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Energy spectra and electromagnetic transitions of nuclei are strongly depending from
the correlations of the bound nucleons. Two particle correlations are responsible for the
scattering of model particles either to low momentum- or to high momentum-states. The
low momentum states form the model space while the high momentum states are used to
calculate the G-matrix. The three and higher order particle correlations do not play a role
in the latter calculation especially if the correlations induced by the scattering operator are
of sufficient short range. They modify, however, via the long tail of the nuclear potential, the
Slater determinant of the A particles by generating excited Slater’s determinants. In this
work the influence of the correlations on the level structure and ground state distributions
of even open shell nuclei is analyzed via the boson dynamic correlation model BDCM. The
model is based on the unitary operator eS (S is the correlation operator) formalism which in
this paper is presented within a non-perturbative approximation. The low lying spectrum
calculated for 6Li reproduces very well the experimental spectrum while for 6He a charge
radius slightly larger than that obtained within the isotopic-shift (IS) theory has been cal-
culated. Good agreement between theoretical and experimental results has been obtained
without the introduction of a genuine three body force.

§1. Introduction

Correlation effects in nuclei have been first introduced in nuclei by Villars,1) who
proposed the unitary-model operator (UMO) to construct effective operators. The
method was implemented by Shakin2) for the calculation of the G-matrix from hard-
core interactions. Non-perturbative approximations of the UMO have been recently
applied to even nuclei in Ref. 3) which here is treated in more detail. The basic
formulas of the Boson Dynamic Correlation Model (BDCM) presented in the above
quoted paper have been obtained by solving the n-body problem in the following
approximations:
a) The n-body correlation operator is separated in short- and long-range compo-
nents. The short-range component is considered up to the two body correlation
while for the long-range component the three and four body correlation operators
have been studied. The extension of the correlation operator to high order diagrams
is especially important in the description of exotic nuclei (open shell). In the short
range approximation the model space of two interacting particles is separated in two
subspaces: one which includes the shell model states and the other (high momentum)
which is used to compute the G-matrix of the model. The long-range component of
the correlation operator has the effect of generating a new correlated model space
(effective space) which departs from the originally adopted one (shell model). The
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amplitudes of the model wave functions are calculated in terms of nonlinear equation
of motions (EoM),
b) the n-body matrix elements are calculated exactly via the Cluster Factorization
Theory (CFT),
c) by linearizing the systems of commutator equations, which characterize the EoM.
The generalized linearization approximations (GLA) includes in the calculation pre-
sented in the paper up to the (3p1h) effective diagrams. The linearized terms are not
discarded but provide, as explained later in the text, the additional matrix elements
that convert the perturbative UMO expansion in an eigenvalue equation.

Within the present treatment of the correlation operator one generates in the
n-body theory not only the ladder diagrams of Ref. 4) but also the folded diagrams
of Kuo.5)

In this paper the BDCM model is applied to calculate the influence of the corre-
lations on the energy spectrum of 6Li and on the charge distributions of 6He and 6Li.
The motivation of these calculations relies from one side in the study the effect of
the correlation operator on the theoretical charge radius of 6He and from the other
side in investigating the variation of the charge distribution and magnetic moment
of the ground state of 6Li under the variation of the adopted model space.

The value obtained for the charge radius of the correlated 6He is slightly bigger
than the radius calculated in other theories6),9) and that derived within the isotopic-
shift IS theory.10) A charge radius which agrees with the radii calculated in Refs. 6)
and 9), and those calculated in the cluster models of Refs. 11)–13) is on the other
hand obtained by considering only two protons in the 1s 1

2
. This non-correlated radius

agrees also with the radius derived at Argonne within the IS theory.10) Correlations
have therefore the property to increase the charge radius of 6He as observed for the
isotopes of Lithium.

The calculations performed in Ref. 14) for the charge radii of the lithium iso-
topes, although in good agreement with those measured at GSI-TRIUMF15) and
analyzed with the help of Ref. 16), are always slightly larger than those measured.
For the stable isotope 6Li the calculated radius agrees with the value obtained with
the electron scattering experiments of Ref. 17). However, the charge radii calculated
in the IS theory could also depend on the nuclear correlations. The consideration of
the microscopic correlations as presented in this paper will generate a new evalua-
tion procedure for the Mass Shift (MS) and the Field Shift (FS). As a result, both
quantities could be evaluated within non-perturbative methods which include the
nuclear effects.

