 
with each other. Furthermore,

Λ − Λ −g g( ) ( )m m 1

will become correlated for di�erent m. Our approximation decouples the two e�ects, resulting in a simpler model. 
�rough the approximation, we also break the correlation among local perturbations, making channel analysis 
more manageable.

Validation. In the following, we will validate Eq. (16) through numerical simulation and experiment. We 
investigate the perturbation of discrete eigenvalues of a 2-soliton input signal, q0(t) = 2sech(t), which has two 
discrete eigenvalues at 0.5 j and 1.5 j. Speci�cally, the function g(⋅) is a vector valued function, corresponding to 
the imaginary parts of the two discrete eigenvalues of the signals propagating along the �bre. First, using numer-
ical simulation (details of simulation method are given in 5.1), we illustrate that the perturbation 
ε = Λ − Λˆg g( ) ( )m m 0  is signal dependent (i.e., depending on q t( )

m
).

We plot the ensemble of two discrete eigenvalues of Λ̂m for various m. Since the time domain signal will 
change its shape as it propagates, our numerical example clearly shows that not only the two eigenvalues are all 
correlated, but how they correlate depend on m as well (See Fig. 6). �is supports our observation that the statis-
tics of Λ̂g( )m  (and hence also Λ − Λˆg g( ) ( )m 0  as g(Λ0) is a constant) depends on q t( )

m
. It also suggests that the 

statistics of g(Λm) − g(Λm−1) will also depend on qm−1(t) which, strictly speaking, will also be in�uenced by the 
noises injected in the previous segments.

Observing the scattering plots for Λ̂m, the mean and covariance matrix of Λ̂m depends on m (and more pre-
cisely, on qm−1(t)). Clearly, it also depends on the noise power. In order to better understand the in�uence of 
qm−1(t) on Λ̂m, we will focus on the eigenvectors (in particular the principal one) of the covariance matrices.

Symbol De�nition

qm(t) output of signal a�er propagating m segment

q t( )
m

output of signal a�er propagating m segment, 
assuming no added stochastic noises

nm(t) noises added in the m segment

q̂ t( )
m

q t( )
m

 + nm(t)

Λm discrete eigen-values of qm(t)

Λ̂m discrete eigen-values of q̂ t( )
m

g(Λ) a function of Λ

Table 1. Notations.
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Now, consider a 2 soliton q0(t) = 2sech(t), which has two discrete eigenvalues at 0.5 j and 1.5 j. �en q t( )
m

, 
obtained by propagating q0(t) for m segments, are also 2-solitons, with discrete eigenvalues at 0.5 j and 1.5 j. Let 

.Q j(0 5 )m
d( )  and .Q j(1 5 )m

d( )  be its corresponding spectral amplitudes. �en they will vary as m increases (i.e., as the 
signal propagates).

To make it more precise, if the normalised distance of each �bre segment is ∆L, then qm(t) is the signal a�er 
propagating q0(t) for a distance of m∆L. If we de�ne θ(m∆L) as the ratio . .Q j Q j(0 5 )/ (1 5 )m

d
m

d( ) ( ) , then

θ ∆ = λ λ∆ −m e( )L
m j4 ( )L 1

2
2
2

where λ1 = 0.5 j and λ2 = 1.5 j. We call λ λ∆ −m4 ( )L 1
2

2
2  the nonlinear phase di�erence.

In our example, we focus on the imaginary parts of the two discrete eigenvalues. Figure 6 plots the two discrete 
eigenvalues, which shows that they are correlated with each other. Also, the correlation is di�erent for di�erent m. 
For each scattering plot, we can estimate the covariance matrix between the imaginary parts of the two discrete 
eigenvalues. We can also plot the angle of the principal eigenvector of the covariance matrix. Here, the principal 
eigenvector of a covariance matrix is the matrix’s eigenvector (o�en of unit length) with respect to the largest 
eigenvalue. In the case of a 2 × 2 matrix, we can further represent the vector by the angle it makes with the hori-
zontal axis. It turns out that the principal eigenvector of the covariance matrix for Λ̂m depends only on the non-
linear phase.

