
THE JOURNAL OF CHEMICAL PHYSICS 137, 22A530 (2012)

Correlated electron-nuclear dynamics: Exact factorization
of the molecular wavefunction

Ali Abedi,1,2 Neepa T. Maitra,3 and E. K. U. Gross1,2

1Max-Planck Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany
2European Theoretical Spectroscopy Facility (ETSF)
3Department of Physics and Astronomy, Hunter College and the City University of New York, 695 Park Avenue,
New York, New York 10065, USA

(Received 3 June 2012; accepted 31 July 2012; published online 27 August 2012)

It was recently shown [A. Abedi, N. T. Maitra, and E. K. U. Gross, Phys. Rev. Lett. 105, 123002

(2010)] that the complete wavefunction for a system of electrons and nuclei evolving in a time-

dependent external potential can be exactly factorized into an electronic wavefunction and a nuclear

wavefunction. The concepts of an exact time-dependent potential energy surface (TDPES) and exact

time-dependent vector potential emerge naturally from the formalism. Here, we present a detailed de-

scription of the formalism, including a full derivation of the equations that the electronic and nuclear

wavefunctions satisfy. We demonstrate the relationship of this exact factorization to the traditional

Born-Oppenheimer expansion. A one-dimensional model of the H+
2 molecule in a laser field shows

the usefulness of the exact TDPES in interpreting coupled electron-nuclear dynamics: we show how

features of its structure indicate the mechanism of dissociation. We compare the exact TDPES with

potential energy surfaces from the time-dependent Hartree-approach, and also compare traditional

Ehrenfest dynamics with Ehrenfest dynamics on the exact TDPES. © 2012 American Institute of

Physics. [http://dx.doi.org/10.1063/1.4745836]

I. INTRODUCTION

The interplay of nuclear and electronic dynamics in the

presence of time-dependent external fields leads to fascinating

phenomena, especially beyond the perturbative regime, e.g.,

photo-induced molecular dissociation, charge-resonance en-

hanced ionization, control of electron localization, electron-

hole migration after photo-excitation, to name a few.2–6 The

exact solution of the time-dependent Schrödinger equation

(TDSE) is currently out of computational reach except for

the very simplest of molecules,7 such as H+
2 , so usually ap-

proximate methods are used. Typically, (but not always, see

Refs. 8–11), these methods treat the nuclei classically as

point charges with electron-nuclear coupling given by Ehren-

fest dynamics, or surface-hopping;12 a topical application is

to model photochemical processes,13, 14 for example, in solar

cells, to study the (field-free) dynamics ensuing after an initial

electronic excitation. Indeed, several examples have shown

that the predicted electron-hole migration can depend criti-

cally on the description of the nuclear motion and how it is

correlated with the electronic dynamics (see Refs. 5 and 6

and references within). Apart from enabling calculations on

more than the simplest systems possible, these methods pro-

vide much intuition, in particular, through the central con-

cept of the potential energy surface (PES). Indeed, the very

idea itself of surface-hopping would not exist without the no-

tion of a landscape of coupled PESs. Dressed molecular po-

tentials such as light-induced molecular potentials (LIMPS)

(Ref. 15) have proven valuable in understanding processes

such as bond-softening, stabilization against dissociation,

etc., where the laser field induces avoided crossings be-

tween PESs. Approximate time-dependent potential energy

surfaces (TDPES) were introduced by Kono16 as instanta-

neous eigenvalues of the electronic Hamiltonian, and have

proven extremely useful in the interpretation of system-field

phenomena, as have the quasi-static or phase-adiabatic PES’s

used recently to interpret electron localization in dissocia-

tive ionization.17 Recent work of Cederbaum18 introduced

a TDPES in a different way, by generalizing the Born-

Oppenheimer (BO) approximation to include time-dependent

external potentials. In short, the PES is perhaps the most cen-

tral concept in our understanding of molecular motion.

In a recent Letter,1 we showed that an exact TDPES may

be defined, via a rigorous separation of electronic and nu-

clear motion by introducing an exact factorization of the full

electron-nuclear wavefunction. The idea of an exact factor-

ization was first introduced by Hunter19 for the static case.

He also deduced the exact equation of motion for the nu-

clear factor. The equation of motion for the electronic wave-

function was first given by Gidopoulos and Gross20 for the

time-independent case. Both in the static and in the time-

dependent cases, the factorization leads to an exact defini-

tion of the PES, and also of the Berry vector potential. What

is particularly interesting about the vector potential is that

Berry-Pancharatnam phases21 are usually interpreted as aris-

ing from some approximation where a system is decoupled

from “the rest of the world,” thereby making the system

Hamiltonian dependent on some “environmental” parameters.

For example, in the static BO approximation, the electronic

Hamiltonian depends parametrically on nuclear positions, and

when the molecular wavefunction is approximated by a single

product of a nuclear wavefunction and an eigenstate of the
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electronic Hamiltonian, the equation of motion for the for-

mer contains a Berry vector potential. The question whether

the BO Berry phase survives in the exact treatment was first

discussed in Ref. 20 for the static case and in Ref. 1 for the

time-dependent case.

In the present paper, we provide the detailed derivation

of the formalism of Ref. 1 (Sec. II), analyse features of the

exact electron-nuclear coupling terms in general (Sec. III), in-

cluding their relationship to couplings in the traditional Born-

Oppenheimer expansion, and then study the TDPES for the

specific case of a model H+
2 molecule in an oscillating elec-

tric field (Sec. IV). The remainder of this introduction serves

to set up the problem at hand, and to remind the reader of the

Born-Oppenheimer treatment of the electron-nuclear system.

A. The Hamiltonian

In this section, we establish notation and define the

Hamiltonian for the combined system of electrons and nu-

clei. The coordinates of the Ne electrons are collectively de-

noted by rs where r ≡ {rj } and s ≡ {sj }, j = 1 . . . Ne, repre-

sent electronic spatial and spin coordinates, respectively. The

Nn nuclei have masses M1 . . . MNn
and charges Z1 . . . ZNn

and

coordinates collectively denoted by Rσ , where R ≡ {Rα} and

σ ≡ {σα}, α = 1 . . . Nn, represent nuclear spatial and spin co-

ordinates, respectively. Furthermore, we consider that the sys-

tem is under the influence of some time-dependent external

scalar field. The system is described, non-relativistically, by

the Hamiltonian

Ĥ = ĤBO(r, R) + V̂ e
ext(r, t) + T̂n(R) + V̂ n

ext(R, t), (1)

where ĤBO(r, R) is the familiar Born-Oppenheimer elec-

tronic Hamiltonian

ĤBO = T̂e(r) + Ŵee(r) + Ŵen(r, R) + Ŵnn(R). (2)

The subscripts “e” and “n” refer to electrons and nuclei, re-

spectively, and atomic units are used throughout (e2 = ¯

= me = 1). Here,

T̂e = −
Ne
∑

j=1

1

2
∇2

j , (3)

and

T̂n = −
Nn
∑

α=1

1

2Mα

∇2
α, (4)

denote the kinetic-energy operators of the electrons and nu-

clei, respectively. All external scalar potentials on the system

(e.g., electric fields) are represented by

V̂ n
ext =

Nn
∑

α

vn
ext(Rα, t), (5)

and

V̂ e
ext =

Ne
∑

j

ve
ext(rj , t). (6)

The particle-particle Coulomb interactions have the form

Ŵnn =
1

2

Nn
∑

α, β =1

α �=β

ZαZβ

|Rα − Rβ |
, (7)

Ŵee =
1

2

Ne
∑

i, j =1

i �=j

1

|ri − rj |
, (8)

Ŵen = −
Ne
∑

j

Nn
∑

α

Zα

|rj − Rα|
. (9)

The quantum mechanical equation of motion of such a system

is given by the TDSE

Ĥ�(rs, Rσ , t) = i∂t�(rs, Rσ , t). (10)

The full electron-nuclear wavefunction, �(rs, Rσ , t), that

satisfies the TDSE (10), contains the complete information on

the system. As discussed in the Introduction, it can be solved

numerically only for very small systems of one or two elec-

trons and nuclei and, moreover, � does not give access to

PESs, which provide an intuitive understanding and interpre-

tation of the coupled electron-nuclear dynamics.