The importance of the correlations in the evaluation of the FS has already been
pointed out in Ref. 19) where we calculate the FS of 7Li and show that the departure
from a point nuclear approximation is rather a big effect. Additionally the higher
order cross term contributions of Ref. 18) need to be considered. A direct comparison
between the calculated and the measured charge radii should be therefore performed
after an accurate analysis of these two correcting factors.

Theoretically the effect of the correlation on the distributions of medium-heavy
nuclei has already been performed in Refs. 20)–22) within a phenomenological corre-
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lation model. In light nuclei, however, the calculation of distributions performed by
the theoretical models of Refs. 6)–9) has been done in terms of non-correlated parti-
cles. In Refs. 6) and 7), and references therein, a large-basis no-core shell model has
been used. In this model the eS method is considered up to the “two body cluster
approximation”. Within this approximation the effective interaction obtained con-
tains no hole state. This will be, however, not the case by expanding the eS method
to higher cluster approximations as done in the present paper. Unstable nuclei have
been described by the antisymmetrized molecular dynamics (AMD) of Ref. 8) ne-
glecting correlations. Quantum Monte Carlo calculations have been performed by
using realistic nuclear Hamiltonians that fit nucleon-nucleon scattering data in light
nuclei.9) Good results have been obtained for structure calculations, but the model
cannot introduce correlated wave functions in the calculation of the distributions.

Another important argument for the consideration of correlation effects comes
from the analysis of the magnetic moments. The magnetic moment of the ground
state of 6Li calculated in a model base in which the hole is confined to the 1s 1

2
is

smaller than the experimental value. Only with the use of a large configuration base,
which includes the spin-flip component 1p−1

3
2

1p 1
2

proposed by Arima23) we obtain a

very good value for the magnetic moment. The large configuration base has also the
effect of decreasing the energy of the second 1− level.

§2. Theory of correlated two particle systems

The effect of the correlations between nucleons in open shell nuclei is investigated
within a system of coupled commutator equations, which via the GLA Ansatz, is
converted in an eigenvalue equation. These describe a situation in which valence
particles and core-excited states are coexisting. The advantage of this model is to
provide larger effective configuration spaces (see Appendix A) than that used in the
shell model calculation, to include exactly the Pauli principle in the coupled spaces,
and to generate correlated solutions for the n ≡ paired systems.

We start by computing the commutator of the valence particles with the nuclear
Hamilton operator. In this calculation we retain the linear (shell model) terms
with dimension n and nonlinear (valence pairs coupled to one particle-hole pair)
excitations with dimension n+1′. The 1′ denotes one particle-hole pair. In the next
equation we have then to take care of the nonlinear terms derived in the first step.
The commutator of the Hamilton operator with the n + 1′ excited states generates
the coupling of the n-valence pairs to two particles-holes (2p-2h) excitations with
dimension n+2′. The successive equations are then characterizing the commutators
which involve valence particles coupled to an increasing number of particle-hole pairs
n+n′. It is worthwhile to remark that the obtained system of commutator equations
is similar to the chain of equations one derives within the Green function dynamics of
Ref. 9). The introduced computational steps describe the mixing of the shell model
states to core excitations with an increasing degree of complexity which will find
applications in the calculation of the structures of exotic nuclei. This commutator
chain is suitable to be solved perturbatively by inserting the n-th commutator in
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the (n − 1)-th commutator, (n − 1)-th commutator in the (n − 2)-th commutator,
. . . the second commutator in the first. Within this perturbative approach one defines
effective Hamiltonians of the model which, due to the increasing degree of complexity,
are not easily solvable. Much simpler solutions to the commutator equations may,
however, be obtained in the BDCM model. We start by remarking that in the
study of low lying excitations of the n-body systems the higher order components of
the wave functions, which involve n valence and (2p-2h) core-excitations are poorly
admixed in the model space and can be linearized. Within this approximation, the
model commutator equations are suitable to be restricted to a finite space. The
linearized system of the commutator equations is then solved exactly in terms of the
CFT which calculates the n-body matrix elements in an expedite and exact way.