Simulation results are shown in Fig. 7, which clearly indicate that the principal eigenvector, and also the covar-
iance matrix for Λ̂m are di�erent for di�erent m. Note that in the simulation, a noise is added to q t( )

m
, which is a 

result of propagating q0(t) noiselessly for a distance of m∆L.
To verify our observation and to support the simulation result, we also consider the following experiment. 

Our experiment set up is very similar to the one in Fig. 1. EDFAs are used to amplify signals to combat signal loss. 
We consider a range of propagation distance up to 1500 km which consisting of 30 loops, where every 3 loops 
correspond to a 0.1 normalised length. �is is to mimic the generation of q t( )

m
. Figure 7 shows the experimental 

values for the orientation of principal eigenvector of the covariance matrix (red circles). A qualitative agreement 
is observed between experiment and simulation results. �is supports the assumption that eigenvalue distribution 
depends on signal at that point.

Figure 6. Scattering plot for Λ̂m at di�erent normalized propagation lengths: 0.1, 0.2, 0.3, …, 0.9, 1.0.
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Note that, in experiments, noises are added at the transmitter, the receiver and also during propagation. 
However, the propagation noises is small (compared to the other noises), since the propagation distances are 
all small in our experiments. In addition, the transmitter noise is the same in all the experiments. �erefore, the 
di�erence in the distribution of eigenvalues observed at the output for di�erent propagation lengths is only due 
to the receiver noise. In our experiment, the receiver noise acts as the role of the point noise injected in the sim-
ulation. Careful examination of the simulation and experiment results in Fig. 7, shows a good agreement when 
the propagation distance is small. However, the two results start to become less agreeable for longer distances. 
�is can also be explained by the fact that the propagation noise increases for longer propagation distances. More 
discussion is available in Supplementary Material 2.

It is important to mention that the nonlinear phase di�erence is not the only variable that determines the angle 
of the principal eigenvector of the covariance matrix. Even when the nonlinear phase di�erence is zero, the angle 
is a still function of λ1 and λ2. �is is evidenced by the results shown in Supplementary Material 1. Further studies 
are required to fully describe the relationship between the nonlinear phase and the parameters of the signal in the 
nonlinear Fourier domain.

So far, we have demonstrated that the local perturbation caused by the injection of noise in a segment is not 
identically distributed and depends on the pulse shape of the input at each segment. Next, we want to show that 
the overall perturbation g(ΛM) − g(Λ0) can be approximated by accumulating individual smaller perturbations εm. 
In other words, we want to show that the approximation (16) is indeed fairly accurate.

To validate, we will consider the following numerical example. We consider the special case when g0(t) is a 
2-soliton. In particular, we are interested in the imaginary parts of the two discrete eigenvalues of the input and 
output signals. In other words

λ λΛ =g Im Im( ) [ ( ), ( )]1 2
T

where Λ = (λ1,λ2). Here, we consider various choices of m (corresponding to NFT phase di�erence from 0.2π to 
2π). Results are shown in Fig. 8 for 2sech(t) pulses as well as for square pulses as a demonstration for the generality 
of this model.

Let λ λΛ  ( , )m m m,1 ,2  be the discrete eigenvalues of qm(t), the signal obtained by propagating the input signal 
across m �bre segments. �e lower scatter plot (formed by the red circles) in Fig. 8(a,c) is obtained by plotting 
Im(λm,1) against Im(λm,2) for various m. The upper scatter plot (formed by the blue circles) in Fig. 8(a,c) is 
obtained using the approximation (16), de�ned as the sum of g(Λ0) and a set of local perturbations caused by the 
addition of noises added throughout each segment. Speci�cally, the RHS of (16) is

∑

∑

λ

λ










. + − .

. + − .