B. The Born-Oppenheimer approximation

The Born-Oppenheimer approximation is among the

most basic approximations in the quantum theory of

molecules and solids. Consider the case when there is no

external time-dependence in the Hamiltonian. The BO ap-

proximation relies on the fact that electrons typically move

much faster than the nuclei; on the timescale of nuclear mo-

tion, the electrons “instantly” adjust to remain on the instan-

taneous eigenstate. This “adiabatic approximation” allows us

to visualize a molecule or solid as a set of nuclei moving on

the PES generated by the electrons in a specific electronic

eigenstate. The electronic Hamiltonian ĤBO(r, R) depends

parametrically on the nuclear positions, via the electron-

nuclear Coulomb interaction. That is, the stationary electronic

Schrödinger equation is solved for each fixed nuclear config-

uration Rσ ,

ĤBO(r, R)φ
j

Rσ (rs) = V
j

BO(Rσ )φ
j

Rσ (rs), (11)

yielding (Rσ )-dependent eigenvalues V
j

BO(Rσ ) and

eigenfunctions φ
j

Rσ . The total molecular wavefunction,

�BO(rs, Rσ ), is then approximated as a product of the

relevant electronic state, φ
j

Rσ (rs), and a nuclear wavefunc-

tion χBO
jν (Rσ ) satisfying the corresponding BO nuclear

Schrödinger equation

(

Nn
∑

α=1

1

2Mα

(

− i∇α + F
BO
jj,α(Rσ )

)2 + ǫ
j

BO(Rσ )

)

χBO
jν (Rσ )

= EχBO
jν (Rσ ), (12)
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where

ǫ
j

BO(Rσ )

=
∑

s

〈

φ
j

Rσ

∣

∣

∣ ĤBO(r, R)+
∑

α

(

− i∇α − FBO
jj,α

)2

2Mα

∣

∣φ
j

Rσ

〉

r
,

(13)

and

F
BO
jj,α(Rσ ) = −i

∑

s

〈φj

Rσ |∇αφ
j

Rσ 〉r, (14)

where 〈..|..〉r indicates an inner product over spatial electronic

variables only. The index ν of the nuclear wave function la-

bels the vibrational/rotational eigenstate on the jth PES. The

second term on the right of Eq. (13) is often referred to as

the “BO diagonal correction” or “adiabatic correction.” The

potential energy surface ǫ
j

BO(Rσ ) is enormously important

in molecular physics and quantum chemistry. It is a central

tool in the analysis and interpretation of molecular absorp-

tion and emission spectra, experiments involving nuclear mo-

tion, mechanisms of dissociation, energy-transfer, for exam-

ple. The nuclear dynamics on a single PES (sometimes called

“BO dynamics”) is obtained by using the Hamiltonian on the

left of Eq. (12) in a time-dependent Schrödinger equation for

a time-dependent nuclear wavefunction χ (Rσ , t). This corre-

sponds to approximating the total molecular wavefunction by

a time-dependent nuclear wavepacket multiplied with a static

electronic BO state

�(rs, Rσ , t) ≈ χBO(Rσ , t)φ
j

Rσ (rs). (15)

The vector potential FBO
jj,α(Rσ ), especially the Berry phase

associated with it,
∮

FBO
jj,α(Rσ ) · dR, captures the essential

features of the behavior of a system with conical intersec-

tions. Inclusion of the Berry phase can significantly shift and

re-order the energy eigenvalues of molecular roto-vibrational

spectra, as well as scattering cross-sections (although some-

times undetected in experiments that measure integrated

quantities, due to cancellations between paths, see e.g.,

Refs. 22–26 and references within).

It appears from the above discussion that in the tra-

ditional treatment of molecules and solids, the concepts of

the PES and the Berry phase arise as a consequence of the

BO approximation. Some of the most fascinating phenom-

ena of condensed-matter physics, such as superconductivity,

however, appear in the regime where the BO approximation

is not valid; likewise, typical photodynamical processes in

molecules require going beyond the single-electronic-surface

picture. This raises the question: If one were to solve the

Schrödinger equation of the full electron-nuclear Hamiltonian

exactly (i.e., beyond the BO approximation), do the Berry

phase and the potential energy surface survive, with a pos-

sibly modified form, and if so, how and where do they show

up? What is their relation to the traditional potential energy

surface and Berry phase in the BO approximation? Moreover,

many interesting phenomena occur when molecules or solids

are exposed to time-dependent external fields, e.g., lasers. Can

one give a precise meaning to a time-dependent potential en-

ergy surface and a time-dependent vector potential?

Before answering the points raised above, focussing

on the time-dependent case, we briefly discuss the Born-

Oppenheimer expansion, which solves the full TDSE Eq. (10)

exactly for the coupled electron-nuclear system.

C. The Born-Oppenheimer expansion

The set of electronic eigenfunctions {φj

Rσ (rs)} calculated

from Eq. (11) form a complete orthonormal set in the elec-

tronic space for each fixed Rσ ,

∑

s

∫

drφl∗
Rσ (rs)φ

j

Rσ (rs) = δlj , (16)

therefore, the total time-dependent wavefunction of the sys-

tem �(rs, Rσ , t) can be expanded in that basis

�(rs, Rσ , t) =
∞
∑

j=1

χBO
j (Rσ , t)φ

j

Rσ (rs). (17)

Here,

χBO
j (Rσ , t) =

∑

s

∫

drφ
j∗
Rσ (rs)�(rs, Rσ , t) (18)

are the expansion coefficients, which are functions of the nu-

clear degrees of freedom and time. Equation (17) is the so-

called BO expansion, which is an exact representation of the

complete molecular wavefunction due to the completeness of

{φj

Rσ (rs)}. It applies also to fully-time-dependent problems

where � evolves under external time-dependent potentials

V̂ e
ext. In practice, for numerically feasible calculations, ap-

proximations are introduced to limit the expansion to a small

subset of {φj

Rσ (rs)}. By inserting the expansion (17) into

Eq. (10), multiplying by φ
j∗
Rσ (rs) from the left, and integrating

over the electronic degrees of freedom, equations for the ex-

pansion coefficients χBO
j (Rσ , t) are determined. One obtains

[

∑

α

1

2Mα

(

− i∇α + F
BO
kk,α

)2 + V̂ n
ext + ǫk

BO

]

χBO
k

+
∑

j �=k

[

〈φk|V̂ e
ext(t)|φ

j 〉−
∑

α

�BO
kj,α

]

χBO
j = i

∂χBO
k

∂t
. (19)

Here,

ǫk
BO(Rσ , t) =

∑

σ

〈

φk
Rσ

∣

∣ĤBO + V̂ e
ext

+
∑

α

(

− i∇α − FBO
kk,α

)2

2Mα

∣

∣φk
Rσ

〉

r
(20)

is the time-dependent scalar potential and is the kth general-

ized BO potential energy, generalized to account for the time-

dependent external field (cf. Eq. (13)). The terms

�BO
kj,α(R) =

1

2Mα

[

G
BO
kj,α(R) + 2FBO

kj,α(R) · (i∇α)
]

(21)
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are called the “nonadiabatic couplings,” defined by27–29

F
BO
kj,α(R) = −i

〈

φk
Rσ

∣

∣∇αφ
j

Rσ

〉

,

G
BO
kj,α(R) =

〈

φk
Rσ

∣

∣∇2
αφ

j

Rσ

〉

. (22)

II. EXACT FACTORIZATION OF THE
TIME-DEPENDENT ELECTRON-NUCLEAR
WAVEFUNCTION

The BO expansion Eq. (17) yields the complete molecu-

lar wavefunction exactly. Instead of having an infinite sum of

terms involving an infinite set of generalized PES’s and non-

adiabatic couplings, the question arises whether it is possible

to represent the complete, time-dependent, electron-nuclear

wavefunction exactly as a single product of an electronic

wavefunction and a nuclear wavefunction. In this section, we

show that the answer is yes. We derive formally exact equa-

tions of motion for each subsystem, out of which emerge rig-

orous definitions of a time-dependent potential energy surface

(TDPES) and a time-dependent vector potential.