In the following we illustrate the method by considering two valence particles.
Following Ref. 2), we calculate the effective Hamiltonian by using only the S2 corre-
lation operator and obtain

Heff = e−iS2HeiS2 =
∑
αβ

〈α|t|β〉a†αaβ +
∑
αβγδ

〈Ψαβ|vl
12|Ψγδ〉a†αa†βaδaγ

=
∑
αβ

〈α|t|β〉a†αaβ +
∑
αβγδ

〈Ψαβ|v|Ψγδ〉a†αa†βaδaγ , (2.1)

where vl
12 is the long component of the two body interaction (note that the vl

12 is in
the following equations simply denoted as v). The Ψαβ is the two particle correlated
wave function:

Ψαβ = eiS2Φαβ. (2.2)

In dealing with complex nuclei, however, the (Si, i = 3 · · ·n) correlations should
also be considered.

The evaluation of these diagrams is, due to the exponentially increasing number
of terms, difficult in a perturbation theory.

We note, however, that one way to overcome this problem is to work with
ei(S1+S2+S3+···+Si) operator on the Slater determinant by keeping the n-body Hamil-
tonian uncorrelated.

After having performed the diagonalization of the n-body Hamilton operator we
can calculate the form of the effective Hamiltonian which, by now, includes correla-
tion operators of complex order.

We write the two particle states in second quantization by discarding for sim-
plicity the isospin quantum numbers:

Φ2p −→ A†
1(α1J)|0〉 = [a†j1a

†
j2

]JM |0〉, (2.3)

where the operators a†j1a
†
j2

create two coupled particles in the open shells and we
analyze the structure of the particle dynamics, generated by the correlation operator,
via the following commutator:

[H,A†
1(α1J)]|0〉 =




∑

α

εαa
†
αaα +

1
2

∑
αβγδ

〈αβ|v(r)|γδ〉a†αa†βaδaγ


 , (a†j1a

†
j2

)J


 |0〉.

(2.4)



Correlated EoM and Distributions for A = 6 Nuclei 703

In order to have a compact index definition we have introduced:

α1 −→ j1j2. (2.5)

By using some operator’s algebra and by including in the results linear and nonlinear
terms we calculate:

[H,A†
1(α1J)]|0〉 =

∑
β1

Ω(2p|2p′)A†
1(β1J)]|0〉 +

∑
β2J ′

1J ′
2

Ω(2p|3p1h)A†
2(β2J

′
1J

′
2J)]|0〉.

(2.6)
In Eq. (2.6) the A†

1(β1J) operators are those of Eq. (2.3) and the A†
2(β2J

′
1J

′
2J) are

defined below:

Φ3p1h −→ A†
2(β2J

′
1J

′
2J)|0〉 = ((a†

j′1
a†

j′2
)J ′

1(a†
j′3
aj′4)

J ′
2)J |0〉. (2.7)

In Eq. (2.7) we have used the additional convention:

β2 −→ j′1j′2j′3j′4 (2.8)

and we have associated:

J ′
1 to the coupling of j′1j′2,
J ′

2 to the coupling of j′3j′4. (2.9)

Having extended the commutator as in Eq. (2.6), we have also to calculate the
commutator equation for the A†

2(α2J1J2J) operators as given below:

[H,A†
2(α2J1J2J)]|0〉

=
∑

β2J ′
1J ′

2

Ω(3p1h|3p′1h′)A†
2(β2J

′
1J

′
2J)|0〉 +

∑
β3J ′

1J ′
2J ′

3

Ω(3p1h|4p2h)A†
3(β3J

′
1J

′
2J

′
3J)|0〉,

(2.10)
where we have introduced the (4p-2h) wave functions defined below:

Φ4p2h −→ A†
3(β3J

′
1J

′
2J

′
3J)|0〉 = (((a†

j′1
a†

j′2
)J ′

1(a†
j′3
aj′4)

J ′
2)J12(a†

j′5
aj′6)

J ′
3)J |0〉, (2.11)

and where we have consistently extended the definition given in Eqs. (2.5) and (2.9):

β3 −→ j′1j′2j′3j′4j′5j′6 (2.12)

with
J ′

1 associated to the coupling of j′1j′2,
J ′

2 associated to the coupling of j′3j′4,
J ′

3 associated to the coupling of j′5j′6. (2.13)

In the definition of A†
3(β3J

′
1J

′
2J

′
3J) the coupling of J ′

1 to J ′
2 to J12 has been discarded

from the notation. In Eqs. (2.6) and (2.10) the Ω are the matrix elements of the
Hamilton operator in the model wave functions. The next step would be then the
computation of the commutator of the Hamiltonian with the A†