=

=

 

 

ˆ

ˆ

( )
( )

Im j

Im j

0 5 ( 0 5 )

1 5 ( 1 5 )

m

m

1 ,1

1 ,2

where λ λΛ =  
ˆ ˆ ˆ( , ),1 ,2  is the discrete eigenvalues of q̂ t( ) obtained by propagating the input signal q0(t) for  seg-

ments followed by the addition of a local noise n t( ). Now, if we compare the two sets of scatter plots, we can see 
immediately that the two plots look extremely similar. A �gure of merit F can be de�ned to quantify the di�er-
ences, where

=
−

F
det(cov E E

det(cov E

( ))

( ))
,1 2

1

and

λ λ= −E Im Im( ) ( ),1 1 1

λ λ= − .E Im Im( ) ( )2 2 2

For both cases, 2sech(t) pulses and square pulses, a maximum F can be found around π NFT phase di�erent 
whilst for 2sech(t) pulses, the maximum F is about 2.7 × 10−4 and for the square pulses, the maximum F is about 

Figure 7. NFT phase di�erence between Λ1 and Λ2.
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3.9 × 10−7. �ese results indicate that one can model the eigenvalues perturbation for Λm pretty accurately, by 
using our approximation.

Remark: �e validity of the model (over the range of parameters, e.g., propagation distance) depends on 
several factors such as the �bre segment size and the noise power added in each segment. Generally speaking, the 
model will be more accurate if the length of each segment and the noise power are su�ciently small.

Speci�cally, there are two aspects to our model. First, we model the eigenvalue perturbation as the sum of indi-
vidual perturbation introduced in each segment (due to noise). �e validity of our model (or the range of the �bre 
length in which the model is valid) depends on the segment size. �ere is a trade-o� between the model accuracy 
and the complexity (the smaller the segment size, the more complicated it is to evaluate the model).

On the other hand, we also propose to simplify the model by assuming that the perturbations introduced in 
each segment are independent. In this case, the validity of the model will depend on the amount of noise added in 
each segment (and accumulated during propagation). If the noise power is too high, then the model will become 
invalid.

Simplification 2: Noise decomposition. In the previous section, we proposed a simple model to charac-
terise the eigenvalues perturbation by modelling the perturbation separately in each segment. �e noise added 
in each segment can be decomposed as the sum of many independent “noise components”. Depending on the 
decomposition, a noise component can be the noises added to a speci�c narrow frequency band or a time interval. 
In our earlier work48, we have demonstrated that noises added in frequency bands outside the signal frequency 
band will have minimal impacts on the perturbation of eigenvalues. In other words, in the context of detecting 
the eigenvalues, out of band noises are essentially irrelevant. Now, the natural question thus is: Which “noise 
component” will contribute the most to the perturbation of eigenvalues? A complete answer to the question remains 
unknown. In this paper, we will focus on speci�c noise components and investigate its contributions to eigenvalue 
perturbation.

We are interested in the noises of the same form as the input signal. We assume the input to the segment is q(t) 
and n(t) is the white Gaussian noise added in the segment. De�ne n1(t) and n2(t) such that 1) n(t) = n1(t) + n2(t), 
2) n1(t) and n2(t) are orthogonal to each other, and 3) n1 is a scalar multiple of q(t). Notice that the power of n1(t) 

Figure 8. Comparison of the accumulated perturbations with (top blue) and without (bottom red) the 
approximation Eq. (16) for m values ranging from 0.2π to 2π with a step of 0.2π. (a) 2sech(t) pulses, (b) relative 
error of the approximation with 2sech(t) pulses, (c) square pulses with width of 10 and height of 0.5, (d) relative 
error of the approximation with the square pulses.
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is signi�cantly smaller than n2(t). We will call n2(t) the residual noise and n1(t) the scaling noise–adding n1(t) to 
q(t) is equivalent to multiplying q(t) by a scaling factor. In the following numerical example, we will evaluate the 
impact of scaling noise and residual noise on discrete eigenvalues.