Visually, the decomposition is similar in form to the

single-surface BO approximation, yet it is exact. There is no

assumption on the time scale of the motions of each subsys-

tem, i.e., unlike in the BO approximation, we do not solve

for the “fast” variables first and then feed it into the equa-

tion for the “slower” variables. Instead, the equations of mo-

tion for each subsystem are derived together, in a variational

approach. The exact decomposition, contrary to the BO sepa-

ration, accounts for the full correlation between the two sub-

systems, regardless of the mass and energy of the nuclear sub-

system. In the following, we formalize the idea as a theorem,

which we then prove. We discuss in detail the implications of

this exact decomposition.

A. The exact factorization

Theorem I. (a): The exact solution of Eq. (10) can be

written as a single product

�(rs, Rσ , t) = Rσ (rs, t)χ (Rσ , t), (23)

where Rσ (rs, t) satisfies the Partial Normalization Condi-

tion (PNC),

∑

s

∫

dr|Rσ (rs, t)|2 = 1, (24)

for any fixed nuclear configuration, Rσ , at any time t.

The PNC is critical in making this theorem meaningful:

Eq. (23) on its own would be rather meaningless, because,

for example, one could then simply just take χ (Rσ , t) ≡ 1.

In fact, one can come up with many different decompositions

that satisfy Eq. (23) but that violate the PNC Eq. (24); it is

the latter that makes the decomposition unique up to a gauge-

like transformation, as we shall see shortly in Sec. II B. We

will also see there that it is the PNC that allows the interpre-

tation of Rσ (rs, t) as a conditional probability amplitude,

and χ (Rσ , t) as a marginal probability amplitude, leading to

their identification as electronic and nuclear wavefunctions,

respectively. First, we prove Part (a) of Theorem I.

Proof: Given �(rs, Rσ , t), the exact solution of the full

TDSE (10), we choose χ (Rσ , t) and Rσ (rs, t), at any in-

stant in time, as

χ (Rσ , t) = eiS(Rσ,t)
√

∑

s

∫

dr|�(rs, Rσ , t)|2, (25)

and

Rσ (rs, t) = �(rs, Rσ , t)/χ (Rσ , t), (26)

where S(Rσ , t) is real. The PNC Eq. (24) then follows imme-

diately

∑

s

∫

dr|Rσ (rs, t)|2 =

∑

s

∫

dr|�(rs, Rσ , t)|2

|χ (Rσ , t)|2
,

=
|χ (Rσ , t)|2

|χ (Rσ , t)|2
= 1. (27)

This concludes the proof of Theorem I (a). It will become

clear throughout this paper that, in many respects, the nuclear

factor χ (Rσ , t) can be viewed as a proper nuclear wavefunc-

tion. Like in the static case,20 introducing the phase factor in

Eq. (25) allows χ (Rσ , t) to have the correct antisymmetry if

the nuclear subsystem contains identical fermionic nuclei.

Next comes the question; what equations do Rσ (rs, t)

and χ (Rσ , t) satisfy? The answer entails the second part of

Theorem I.

Theorem I (b): The wavefunctions Rσ (rs, t) and

χ (Rσ , t) satisfy

(

Ĥel(rs, Rσ , t) − ǫ(Rσ , t)
)

Rσ (rs, t) = i∂tRσ (rs, t),

(28)

(

Nn
∑

α=1

1

2Mα

(−i∇α + Aα(Rσ , t))2 + V̂ n
ext(R, t) + ǫ(Rσ , t)

)

×χ (Rσ , t) = i∂tχ (Rσ , t), (29)

where the electronic Hamiltonian is

Ĥel(rs, Rσ , t)=ĤBO(r, R, t) + V̂ e
ext(r, t) + Û coup

en [Rσ , χ ].

(30)

Here, the electron-nuclear coupling potential Û
coup
en [Rσ , χ ],

scalar potential ǫ(Rσ , t), and vector potential Aα(Rσ , t)

terms are

Û coup
en [Rσ , χ ]

=
Nn
∑

α=1

1

Mα

[

(−i∇α − Aα(Rσ , t))2

2

+

(

−i∇αχ (Rσ , t)

χ (Rσ , t)
+Aα(Rσ , t)

)

· (−i∇α− Aα(Rσ , t))

]

,

(31)

ǫ(Rσ , t) =
∑

s

〈Rσ (t)|Ĥel((rs, Rσ , t) − i∂t |Rσ (t)〉r,

(32)

Aα(Rσ , t) =
∑

s

〈Rσ (t)| − i∇αRσ (t)〉r, (33)
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where 〈..|..|..〉r denotes an inner product over all spatial elec-

tronic variables only.

Proof: In order to derive the equations of motion for

Rσ (rs, t) and χ (Rσ , t), we follow the strategy employed in

the static case (see Ref. 20), i.e., we plug the product ansatz

in the variational principle and search for the stationary point.

Afterwards, we prove: if Rσ (rs, t) and χ (Rσ , t) are the so-

lutions of Eqs. (28) and (29), then Rσ (rs, t)χ (Rσ , t) is the

solution of TDSE (10). We begin the derivation by briefly

reviewing Frenkel’s stationary action principle as this is the

key instrument to derive the equations of motion for each

subsystem.

The quantum mechanical action is defined as

S[�,�∗] =
∫ tf

ti

dt〈�|Ĥ − i∂t |�〉, (34)

a functional of the time-dependent wavefunction �(t) and its

complex conjugate. The equation of motion of the quantum

system, the TDSE of Eq. (10), is obtained by requiring the

variation of the action S with respect to all wavefunctions

�(t) that satisfy the boundary condition

δ�(ti) = δ�(tf ) = 0, (35)

to be stationary, i.e.,

δ�∗S = 0. (36)

Now we apply this general variational principle to our prob-

lem in the following way. We insert the product wavefunc-

tion in the action functional (34), with Hamiltonian given by

Eq. (1), rewriting it as

S[Rσ ,∗
Rσ , χ, χ∗] =

∑

s,σ

∫ tf

ti

dt

∫

dR

∫

dr

[

|χ |2∗
Rσ

(

ĤBO + V̂ e
ext +

∑

α

−∇2
α

2Mα

− i∂t

)

Rσ

+ |Rσ |2χ∗

(

∑

α

−∇2
α

2Mα

+ V̂ n
ext − i∂t

)

χ + |χ |2∗
Rσ

∑

α

1

Mα

(−i∇αχ/χ ) · (−i∇αRσ )

]

. (37)

The equations of motion for Rσ (rs, t) and χ (Rσ , t) are ob-

tained by requiring the action functional (37) to be stationary

with respect to variations of each wavefunction subject to the

PNC (24), i.e.,

δS[Rσ ,∗
Rσ , χ, χ∗]

δ∗
Rσ (rs, t)

= 0, and
δS[Rσ ,∗

Rσ , χ, χ∗]

δχ∗(Rσ , t)
= 0.

(38)

Variation of Eq. (37) with respect to ∗
Rσ (rs) leads to

|χ |2
(

ĤBO + V̂ e
ext +

∑

α

−∇2
α

2Mα

− i∂t

)

Rσ

+

[

χ∗

(

∑

α

−∇2
α

2Mα

+ V̂ n
ext − i∂t

)

χ

]

Rσ

+|χ |2
(

∑

α

1

Mα

(−i∇αχ/χ ) · (−i∇αRσ )

)

= 0.