3(β3J
′
1J

′
2J

′
3J) oper-

ators. Here we linearize these contributions by considering that in the study of the
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low energy spectrum and in the calculation of ground-state correlated distributions
the A†

3(β3J
′
1J

′
2J

′
3J) terms are poorly contributing. The linearization is performed as

in Ref. 25) by applying to the (4p2h) terms∑
αβγδ

〈αβ|v(r)|γδ〉a†αa†βaδaγA
†
3(β3J

′
1J

′
2J

′
3J), (2.14)

the Wick theorem and to discard the normal order terms. Within this linearization
approximation we generate from the commutator equations of Eqs. (2.6) and (2.10)
non-perturbative solutions of the EoM, i.e., the eigenvalue equations for the mixed
mode system:

[H,A†
1(α1J)]|0〉 =

∑
β1

Ω(2p|2p′)A†
1(β1J)|0〉 +

∑
β2J ′

1J ′
2

Ω(2p|3p′1h′)A†
2(β2J

′
1J

′
2J)|0〉,

(2.15)
and

[H,A†
2(α2J1J2J)]|0〉 =

∑
β1

Ω(3p1h|2p′)A†
1(β1J)|0〉

+
∑

β2J ′
1J ′

2

Ω(3p1h|3p′1h′)A†
2(β2J

′
1J

′
2)|0〉. (2.16)

Within the application of the GLA approximation we convert Eqs. (2.6) and (2.10) in
an eigenvalue equation for the configuration mixing wave functions (CMWFs) of the
model. In fact, the linearization provides the additional matrix elements necessary
to write the following identity:

Ω(3p1h|3p′1h′) = 〈j1j2j3j4|v(r)|j′1j′2j′3j′4〉, (2.17)

and to introduce the off-diagonal matrix elements which couple the (2p) to the (3p1h)
subspaces. Now, by writing Eqs. (2.15) and (2.16) in the following matrix form:(

[H,A†
1(α1J)]|0〉

[H,A†
2(α2J1J2J)]|0〉

)
=
(
E2p +Ω(2p|2p′) Ω(2p|3p′1h′)
Ω(3p1h|2p′) E3p1h +Ω(3p1h|3p′1h′)

)

·
(

A†
1(β1J)|0〉

A†
2(β2J1J2J)|0〉

)
,

(2.18)
and by multiplying to the left with( 〈0|A1(α1J)

〈0|A2(α2J1J2J)

)
, (2.19)

we generate the eigenvalue equation for the dressed particles:∑
β1β2J ′

1J ′
2

(
E2p + 〈A1(α1J)|v(r)|A†

1(β1J)〉 〈A1(α1J)|v(r)|A†
2(β2J

′
1J

′
2J)〉

〈A2(α2J1J2J)|v(r)|A†
1(β1J)〉 E3p1h + 〈A2(α2J1J2J)|v(r)|A†

2(β2J
′
1J

′
2J)〉

)

·
(

χ1(β1J)
χ2(β2J

′
1J

′
2J)

)
= E

(
χ1(α1J)

χ2(α2J1J2J)

)
|0〉.

(2.20)
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In Eq. (2.20) E2p = εHF
j1

+ εHF
j2

and E3p1h = εHF
j1

+ εHF
j2

+ εHF
j3

− εHF
j4

are the Hartre-
Fock energies (see Appendix C) while the χ are the projections of the model states:

|ΦJ
2p〉 = χ1(α1J)A1(α1J)|0〉 + χ2(α2J1J2J)A2(α2J1J2J |0〉 (2.21)

to the basic vectors 2p, 3p1h. To conclude, although the (4p-2h) CMWFs are not
active part of the model space, they are important for structure calculations. One
may therefore associate the GLA approximation to a parameter which describes
the degree of complexity of the model CMWFs (the method used to define the
CMWFs is given in Appendices A–C). Within the first order linearization we obtain
the EoM for the shell model while within the second and third order linearization
approximations we derive the EoM of valence particles coexisting with the complex
particle-hole structure of the excited states.

In this paper we solve Eq. (2.20) self-consistently (see Appendix D). The solu-
tions for the first iteration step are obtained by diagonalizing the eigenvalue equa-
tion (2.20). The first step of the iterative method generates the dynamic amplitudes
for the two dressed particles, i.e. two particles coexisting with the 3p1h struc-
tures. With the calculated eigenvectors we recompute then the matrix elements
〈j1j2|v(r)|j1j2j3j4〉 and 〈j1j2j3j4|v(r)|j′1j′2j′3j′4〉 and we diagonalize again the eigen-
value equation. The iterations are repeated until the stabilization of the energies has
been reached.