First, we let the signal q(t) be a fundamental soliton. And we will compare the imaginary part of the discrete 
eigenvalues of q(t) + n1(t), q(t) + n2(t) and q(t) + n1(t) + n2(t). Results are shown in Figs 9 and 10. In Fig. 9, we 
consider q(t) as the fundamental soliton �rst. �e x-axis denotes the imaginary part of the discrete eigenvalue 
of q(t) + n1(t) + n2(t) and the y-axis corresponds to that of q(t) + n1(t) and q(t) + n2(t). �e �gure clearly shows 
that when only n2(t) is added to the signal, the eigenvalue is largely unchanged (see the green circles data points). 
On the other hand, when only n1(t) is added, the eigenvalue is essentially the same as the one obtained by adding 
both noises together. �is example illustrates that the scaling noise is dominating the perturbation of discrete 
eigenvalues.

Next, we consider the case when q(t) = Asech(t). In this case, q(t) has at least two eigenvalues A − 0.5 and 
A − 1.5 for A > 1.5. In our example, we focus only on the sum of the imaginary parts of the discrete eigenvalues 
(which can be interpreted as the amount of energy in the solitonic component of the signal). Our simulation 
shows that the scaling noise n1 has a more signi�cant impact on the perturbation (measured by variances) of the 
sum of eigenvalues. Speci�cally, we notice that

 1. Eigenvalue perturbations caused by addition of n1 are o�en much bigger than that by addition of n2;
 2. Impact caused by n2 on eigenvalue perturbation is at the smallest when A is close to an integer (i.e., when 

q(t) is a multi-soliton) and is at the largest when A is slightly greater than A − 0.5 is slightly bigger than an 
integer (i.e., when q(t) has an eigenvalue close to zero)

Figure 9. Eigenvalue perturbation errors when n1(t) and n2(t) are added separately.

Figure 10. Variances of eigenvalue perturbation errors when n1(t) and n2(t) are added separately.
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 3. Impact caused by n1(t) is constant over regimes when q(t) has the same number of discrete eigenvalues.

Motivated by our observation, we propose the following simpli�cation: According to our previous model, 
eigenvalues perturbation can be approximated by the sum of a collection of local perturbations Λ − Λˆg g( ) ( )m 0  
where Λ̂m are discrete eigenvalues of +q̂ t q t n t( ) ( ) ( )

m m m .
Let n t( )m

(1)  be the scaling noise component of nm(t),

+ˆ̂q t q t n t( ) ( ) ( )
m m m

(1)

and Λ̂
ˆ

m be its corresponding set of discrete eigenvalues. �en we can approximate Λ̂m with Λ̂
ˆ

m.
Remark: �e merit of the simpli�cation is that it is analytically simpler as n t( )m

(1)  is a one-dimensional noise 
with �nite power.

Experimental observations con�rm the above claim. Consider a 2-soliton input signal with discrete eigen-
values 0.9 j and 1.5 j. Figure 11 plots the sum of the imaginary parts of the two eigenvalues of qM(t), q* and q** 
as de�ned by; (1) qM(t) = q0(t) + n1(t) + n2(t), (2) q*(t) = q0(t) + n1(t) and (2) q**(t) = q0(t) + n2(t). In Fig. 11, the 
x-axis denotes the (imaginary part) of the sum of the eigenvalues of qM(t), while the y-axis denotes that of q* and 
q**. It is observed that the perturbation of eigenvalues of qM(t) is largely contributed by the noise n1(t).

We want to highlight that n(t) is the additive white noise (which theoretically has an in�nite power for any 
nonzero noise spectral density) added in a segment, and is decomposed into the sum of two noise “components” 
n1(t) and n2(t). Mathematically, n1(t) is the noise component obtained by projecting n(t) onto the signal space 
spanned by the transmitted signal, while n2(t) is the “residual” noise (i.e., the di�erence between n(t) and n1(t)). 
In terms of power, n1(t) in fact has a much lower power compared to n2(t). More speci�cally, the power of n2(t) 
will in fact scale linearity with the noise bandwidth (and hence will be large when the noise bandwidth is large), 
while the power of n1(t) stays the same. Realizing that the power of the scaling noise n1(t) is much smaller than 
the residual noise, the observation that eigenvalue perturbation is dominated by the scaling noise is unexpected.