Dividing the expression above by |χ |2 and rearranging yields

(

ĤBO + V̂ e
ext +

∑

α

−∇2
α

2Mα

− i∂t

)

Rσ

+
∑

α

1

Mα

(−i∇αχ/χ ) · (−i∇αRσ )

= −

(

∑

α

−∇2
α

2Mα
+ V̂ n

ext − i∂t

)

χ

χ
· Rσ . (39)

Variation of Eq. (37) with respect to χ* yields
⎡

⎣

∑

s

∫

dr∗
Rσ

(

ĤBO + V̂ e
ext +

∑

α

−∇2
α

2Mα

− i∂t

)

Rσ

⎤

⎦χ

+

[

∑

α

−∇2
α

2Mα

+V̂ n
ext

]

χ+

[

∑

α

1

Mα

(−i∇αχ/χ ) · Aα

]

χ = i∂tχ,

(40)

where we enforced the PNC, and defined

Aα[Rσ ] :=
∑

s

∫

dr∗
Rσ (rs)(−i∇αRσ (rs)). (41)

This is a real-valued vector potential (see shortly). Inserting

Eq. (40) on the RHS of Eq. (39) leads, after some straight-

forward algebra, to Eqs. (28)–(33). The product wavefunc-

tion Eq. (23), satisfying these equations, therefore represents

a stationary point of the action functional (37) under the PNC

Eq. (24). To complete the proof, it remains to verify that if

Rσ (rσ , t) satisfies Eq. (28) and χ (Rσ , t) satisfies Eq. (29),

then the product Rσ (rs, t)χ (Rσ , t) is an exact solution of

the TDSE. Approximate solutions of the TDSE may satisfy

the stationary action principle, if variations are taken over

a limited set of wavefunctions, e.g., the multi-configuration

time-dependent Hartree equations44 may be derived via the

Frenkel variational principle. To dispel any possible doubts

that the product form of Eq. (23) subject to Eq. (24) is gen-

eral, we now verify that our solution is exact and not an

approximation. Applying the product rule, i∂t�(rs, Rσ , t)
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= χ (Rσ , t)i∂tRσ (rs, t) + Rσ (rs, t)i∂tχ (Rσ , t), and in-

serting Eqs. (28) and (29), we obtain

χ
(

i∂tRσ

)

= χ
(

ĤBO + V̂ e
ext

)

Rσ + χ

Nn
∑

α

(−i∇α − Aα)2

2Mα

Rσ

+χ

Nn
∑

α

(−i∇αχ/χ+Aα) · (−i∇α − Aα)

Mα

Rσ −χǫRσ ,

(42)

Rσ (i∂tχ ) = Rσ

Nn
∑

α

(−i∇α + Aα(Rσ , t))2

2Mα

χ

+Rσ V̂ n
extχ + Rσ ǫχ. (43)

Summing Eqs. (42) and (43) leads to the TDSE for the com-

plete system and completes the proof that the wavefunctions

satisfying Eqs. (28)–(33) do solve the TDSE exactly.

Alternatively, Eqs. (28)−(33) can be obtained by re-

placing �(rs, Rσ , t), in the TDSE (10), by the product

Rσ (rs, t)χ (Rσ , t) and using the PNC (24). The form of

electron-nuclear coupling term, Eq. (31), is the same as the

static case (see Ref. 20). The exact TDPES, Eq. (32), on the

other hand is not simply the expectation value of Ĥel but con-

tains, in addition, the term 〈Rσ | − i∂tRσ 〉. The appearance

of this term is essential to ensure the form invariance of the

Eqs. (28) −(33) under the gauge transformation (44), that will

be discussed in Sec. II B.

B. Uniqueness of the electronic and nuclear
wavefunctions

We now delve a little deeper into features of our ex-

act factorization. As briefly mentioned earlier, the factoriza-

tion can be viewed in a standard probabilistic setting:19 The

square of the molecular wavefunction can be viewed as a mul-

tivariate probability distribution that can be factorized into a

marginal probability of a set of variables (the nuclear coor-

dinates) and a conditional probability of the rest of the vari-

ables (the electronic coordinates, conditionally dependent on

the nuclear coordinates). In this sense, we identify χ (Rσ , t)

as the nuclear wavefunction (marginal probability amplitude),

and Rσ (rs, t) as the electronic wavefunction (conditional

probability amplitude). An equivalent formalism is to view,

instead, the nuclear wavefunction as a conditional probability

amplitude depending parametrically on the electronic coor-

dinate, i.e., χr s(Rσ , t), with the electronic wavefunction as

the marginal probability amplitude of the electronic coordi-

nates, i.e., (rs, t). We choose to use the former decomposi-

tion however to later make natural connections with the BO

approach. In this section, we argue why we can view the prob-

ability amplitudes χ (Rσ , t) and Rσ (rs, t) as nuclear and

electronic wavefunctions, and we will assign some meaning

to the terms that arise in their equations of motion.

A first question that arises is: is this decomposition

unique? We answer this in Theorem 2.

Theorem 2 (a): Equations (28)−(33) are form-invariant

up to within the gauge-like transformation

̃Rσ (rs, t) := eiθ(Rσ,t)Rσ (rs, t),

χ̃ (Rσ , t) := e−iθ(Rσ ,t)χ (Rσ , t), (44)

Aα(Rσ , t) → Ãα(Rσ , t) = Aα(Rσ , t) + ∇αθ (Rσ , t),

ǫ(Rσ , t) → ǫ̃(Rσ , t) = ǫ(Rσ , t) + ∂tθ (Rσ , t). (45)

(b) The wavefunctions Rσ (rs, t) and χ (Rσ , t) are unique

up to within the (Rσ , t)-dependent phase transformation,

Eq. (44).

To prove part (a), simply substitute Eqs. (44) and (45) into

Eqs. (28)–(33). Part (b) is readily shown by first assuming

that Rσχ and ̃Rσ χ̃ are two different representations of the

exact wave function �(rs, Rσ , t), i.e.,

�(rs, Rσ , t) = Rσ (rs, t)χ (Rσ , t) = ̃Rσ (rs, t)χ̃(Rσ , t).

Then

χ

χ̃
=

̃Rσ

Rσ

=: g(Rσ , t), (46)

and

|̃Rσ (rs, t)|2 = |g(Rσ , t)|2|Rσ (rs, t)|2. (47)

From Theorem 1, both ̃Rσ (rs, t) and Rσ (rs, t) satisfy the

PNC. Hence,

∑

s

∫

dr|̃Rσ (rs, t)|2 =|g(Rσ , t)|2
∑

s

∫

dr|Rσ (rs, t)|2,

(48)

and |g(Rσ , t)|2 = 1. Therefore, g(Rσ , t) must be equal to a

purely (Rσ , t)-dependence phase

g(Rσ , t) = eiθ(Rσ,t). (49)

This completes the proof of Theorem 2.

The interpretation of R and χ as electronic and nu-

clear wavefunctions follows from the following observa-

tions. The probability density of finding the nuclear config-

uration R at time t,
∑

s

∫

|�(rs, Rσ , t)|2dr = |χ (Rσ , t)|2,

as can readily be shown by substituting the product wave-

function Eq. (23) into the left-hand-side and using the PNC

Eq. (24). Not only does χ (Rσ , t) therefore yield the nuclear

(Nn-body) probability density, we shall see later in Sec. III A

that it also reproduces the exact nuclear (Nn-body) current-

density. The modulus-square of the electronic wavefunction,

|Rσ (rs, t)|2 = |�(rs, Rσ , t)|2/|χ (Rσ , t)|2 gives the con-

ditional probability of finding the electrons at r with spin con-

figuration s, given that the nuclear configuration is Rσ .

Note that, strictly speaking, the definition of the condi-

tional probability amplitude |Rσ (rs, t)|2 via Eq. (26), only

holds for non-zero marginal probabilities |χ (Rσ , t)|2. In the

case the nuclear density, and the full molecular wavefunc-

tion, have a node at some R
0
, the electronic wavefunction

would be defined by taking a limit. However, it is actually

very unlikely that the nuclear density has a node.30, 31 This
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can be seen by expanding the full electron-nuclear wavefunc-

tion, �(rs, Rσ , t), in terms of the BO-electronic states, as in

Eq. (17). Then, the nuclear density can be expressed as an

infinite sum of non-negative terms

|χ (Rσ , t)|2 =
∞
∑

j=1

∣

∣χBO
j (Rσ , t)

∣

∣

2
. (50)

In general, it is extremely unlikely that every term in the

summation becomes zero at the same nuclear configuration

R
0

σ
0
, unless dictated by symmetry20 (see the end of this sec-

tion for a discussion on symmetry). Symmetry-dictated nodes

likely lead to a finite, well-defined, value of |Rσ (rs, t)|2 due

to the linear behavior of the wavefunctions in the vicinity of

these nodes.