To be noted that since we are working in coupled particle-particle and particle-
hole bases we need both particle-particle and particle-hole matrix elements (these
terms where set to zero in the original work of Brückner4)) in orders to diagonal-
ize the eigenvalue equation. The calculation of these matrix elements is, however,
complicated by the number of terms which have to be evaluated in order to solve
the introduced iterative equations. As in Ref. 3) one solves this problem by using
the cluster factorization theory CFT which provides a quick and exact numerical
method to perform the calculations of the matrix elements. The starting point of
the CFT theory is to expand the CMWFs base introduced for (3p1h) states in terms
of cluster factorization coefficients (CFC) denoted in the following U and V :

|3p1h〉J = A†
2(α2J1J2J)|0〉

=
∑

JrJsεi

5V
(3,1)
J (α2J1J2|}εiJr ε̄iJs)|[A†

1(εiJr)B
†
1(ε̄iJs)]J |0〉

+
∑

JrJsαj

5U
(3,1)
J (α2J1J2|}αjJrᾱjJs)|[B†(αjJr)A

†
1(ᾱjJs)]J |0〉

=
∑

JrJsεi

5V
(3,1)
J (α2J1J2|}εiJr ε̄iJs)|[εiJr ε̄iJs]J |0〉

+
∑

JrJsαj

5U
(3,1)
J (α2J1J2|}αjJrᾱjJs)|[αjJrᾱjJs]J |0〉, (2.22)

where the (α2) coordinates of the (3p1h) model states have been expanded in terms
of active (passive) particle-particle and passive (active) particle-hole coordinates as
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given below:

α2 → εi(Jr)(active particle-particle)ε̄i(Js)(passive particle-hole)
+αj(Jr)(active particle-hole)ᾱj(Js)(passive particle-particle). (2.23)

In Eq. (2.22) the superscript on the left of the V and U indicates the total number
of pairs (2(two pairs) + 1 = 5) while the superscripts on the right the number
of particles and holes. There we have also introduced the creation operators of a
particle-hole pair:

(ph) −→ B†
1(α1J)|0〉 = [a†j1aj2 ]

J
M |0〉 (2.24)

and postulated that the sum over (i) is to be extended over the six combinations
(partitions) of particle-particle pairs formed by the (3p1h) model space and (j) over
the three combinations of particle-hole pairs:

α2 → εiε̄i αjᾱj

j1j2j3j
−1
4 → (jijj)(jkj−1

4 ) (jkj−1
4 )(jijj)

. (2.25)

Within this convention we reproduce exactly the the (3p1h) CMWFs. In Eq. (2.22)
the sum over (ᾱi) and (ε̄i) has not been given explicitly because these indices are
complementary to the (αi) and (εi) in the sense of Eq. (2.25). The sum over Jr and Js

take care of the fact that by calculating the (3p1h) matrix elements in the traditional
way, the coupling of the j of the (2p) is not the same as in the coupling postulated
for (3p1h) wave functions. The definitions of active and passive components separate
the matrix elements of the interaction in particle-particle and particle-hole matrix
elements.

It has to be remarked that, due to the used iterative method, the final results
are almost independent from the initial choice of the interaction because after the
first iteration the two body potential is modified by the contributions of both types
of matrix elements.

Matrix elements calculated by using the first term of Eq. (2.22) are related to the
Brückner theory,4) while those evaluated with the second term have been considered
in the folded diagram theory of Kuo.5)

In order to calculate the CFC-5V (3,1)
J (α2J1J2|}εiJr ε̄iJs) we introduce3) the fol-

lowing operator:
πk

mk
(2) = [(a†i′a

†
i )

Ji(ajaj′)J ′
i ]kmk

(2.26)

which destroys and creates a particle pair and we evaluate his effect on the 3p1h
wave function. In Eq. (2.22) the two in the parenthesis indicate that the operators
are working on the space spanned by two boson (two pairs). We calculate

πk
mk

(2)A†
2(α2J1J2JM)|0〉 = CJkJ

MmkM ′(Coef1 · ([a†i′a†i ]Jr [a†j3aj4 ]
Js)J

M ′

+Coef2 · ([a†ia†j2 ]Jr [a†i′aj4 ]
Js)J

M ′+Coef3 · ([a†j1a
†
i ]