As a �nal remark, we would like to point out that one of the main challenges in analysing the performance of 
NFT transmission is due to the inability to characterize the e�ect of noises. While our proposed analytical model 
cannot completely solve the problem, it is a �rst-step and o�ers a framework to achieve this long-term goal. Via 
the framework, we have been able to identify that eigenvalue perturbation can be accurately approximated as an 
accumulation of independent perturbations. �e independence assumption in the model potentially can simplify 
further analysis.

Methods
Simulation. Numerical NFT was implemented based on the work in6. Forward di�erence method has been 
selected. �is method recursively calculates eigenvector ν from initial condition (8). �e time interval of the input 
signal [T1, T2] is divided into N steps with each step size (T2 − T1)/N. �e initial condition is:

ν λ = .λ−( )T e( , ) 1
0 (17)

j T
1

1

Once the �nal value i.e. eigenvector ν(T2, λ) is found by recursive processing it is inserted in following equa-
tions to �nd a(λ) and b(λ):

λ ν λ= λ

→∞
a t e( ) lim ( , )

(18)t

j t
1

Figure 11. Noise decomposition for 2-soliton with discrete eigenvalues 0.9 j and 1.5 j.
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λ ν λ= λ

→∞

−b t e( ) lim ( , )
(19)t

j t
2

where ν λ ν λ ν λT T T( , ) ( ( , ), ( , ))T2 1 2 2 2 .
For the discrete spectrum, it is required to �nd the values of λ for which a(λ) becomes zero. �is procedure 

was performed by creating a user-de�ned function in MATLAB that takes initial guess value of λ and uses stand-
ard functions in MATLAB to �nd all λs corresponding to a(λ) = 0. MATLAB calls that user-de�ned function 
each time until it becomes zero.

�e NFT code developed using the forward di�erence method was put to the test to �nd eigenvalues of mul-
tiple functions, e.g. fundamental soliton, non-fundamental solitons, arbitrary signals and then was checked for 
error percentage. �e error percentage was negligibly small 10−3 when the number of steps N > 400. �e imple-
mented code was checked against a few typical pulses with known eigenvalues.

Numerical Nonlinear Pulse Propagation (NPP) based on split-step Fourier method has been widely used for 
simulations of nonlinear optical processes in waveguides. It is proven to have high accuracy in predicting pulse 
evolution during propagation. We used an in-house NPP so�ware, written in C/C++, and used CUDA to par-
allelise the calculations by utilising the power of graphic processing unit (GPU). �is has reduced the so�ware 
run-time signi�cantly, allowing simulating a large number of instances required for statistical evaluation. In our 
NPP, the propagation of a pulse along a �bre is divided into length segments within which, the nonlinear and 
linear processes can be separated as an approximation. In each step, a band-limited white Gaussian noise is added 
in the frequency domain across the whole spectrum. To limit the noise bandwidth to a certain value, we have used 
a bandpass �lter in the frequency domain. In order to accurately describe the statistics of the model, the same 
propagation simulation has been repeated for 5000 times, and eigenvalues were calculated using our NFT code.