Equations (28)−(33) determine the exact time-dependent

molecular wavefunction, given an initial state. As writ-

ten, the nuclear equation is particularly appealing as a

Schrödinger equation with both scalar and vector-potential

coupling terms contributing effective forces on the nuclei in-

cluding any geometric phase effects. We call ǫ(Rσ , t) and

A(Rσ , t) the exact TDPES and exact time-dependent Berry

connection, respectively. These two quantities, along with

the electron-nuclear coupling potential Û
coup
en [Rσ , χ ], medi-

ate the coupling between the nuclear and the electronic de-

grees of freedom in a formally exact way. The three sec-

tions in Sec. III are each devoted to a closer study of these

terms.

We conclude this section by discussing the sym-

metry properties of χ (Rσ , t) and Rσ (rs, t): The

nuclear wavefunction χ (Rσ , t) must preserve the

symmetry of the full electron-nuclear wavefunction

�(rs, Rσ , t) with respect to exchange of identical

nuclei. This constrains the allowed gauge transforma-

tion (44)−(45). The electronic wavefunction Rσ (rs, t)

= �(rs, Rσ , t)/χ (Rσ , t) is invariant under any nuclear per-

mutation because any fermionic sign cancels out between the

full molecular wavefunction and the nuclear wavefunction.

In the rest of the paper, we drop the spin indices σ and s

for notational simplicity.

C. Simple illustration: The H atom in an electric field

The example of the hydrogen atom in an electric field

provides a simple demonstration of our formalism. The

Hamiltonian is

H = −
1

2M
∇2

R −
1

2
∇2

r −
1

|R − r|
+ (r − R) · E(t), (51)

where r and R are the electron and proton coordinates,

respectively, E(t) is the applied electric field, and M is

the proton mass. The exact solution is known: in terms

of the center of mass and relative coordinates, RCM = (r

+ MR)/(M + 1), u = r − R, the problem is separable, and we

have

�(RCM, u, t) = e
i(K·RCM− K2

2(M+1)
t)
φ(u, t), (52)

where φ(u, t) satisfies the following equation:
(

−
∇2

u

2μ
−

1

u
+ u · E(t)

)

φ(u, t) = i∂tφ(u, t), (53)

and μ = M/(M + 1) is the reduced mass. The full wavefunc-

tion, Eq. (52), represents free-particle plane-wave motion in

the center of mass coordinate, with K representing the total

momentum of the system. The form of Eq. (52) suggests one

possible factorization for Eqs. (23) and (24) as

χ (R, t) = e
i( −K2 t

2(M+1)
+ M

(M+1)
K·R)

,

R(r, t) = eiK·r/(M+1)φ(r − R, t), (54)

with the exact Berry potential and TDPES given by

A(R, t) = −i

∫

φ∗(r − R, t)∇Rφ(r − R, t)dr = 0, (55)

ǫ(R, t) =
K2

2(M + 1)
+ R · E(t). (56)

The vector potential, Eq. (55), is zero in the gauge implicit

in our choice for Eq. (54). This is easily confirmed by insert-

ing Eq. (54) in the nuclear equation (29), which reads for our

problem
(

1

M
(−i∇+A)2−R · E(t) + ǫ(R, t)

)

χ (R, t) = i∂tχ (R, t).

(57)

Equations (56) and (57) show that, in this case, the role of the

TDPES is to cancel out the external laser field in the nuclear

equation, which is exactly as it should be. Only by this can-

cellation, the nuclear motion can be a plane wave.

III. THE EXACT ELECTRON-NUCLEAR
COUPLING TERMS

We now take a closer look at each of the three terms

A(Rσ , t), ǫ(Rσ , t), and Û
coup
en [Rσ , χ ], that mediate the

coupling between electron and nuclear dynamics exactly. In

these three terms, all of the non-adiabatic coupling effects of

the Born-Oppenheimer expansion are effectively contained.

A. The time-dependent Berry connection

Equations (28)−(33) demonstrate that a Berry connec-

tion indeed appears in the exact treatment of coupled electron-

ion dynamics, a question which was raised in the Introduction.

In this section, we point out some properties of this object to

help us understand what it represents.

First, we show that the vector potential Aα is real. Taking

the gradient with respect to nuclear coordinates of the PNC

(Eq. (24)), yields

0 = ∇α

∫

dr∗
R(r)R(r),

= 2Re

∫

dr∗
R(r)∇αR(r), (58)

(using the product rule). Comparing with the definition

Eq. (33), we readily conclude Aα is real.
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Second, we insert Eqs. (25) and (26) into Eq. (33) to re-

veal the following expression for the vector potential:

Aα(R, t) =
Im 〈�(t)| ∇α�(t)〉r

|χ (R, t)|2
− ∇αS(R, t). (59)

This shows that the vector potential is the difference of para-

magnetic nuclear velocity fields derived from the full and

nuclear wavefunctions. In fact, since Im 〈�(t)| ∇α�(t)〉r is

the true nuclear (many-body) current density, Eq. (59) im-

plies that the gauge-invariant current density, Im(χ*∇αχ )

+ |χ |2Aα , that follows from the nuclear Hamiltonian in

Eq. (29) does indeed reproduce the exact nuclear current

density.32 As discussed in Sec. II, the solution χ (R, t) of

Eq. (28) yields a proper nuclear many-body wavefunction:

Its absolute-value squared gives the exact nuclear (Nn-body)

density while its phase yields the correct nuclear (Nn-body)

current density. (The nuclear kinetic energy evaluated from

χ (R, t) does not equal the nuclear kinetic energy evalu-

ated from the full molecular wavefunction, and their dif-

ference is determined by U
coup
en , as will be discussed in

Sec. III C).

Another interesting aspect of expression (59) is that it

can help to shed light on the question of whether the ex-

act Berry potential produces a real effect or whether it can

actually be gauged away by a suitable choice of θ (R, t) in

Eqs. (44)−(45). Provided the phase S(R, t) is spatially

smooth, the last term on the right-hand-side of Eq. (59) can

be gauged away so any true Berry connection (that cannot be

gauged away) must come from the first term. In the conven-

tional analyses of conical intersections, the phase may not be

smooth: for example, in the Herzberg and Longuet-Higgens

model,26, 45 the two (single-valued) nuclear wavefunctions as-

sociated with a two-state conical intersection between tradi-

tional BO surfaces, each have a phase S = ±φ/2, undefined

at the origin. This has a singular gradient, yielding a delta-

function at the origin in the curl of the vector potential, thus

contributing a non-zero Berry phase. Whether a similar ef-

fect occurs for the exact time-dependent nuclear wavefunction

remains to be explored. When the exact �(t) is real-valued

(e.g., for a non-current-carrying ground state) then the first

term on the right-hand-side of Eq. (59) vanishes and hence

gives a vanishing contribution to the exact Berry connection.

Whether, and under which conditions, the full Berry connec-

tion (59) can be gauged away remains an open question at this

point.

Finally, it is also instructive to express the vector poten-

tial in terms of the BO electronic basis states of Sec. I C. We

first expand the electronic wavefunction

R(r, t) =
∞
∑

j=1

Cj (R, t)φ
j

R(r), (60)

where orthonormality of the φ
j

R (Eq. (16)) means

Cj (R, t) =
∫

drφ
j∗
R (r)R(r, t). (61)

The PNC condition becomes

∞
∑

j=1

|Cj (R, t)|2 = 1. (62)

Inserting Eq. (60) into Eq. (33), and noting the definition of

the non-adiabatic derivative couplings of Eq. (22), we obtain

Aα(R, t)=
∞
∑

j=1

(

− iC∗
j (R, t)∇αCj (R, t)+|Cj (R, t)|2FBO

jj,α(R)

+
∞
∑

l �=j

C∗
l (R, t)Cj (R, t)FBO

lj,α (R)

)

. (63)

The exact Berry potential is thereby expressed as a linear

combination of the diagonal and off-diagonal BO derivative

couplings. Any gauge-invariant part of the Berry connection,

that would give rise to a non-zero Berry phase, arises from

the part of Eq. (63) that has a non-zero curl. In the case of

a real-valued electronic wavefunction, each of the three terms

of Eq. (63) vanishes independently giving rise to a zero vector

potential.