Jr [a†i′aj4 ]
Js)J

M ′)|0〉. (2.27)

The Coefλi
, λi = 1, 2, 3 are given in Appendix E. By multiplying Eq. (2.27) to the

left with 〈0|A2(α2J1J2) we obtain the following equation:

〈0|A2(α2J1J2JM)πk
mk

(2)A†
2(α2J1J2JM)|0〉

(Coef1+Coef2+Coef3) = CJkJ
MmkM ′ , (2.28)
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where we have introduced the Clebsch-Gordan coefficients CJkJ
MmkM ′ . Equation (2.28)

defines the matrix elements of a unitary operator, i.e., by applying the unitary

operator
πk

mk
(2)

Coef1+Coef2+Coef3
on the left of a wave function of the type |3p1h〉JM we

reproduce the same wave function in a rotated frame. It follows that the structure
defined by Eq. (2.28) is that of a full linear group in (2J + 1) dimension and of its
unitary subgroup U2J+1. The calculation of the transformation coefficients is now
reduced to the construction of the Coefλi

coefficients. In order to demonstrate this,
let us now operate with the Casimir operator of the group (πk

mk
(2)⊗ (πk

mk
(2))†)00 on

the left-hand side of Eq. (2.22). We obtain

〈A2(α2J1J2J)‖(πk
mk

(2) ⊗ (πk
mk

(2))†)00‖A†
2(α2J1J2J)〉 =

∑
λiλj

Coefλi
Coefλj

, (2.29)

where the double bar matrix elements have been introduced because the CFC are
independent from the m quantum numbers and where the subscript λi classifies the
three different partitions spanned by the particles in the (3p1h) wave functions. On
the other hand, considering that

(πk
mk

(2) ⊗ (πk
mk

(2))†)00 =
λi∑

i=1

(πk
mk

(1, i)π0
0(1̄, i) ⊗ ((π0

0(1̄, i))
†(πk

mk
(1, i))†)00, (2.30)

where the sum is running over all the possible partitions, we calculate by using
Eq. (2.22):

〈A2(α2J1J2J)||(πk
mk

(1, i)π0
0(1̄, i) ⊗ ((π0

0(1̄, i))
†(πk

mk
(1, i))†)00||A†

2(α2J1J2J)〉
= 5V

†(3,1)
J (α2J1|}λiεiJr ε̄iJs)5V

(3,1)
J (α2J1|}λiεiJr ε̄iJs). (2.31)

In Eq. (2.31) we have introduced the unit operators π0
0(1̄, i) defined by

〈B1(ε̄jJ ′
s)|(π0

0(1̄, i))
†π0

0(1̄, i)|B†
1(ε̄iJs)〉 = δε̄i ε̄jδJsJ ′

s
. (2.32)

By equating Eqs. (2.29) and (2.31) we obtain

5V
†(3,1)
J (α2J1|}λiεiJr ε̄iJs)5V

(3,1)
J (α2J1|}λiεiJr ε̄iJs) =

∑
λiλj

Coefλi
Coefλj

. (2.33)

Equation (2.33) is given in matrix form in Appendix E. Note that from the diago-
nalization of Eq. (E.4) we derive the square of the CFC. In order to calculate the
CFC we introduce the same phase convention used to define the Clebsch-Gordan
coefficients. Analogously also for the operator

uk
mk

(2) = [(a†iaj)Ji(a†j′ai′)J ′
i ]kmk

(2.34)

which destroys and creates a particle-hole pair. The normalization factors for these
operators (cµi ; i = 4, 5, 6) are given in Appendix D. A numerical example for the
calculation of these coefficients is given in Appendix F. By using Eq. (E.4) and the
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evaluated CFC, we can now calculate the matrix elements of the nuclear interaction
in the (3p1h) CMWFs. We derive

〈3p1h|v(r)|3p′1h′〉 = 〈A2(α2J1J2J)|v(r)|A†(β2J
′
1J

′
2J)〉

=
∑

λiλjεiεjJrJsJ ′
rJ ′

s

5V †
J (α2J1J2|}λiεiJr ε̄iJs)5VJ(β2J

′
1J

′
2|}λjεjJ

′
r ε̄jJ

′
s)

〈[λiεiJr ε̄iJs]J |v(r)|[λjεjJ
′
r ε̄jJ

′
s]