Experiment. Transmission setup. �e drive signals were converted to the analog domain by high-speed 
AWG (Keysight M8196A) operating at up to 92 GSa/sec. �e lasers (both carrier and LO) used in the experiments 
external cavity lasers (ECL) emitting near 1,550 nm with a linewidth of ~100 kHz. �e modulators used were 
Mach-Zehnder I/Q modulators based on LiNbO3 waveguides. A 50 km Non-zero dispersion-shifted fiber 
(NZ-DSF) with a nonlinear Kerr coefficient ~ . − −W km1 2 1 1, a dispersion coefficient of ⋅ − −~ ps nm km4 1 1, and 
9.5 dB insertion losses was chosen as the transmission medium in the �ber loop. In this case, the distance of 
150 km in a normalised NLS was around 0.1, which was obtained through the variable conversion shown in3. 
Before launched into the �bre loop, the launch powers were carefully controlled by the attenuator a�er a �xed gain 
EDFA (with noise �gure 5 dB) to the optimum value. One extra EDFA was used to compensate for the remaining 
loss in the loop, and a �at-top optical �lter with a 3 dB bandwidth of 1 nm is followed to suppress the out-of-band 
ampli�ed spontaneous emission(ASE) noise. At the receiver, a polarisation controller is used to align the optical 
signal in the x-polarization. �en the signal was detected by a dual polarisation optical coherent receiver consists 
of 90 hybrids and 4 balanced pin-photodetector with 3 dB bandwidth of ~38 GHz. �e output 4 E-�elds wave-
forms were sampled by a digital storage scope (Agilent 96204Q) with a sampling rate of 80GS/s and a bandwidth 
of 33 GHz and stored to process o�ine.

Transmitter and receiver DSP. At the transmitter, various 2-soliton pulses were recursively computed using the 
Darboux transformation method1. �e initialisation coe�cients Ai and Bi for Darboux transformation method 
which (the discrete-spectral amplitudes and the shape of the signal) were specially chosen to get smaller physical 
bandwidth to improve the performance at transmitter2. �e receiver DSP �rstly used a training symbol to perform 
timing synchronisation. �en a pilot tone from y-polarization was used to estimate and compensate the laser 
phase noise and frequency o�sets. A�er normalised by a scaling factor according to the lossless path averaged 
model, the synchronised pulse train was processed per pulse to search the corresponding roots. Ablowitz-Ladik 
algorithm was used to calculate the Nonlinear Fourier Coe�cients, followed by a Newton-Raphson method for 
root searching5.

Further Works and Conclusions
�is paper focuses on perturbations/noises of eigenvalues when the optical signal is transmitted along a �bre. We 
have numerically and experimentally demonstrated that the noises are correlated. By exploiting the correlation, 
one can design a better signal constellation leading to higher system throughput. In order to take advantage of 
the correlation, it becomes important to derive a model of eigenvalue noises. In the second part of the paper, we 
have proposed an analytical framework to characterise the noises. �e idea is to decouple the eigenvalue pertur-
bation as an accumulation of many smaller perturbations, each of which is caused by the addition of noises in a 
short �bre segment. As a result, one can derive an eigenvalue perturbation model by characterising each smaller 
perturbations. Strictly speaking, all of these small perturbations are non-identically distributed and are also cor-
related with each other. However, we observe that the correlation is indeed quite weak that one can essentially 
assume them to be independent. Following the independence relation, the perturbation in eigenvalue caused by 
propagation can be modelled as the accumulation of a set of independently added noise.

So far, our focus is on the eigenvalue perturbation caused by noises during signal propagation. However, our 
modelling framework can also be extended to included noised introduced at the transmitter and the receiver. 
Speci�cally, we will model that an additive transmitter/receiver noise will be added respectively before and a�er 
the transmission. When the transmitter and receiver noises are introduced, the signal’s eigenvalues will also be 
perturbed. Following our paradigm, we can model the perturbations introduced at the transmitter and receiver as 
independent noises. Furthermore, we can also extend our work to model the perturbation of spectral amplitudes. 
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Some preliminary correlation studies were done and can be found in49. In this current paper, our focus is on the 
perturbation of the eigenvalues. However, the same principle will also apply to spectral amplitudes as well where 
the overall noises in spectral amplitudes will be modelled as the accumulation of many independently distributed 
noises caused by the injection of noises in a short �bre segment.
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