B. The time-dependent potential energy surface

The time-dependent potential energy surface ǫ(R, t) of

Eq. (32) provides an exact time-dependent generalization of

the adiabatic BO potential energy surface. As such, it should

prove to be a powerful interpretive tool for general time-

dependent problems. This will be explored in Sec. IV. We

now begin by analyzing the expression Eq. (32) in a little

more detail.

First, consider the expectation value of the electron-

nuclear coupling term of Eq. (31), 〈R|Û coup
en |R〉 that ap-

pears in the TDPES. Only the first term of Eq. (31) contributes

to the expectation value: the second term goes to zero, due to

the very last parenthesis, 〈R| − i∇α − Aα(R, t)|R〉, which

vanishes due to the definition of the vector potential. So we

have

ǫ(R, t) =

⎛

⎜

⎝
〈R|ĤBO + V̂ e

ext(r, t)|R〉r − i〈R|∂tR〉r

+
∑

α

〈R|(−i∇α − Aα(R, t))2|R〉r

2Mα

)

,

=

(

〈R|ĤBO + V̂ e
ext(r, t)|R〉r − i〈R|∂tR〉r

+
∑

α

〈∇αR|∇αR〉r

2Mα

)

−
∑

α

A2
α(R, t)

2Mα

, (64)

where the second line results from expanding the square in the

first, and making use of the definition of the vector potential.

As we did for the vector potential, we now provide an

expression for the TDPES as an expansion over BO states. In-

serting Eq. (60) into Eq. (64) and performing a little straight-

forward algebra, we obtain

Downloaded 14 Nov 2012 to 192.108.69.177. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



22A530-9 Abedi, Maitra, and Gross J. Chem. Phys. 137, 22A530 (2012)

ǫ(R, t) =
∑

j

|Cj (R, t)|2V j

BO(R) +
∑

j l

C∗
j (R, t)Cl(R, t)

〈

φ
j

R

∣

∣V̂ e
ext(r, t)

∣

∣φl
R

〉

r
−
∑

j

iC∗
j (R, t)∂tCj (R, t)

+
∑

α

1

2Mα

⎛

⎝

∑

j

|∇αCj |2 +
∑

j l

C∗
j Cl

(

i∇α · FBO
jl,α − G

BO
jl,α

)

− 2
∑

j l

Im
(

Cl∇αC∗
jF

BO
jl,α

)

− A2
α(R, t)

⎞

⎠ (65)

(the expansion of the last term A2
α may be obtained from

Eq. (63)). Notice that all the BO surfaces, as well as non-

adiabatic couplings, are contained in the the exact TDPES.

C. Electron-nuclear correlation

The TDPES and Berry connection discussed in

Secs. III A and III B directly determine the evolution of the

nuclear wavefunction (Eq. (29)), containing the effect of cou-

pling to the electrons in an exact way. The electron-nuclear

coupling term Û
coup
en enters the nuclear equation indirectly

via its role in determining R through Eqs. (28) and (30).

Equation (31) expresses Û
coup
en as a functional of the electronic

and nuclear wavefunctions, and now we shall derive another

expression for it that shows that it measures the difference

between the nuclear kinetic energy evaluated from the full

wavefunction and that evaluated on the nuclear wavefunction.

We isolate the term involving Û
coup
en in Eq. (28), and insert

R = �/χ . This leads to

Û
coup
en R

R

=
i∂t�

�
−

i∂tχ

χ
−

ĤBOR

R

− V̂ e
ext + ǫ(R, t).

(66)

Next we insert in Eq. (66) the TDSE (10) and Eq. (29),

satisfied by � and χ to obtain

Û
coup
en [R, χ ]R(r, t)

R(r, t)
=

T̂n�

�
−

ˆ̃Tnχ

χ
, (67)

where

ˆ̃Tn =
Nn
∑

α=1

1

2Mα

(−i∇α + Aα(R, t))2. (68)

Multiplying Eq. (67) by |R|2|χ |2 and integrating over all

coordinates leads to

〈�|T̂n|�〉r,R−〈χ | ˆ̃Tn|χ〉R =
∫

dR|χ (R, t)|2〈R|Û coup
en |R〉r.

(69)

This means the nuclear kinetic energy evaluated from the

full molecular wavefunction, and that evaluated via the ex-

pectation value of the nuclear kinetic energy operator in

Eq. (29) on the nuclear wavefunction are not equal: their dif-

ference is given by the nuclear-density-weighted integral of

the electron-nuclear coupling potential.

IV. MODEL OF H+

2 IN A LASER FIELD

In this section, we illustrate the usefulness of the TDPES

using a simple, numerically exactly solvable model: the H+
2

molecular ion subject to a linearly polarized laser field. By re-

stricting the motion of the nuclei and the electron to the direc-

tion of the polarization axis of the laser field, the problem can

be modeled with a 1D Hamiltonian featuring “soft-Coulomb”

interactions33–37

Ĥ (t) = −
1

M

∂2

∂R2
−

1

2μe

∂2

∂x2
+

1
√

0.03 + R2
+ V̂l(x, t)

−
1

√

1 + (x − R/2)2
−

1
√

1 + (x + R/2)2
, (70)

where R and x are the internuclear distance and the elec-

tronic coordinate as measured from the nuclear center-of-

mass, respectively, and the electronic reduced mass is given

by μe = (2M)/(2M + 1), M being the proton mass. The

laser field is represented by V̂l(x, t) = qexE(t), where E(t)

denotes the electric field amplitude and the reduced charge

qe = (2M + 2)/(2M + 1). One-dimensional soft-Coulomb

atoms and molecules have proven extremely useful in the

study of strong-field dynamics since they allow numerically

accurate solutions to problems involving correlated electron

dynamics as well as correlated electron-nuclear dynamics that

would be computationally far more demanding for the full

three-dimensional atoms and molecules, while capturing the

essential physics of the latter, e.g., multi-photon ionization,

above-threshold ionization and dissociation, enhanced ioniza-

tion, non-sequential double-ionization, high-harmonic gener-

ation, and non-BO effects (e.g., Refs. 7 and 35–41). We study

the dynamics of the model H+
2 system under a λ = 228 nm

(5.4 eV) UV-laser pulse, which is represented by

E(t) = E0f (t) sin(ωt), (71)

with two peak intensities, I1 = |E0|2 = 1014 W/cm2 and

I2 = |E0|2 = 2.5 × 1013 W/cm2. With this frequency, an en-

ergy that is about twice as much as the dissociation energy of

the model molecule (2.8782 eV) is achieved, so dissociation

is expected. The envelope function f(t) is chosen such that the

field is linearly ramped from zero to its maximum strength at

t = Tramp and thereafter held constant (Fig. 1)

f (t) =

{

t/Tramp 0 < t < Tramp

1 Tramp < t < Ttot

. (72)

The rise-time was chosen as Tramp = 10τ while the total simu-

lation time was Ttot = 25τ , where τ = 2π
ω

denotes the optical

cycle.

The same system and parameters were studied in

Ref. 37 where the importance of electron-nuclear correlation

was highlighted: a two-configuration correlated ansatz for

the time-dependent electron-nuclear wavefunction was able
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FIG. 1. λ = 228 nm laser field, represented by E(t) = E0f(t)sin (ωt),

for two peak intensities, I1 = |E0|2 = 1014 W/cm2 and I2 = |E0|2 = 2.5

× 1013 W/cm2. The envelope function f(t) is chosen such that the field is

linearly ramped from zero to its maximum strength at t = 7.6 fs and there-

after held constant. The highlighted area represents the optical cycle that will

be focussed on in later graphs.

to describe photodissociation processes in many cases, while

a simple uncorrelated Hartree product of an electronic and

a nuclear wavefunction almost always failed. In the present

work, we analyse the dynamics via the numerically exact TD-

PES, finding it very useful in understanding and interpreting

the motion. We note that the laser-field does not couple di-

rectly to the nuclear relative coordinate R, but only indirectly

via the TDPES.

Starting from the exact ground-state as initial condition,

we propagate the TDSE numerically, using the second-order

split-operator method,42 to obtain the full molecular wave-

function �(x, R, t). As there is only one nuclear degree of

freedom (after separating off the center-of-mass motion), we

can fix the gauge in Eqs. (44)−(45) such that the vector poten-

tial (59) vanishes identically. For one-dimensional problems,

this is always possible with the choice

d

dR
S(R, t) =

Im
∫

dx�∗(x,R, t) d�(x,R,t)

dR

|χ (R, t)|2
. (73)

So we can calculate S(R, t), the phase of the nuclear wave-

function, as well as |χ (R, t)|2, the nuclear density, from the

computed exact time-dependent molecular wavefunction. Be-

ing equipped with the nuclear wave-function, χ (R, t) (= |χ (R,

t)|eiS(R, t)) , we then compute the TDPES by inverting the nu-

clear equation of motion (29).

We will compare the exact dynamics with the fol-

lowing three approximations: (i) the usual Ehrenfest ap-

proximation, where the nuclei are treated via classical dy-

namics, evolving under the force −∇VEhr = −∇RWnn(R)

−
∫

drn(r, t)∇RWen(r, R), with n(r, t) being the one-body

electron density, (ii) the “exact-Ehrenfest” approximation,

which substitutes the exact TDPES for the Ehrenfest poten-

tial VEhr in the usual Ehrenfest approach, and (iii) an uncor-

related approach, the time-dependent Hartree (self-consistent

field) approximation, �H(r, R, t) = φ(r, t)χ (R, t), where the

electronic part does not depend on R at all. This includes

a quantum treatment of the nuclei, but no electron-nuclear

correlation.

A. High intensity: I1 = 1014 W/cm2

The exact TDPES, along with the corresponding nuclear

density, |χ (R, t)|2, are plotted in Fig. 2 at six snapshots of

time. The initial TDPES lies practically on top of the ground-

state BO surface, plotted in all the snapshots for comparison.

FIG. 2. Snapshots of the TDPES (blue solid lines) and nuclear density (black

solid lines) at times indicated, for the H+
2 molecule subject to the laser-field

with the peak intensity I1 = 1014 W/cm2. The solid circles indicate the po-

sition and energy of the classical particle in the exact-Ehrenfest calculation.

For reference, the ground-state BO surface (red dashed lines) is shown.

The dissociation of the molecule is dramatically reflected

in the exact TDPES, whose well flattens out, causing the nu-

clear density to spill to larger separations. Importantly, the

tail of the TDPES alternately falls sharply and returns in cor-

respondence with the field, letting the density out; the TDPES

is the only potential acting on the nuclear system and transfers

energy from the accelerated electron to the nuclei.

In Fig. 3, we focus on six equally-spaced time snap-

shots during the optical cycle shaded in Fig. 1. The lower

panel shows the TDPES, with its characteristic oscillations,

along with the nuclear density as a function of the inter-

nuclear coordinate, |χ (R, t)|2. The upper panel shows a

color map of the conditional electronic probability density,

FIG. 3. Snapshots of the TDPES (blue lines), nuclear density (black), and

the electronic conditional-density (color map) at times indicated during an

optical cycle, for the H+
2 molecule subject to the laser-field with the peak

intensity I1 = 1014 W/cm2. For reference, the ground-state BO surface is

shown as the red line.
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FIG. 4. Snapshots of the total electron-nuclear density at times indicated dur-

ing an optical cycle, for the H+
2 molecule subject to the laser-field with the

peak intensity I1 = 1014 W/cm2.

|R(x, t)|2, i.e., the probability of finding an electron at x

at a fixed nuclear separation R. While at small internuclear

distances (around and below the equilibrium separation), the

electron remains localized in the middle between the two nu-

clei, at larger separations one clearly sees the preferential lo-

calization of the electron density near the two nuclei, i.e.,

on one side or the other. At even larger separations, we see

streaks of ionizing electron density in both directions. For the

full story, we must multiply the conditional probability den-

sity of the upper panels with the nuclear density shown in the

lower panel, to obtain the total electron-nuclear density; this

is shown in Figure 4, indicating the probability of finding, at

the time indicated, an electron at position x and the nuclear

separation R.

The top left-hand panel of Fig. 5 shows the expectation

value of the internuclear distance

〈R̂〉 = 〈�(t)| R̂ |�(t)〉, (74)

along with the results from the three approximate methods

described earlier. The lower left-hand panel shows the ioniza-

tion probabilities. In principle, the latter requires projections

of the full wavefunction on all continuum states, which, in

practice, are difficult to calculate. Alternatively, we use a ge-

ometrical concept,47 according to which the total ionization

FIG. 5. Dissociation and ionization for intensity I1 (left) and I2 (right).

Top panels: the internuclear separation 〈R〉(t). Lower panels: the ionization

probability.

probabilities can be obtained from

Pion(t) = 1 −
∫

boxe

dx

(∫

dR|�(t)|2
)

. (75)

The electrons leaving the “electronic analyzing box” (boxe)

are thereby identified with ionized electrons. The ionization

box here was chosen to be |x| ≤ 10. The internuclear distance

together with the ionization probability support a Coulomb-

explosion interpretation of the dissociation: first, the system

begins to ionize, then the nuclei begin to rapidly move apart

under their mutual Coulomb repulsion increasingly sensed

due to weaker screening by the reduced electron density.

Turning now to the approximations, we observe that all the

methods yield dissociation and some ionization. The expec-

tation value of the internuclear distance in Fig. 5, demon-

strates that among all the approximate calculations employed

here, the exact-Ehrenfest is most accurate. Referring back to

Figure 2: the solid circles indicate the classical nuclear posi-

tion and energy of a particle driven by the exact-Ehrenfest

force. One can see that it rapidly picks up kinetic energy

above the TDPES, supporting the fact that the nuclear dis-

sociation mechanism is an essentially classical one in this

case. The exact-Ehrenfest calculation even does better than

TD-Hartree, which treats the protons quantum mechanically,

thus showing the overarching importance of electron-nuclear

correlation in this case.

In fact, the Hartree description is worse than it may

seem from just looking at the internuclear separation in

Fig. 5. In Figure 6, we plot the time-dependent Hartree poten-

tial energy surface and Hartree nuclear-density. Both are dra-

matically different from the exact TDPES and exact nuclear

density of Figure 2. At the initial time, the Hartree poten-

tial is reasonably good near equilibrium but poor at large

separations:37 this is a consequence of the conditional elec-

tron probability being independent of the nuclear coordinate,

and therefore only yielding a realistic result where the en-

ergy is optimized, which is at equilibrium separation. As time

evolves the minimum of the Hartree surface moves out and

FIG. 6. Snapshots of the time-dependent Hartree nuclear-potential (blue

lines) and nuclear density (black) at times indicated, for the H+
2 molecule

subject to the laser-field with the peak intensity I1 = 1014 W/cm2. For refer-

ence, the ground-state BO surface is shown as the red line.
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FIG. 7. Snapshots of the TDPES (blue) and nuclear density (black) at times

indicated, for the H+
2 molecule subject to the laser-field with the peak inten-

sity I2 = 2.5 × 1013 W/cm2. The solid circles indicate the position and energy

of the classical particle in the exact-Ehrenfest calculation. For reference, the

ground-state BO surface (dashed red) is shown.

begins to widen, cradling the nuclear density, which more or

less retains its Gaussian shape, unlike the exact density; only

at larger times does the surface open out.

B. Lower intensity: I2 = 2.5 × 1013 W/cm2

We now consider the dynamics under a field of weaker in-

tensity. Figure 7 plots the TDPES, whose tail displays similar

oscillations as in the higher intensity case. The nuclear den-

sity appears to leak out to larger separations, although more

slowly than in the previous case; indeed from the right panels

in Fig. 5, we see that the exact calculation leads to dissocia-

tion. However, Fig. 5 (upper right panel) also shows that none

of the approximations dissociates, in contrast to the previous

case. The Hartree and Ehrenfest methods also show negligi-

ble ionization, compared to the exact case; but even in the

exact case, the ionization probability is very small, indicat-

ing a different mechanism of dissociation than in the stronger

field case. It may be at first surprising that the exact-Ehrenfest

calculation does not dissociate the molecule, given that it is

based on the exact TDPES, however an examination of clas-

sical dynamics in the TDPES of Fig. 2 can explain what is

happening. The solid dot in Fig. 2 indicates the classical po-

sition and energy, and we see that it is always trapped inside

a well in the TDPES that remains at all times. This suggests

that tunneling is the leading mechanism for the dissociation:

a classical particle can only oscillate inside the well, while

a quantum particle may tunnel out, as indeed reflected in

Fig. 5. Although the tail has similar oscillations as for I1,

this does not lead to the dissociation of classical nuclei

due to the barrier; the TDPES in this case transfers the

field energy to the nuclei via tunneling. Although the exact-

Ehrenfest calculation shows a larger amplitude of oscilla-

tion than the others, it ultimately cannot tunnel through the

barrier.

As in the previous case, we plot in the top panels of Fig. 8

the electronic conditional density |R(x, t)|2 over one optical

FIG. 8. Snapshots of the TDPES (blue lines), nuclear density (black), and

the electronic conditional-density (color map) at times indicated during an

optical cycle, for the H+
2 molecule subject to the laser-field with the peak

intensity I2 = 2.5 × 1013 W/cm2 . For reference, the ground-state BO surface

is shown as the dashed red line.

cycle, while the lower panels illustrate again the opening and

closing of the TDPES as the field oscillates. Like in the pre-

vious case, for small R near equilibrium, the electron density

is localized in between the nuclei, while for larger R, there

is some polarization towards one side or the other. To get the

full picture, one must multiply the top panels by the nuclear

density |χ (R, t)|2, to obtain the total electron-nuclear proba-

bility density, shown in Figure 9. It is evident in this graph

that there is much less ionization than in the previous case,

and the dissociation is slower.

Although the Hartree approximation treats the nuclei

quantum mechanically, and therefore allowing tunneling in

principle, tunneling and dissociation do not actually occur.

The reason for this is clear from the shape of the Hartree

potential, plotted in Fig. 10: the Hartree potential essen-

tially retains its initial shape at all times, making very

small oscillations near the equilibrium separation. As in the

more intense field case, this is due to its uncorrelated treat-

ment of the electron-nuclear system: the electronic wave-

function at any nuclear configuration is always the same,

and is best at equilibrium since initially it is determined by

FIG. 9. Snapshots of the total electron-nuclear density at times indicated dur-

ing an optical cycle, for the H+
2 molecule subject to the laser-field with the

peak I2 = 2.5 × 1013 W/cm2.
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FIG. 10. Snapshots of the time-dependent Hartree nuclear-potential (blue

lines) and nuclear density (black) at times indicated, for the H+
2 molecule

subject to the laser-field with the peak intensity I1 = 1014 W/cm2 I2 = 2.5

× 1013 W/cm2. For reference, the ground-state BO surface is shown as the

dashed red line.

energy-optimization, from where it does not deviate far, due

to the weak field strength. Unlike in the stronger field case,

the Hartree surface never opens out. Dissociation via tun-

neling requires both a quantum mechanical description of

the nuclei and an adequate accounting of electron-nuclear

correlation.

We do not expect the TDPES to be so different from the

BO surfaces in all cases. For example, in the case of field-

free vibrational dynamics of the H+
2 molecule, where we start

with a nuclear wavepacket displaced from equilibrium on the

ground BO surface, we find the TDPES follows closely the

BO surface throughout. The non-adiabatic couplings are weak

in this case. The TDPES for field-free dynamics in other sys-

tems with stronger non-adiabatic couplings will be published

elsewhere.43

The purpose of comparing the exact results with

these methods (TD-Hartree, Ehrenfest, and exact-Ehrenfest)

was primarily to support the conclusions drawn from the

exact TDPES regarding the dissociation mechanisms. An

interesting question is how well do the more accurate ap-

proximate PES’s proposed recently (e.g., Ref. 16) com-

pare with the exact TDPES; this will be investigated in the

future.

V. CONCLUSIONS

In this paper, we have shown that there exists a rigor-

ous factorization of the exact molecular wavefunction into

a nuclear wavefunction and electronic wavefunction, each of

which retains the usual probabilistic meaning. The exact nu-

clear Nn-body density is |χ (R, t)|2 while |R(r, t)|2 repre-

sents the conditional probability of finding the electrons at

r, given the nuclear configuration R. Equations (28)–(33) are

the equations of motion that the electronic wavefunction and

nuclear wavefunction satisfy, and show explicitly how the

electronic and nuclear systems are exactly coupled. These

equations enable the time-dependent potential energy surface

(Eq. (32)) and the time-dependent Berry connection (Eq. (33))

to be defined as rigorous concepts, and we have discussed

some general properties of them, and of the electron-nuclear

coupling operator Eq. (31).

The example of the one-dimensional H+
2 molecule in

an oscillating electric field, solved numerically accurately,

demonstrated that the TDPES is a powerful tool to analyze

and interpret different types of dissociation processes. By

studying the shape and evolution of the TDPES, comparing

classical dynamics in this exact potential to the exact quan-

tum dynamics, we were able to distinguish whether the dis-

sociation proceeded via nuclear tunneling or more directly

in Coulomb-explosion. For this example, the TDPES is the

only potential determining the nuclear dynamics, exactly con-

taining the coupling with electronic dynamics. The example

demonstrated the importance of capturing both quantum ef-

fects in nuclear motion and electron-nuclear coupling; the

Hartree approach, for example, despite treating the nuclei

quantum mechanically, was unable to capture dissociation via

tunneling as the shape of its potential surface was completely

wrong. Thus, the TDPES, and in more general cases than the

one studied here, the geometric phase, can be very useful in-

terpretative tools for dynamics. The calculation of a TDPES

has quite some history in the strong-field community, and sev-

eral possible definitions of TDPES have been proposed in the

literature. The crucial point of our work is that it provides

a unique definition of TDPES (unique up to within a gauge

transformation): if one wants the TD many-body Schrödinger

equation (29) to give the correct N-body density and current

density of the nuclei, then the scalar potential and the vec-

tor potential must be given by Eqs. (32) and (33). There is

no choice apart from the gauge. That means that with any

advanced technique that yields the TD molecular wavefunc-

tion �(r, R, t) one can evaluate the TDPES and Berry po-

tential by first calculating the factors from Eqs. (25)−(26)

and then evaluating the TDPES and Berry potential from

Eqs. (32)−(33).

From a practical point of view, Eqs. (28)−(33) are not

easier to solve than the time-dependent Schroedinger equa-

tion for the full electron-nuclear system. Rather, they form

the rigorous starting point for making approximations, es-

pecially for the systematic development of semiclassical

approximations. In the large-nuclear mass limit, the elec-

tronic equation reduces to Cederbaum’s time-dependent BO

approximation.1, 18 Taking the classical limit for the nuclei

in the large-mass limit, one retrieves the Ehrenfest equations

with Berry potential1 (see also Refs. 48 and 49). Treating

the nuclei classically but retaining their finite mass, one finds

corrections to the Ehrenfest equations that better account for

non-adiabatic transitions.50 A direction for future research

is to capture some nuclear quantum effects by a semiclassi-

cal or quasiclassical procedure,51, 52 built on the exact foun-

dational equations presented here. Another direction would

be to use the formalism as a possible starting point to de-

velop electron-nuclear correlation functionals in a density-

functionalized version of the electron-nuclear problem.46 A

promising route is to develop a time-dependent generalisa-

tion of the optimized effective potential scheme proposed in

Ref. 20.
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