J〉
+

∑
µiµjαiαjJrJsJ ′

rJ ′
s

5U †
J(α2J1J2|}µiαiJrᾱiJs)5UJ(β2J

′
1J

′
2|}µjαjJ

′
rᾱjJ

′
s)

〈[µiαiJrᾱiJs]J |v(r)|[µjαjJ
′
rᾱjJ

′
s]

J〉
=

∑
λiλjεiεjJrJ ′

rJs

5V †
J (α2J1J2|}λiεiJr ε̄iJs)5VJ(β2J

′
1J

′
2|}λjεjJ

′
r ε̄jJs)

〈λiεi|v(r)|λjεj〉Jr
a

+
∑

µiµjαiαjJrJ ′
rJs

5U †
J(α2J1J2|}µiαiJrᾱiJs)5UJ(β2J

′
1J

′
2|}µjαjJ

′
rᾱjJs)

〈µiαi|v(r)|µjαj〉Jr
a . (2.35)

In Eq. (2.35) we have two types of matrix elements, the particle-particle matrix
elements which, by choosing one λi and µi partitions, can be written as

〈λ1ε1|v(r)|λ1ε
′
1〉Jr

a = 〈j1j2|v(r)|j′1j′2〉Jr
a , (2.36)

and the particle-hole matrix elements:

〈µ1α1|v(r)|µ1α
′
1〉Jr

a = 〈j3j4|v(r)|j3j4〉Jr
a . (2.37)

The matrix elements of Eq. (2.37) which generate the interaction with the core
clusters are not considered by the microscopic calculation of Refs. 6) and 9) where
the effective Hamiltonian is obtained by summing only over ladder diagrams.4) By
using the diagonal matrix elements of Eq. (2.35) and the off-diagonal matrix elements
given in Ref. 3) we diagonalize Eq. (2.20) and obtain the amplitudes χ(α1) and χ(α2)
of the mixed modes (2p) and (3p1h). The calculation of the ground and excited
state distributions and of the magnetic moments is then performed in terms of these
amplitudes. The formula of the correlated distribution for the ground state of even
nuclei is given in Appendix H.

§3. Results

In order to perform structure calculations, we have to define a single-particle
base with the relative “single-particle energies” and to choose the nuclear two body
interactions. The single-particle energies of these levels are taken from the known
experimental level spectra of the neighboring nuclei27) (see Appendix C) and given
in Table I. For the experimentally unknown single-particle energies of the fp shells
we use the corresponding energies for the mass A-9 nuclei scaled according to the
different binding energies. Our single-particle energies agree reasonably well with
those calculated in Ref. 28). Some of these levels are not bound. In this paper we
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perform as in Ref. 9) calculations by assuming all levels as bound. It has to be
remembered, however, that the energies of Table I are used only in the first stage of
the iteration procedure explained in Appendix F.

For the particle-particle interaction, we use the G-matrix obtained from Yale
potential.29) These matrix elements are evaluated by applying the eS correlation
operator, truncated at the second order term of the expansion, to the harmonic os-
cillator base with size parameter b = 1.76 fm. This value is consistent with the value
used by Kuo.30) As elucidate in Ref. 3) the potential used by the BDCM is sepa-
rated in low and high momentum components. Therefore, the effective model matrix
elements calculated within the present separation method and those calculated by
Kuo31) are pretty similar. The separation method generates matrix elements which
are almost independent from the radial shape of the different potentials generally
used in structure calculations.

The particle-hole matrix elements could be calculated from the particle-particle
matrix elements via a re-coupling transformation. We prefer to use the phenomeno-
logical potential of Ref. 24). The same size parameter as for the particle-particle
matrix elements has been used.

One can generate the center-of-mass (CM) spurious states according to Refs. 32)
and 33), and evaluate the overlap between these states and the nuclear eigenstates
of the model (see Appendix B). Model components having with the corresponding
CM components an overlap greater than 10% were treated as spurious states and
discarded. This is a convenient approximation considering that in our model space
the energy of the CM is varying between 18 and 20 MeV.

By using a base formed by 9 (2p) and 112 3p1h-states we calculate the distri-
bution of the ground state of 6He given in Fig. 1. The spectroscopic factor for the
ground state wave function, defined in Appendix G, and the most significant compo-
nents of the ground state wave function are given in Table IX. In Fig. 1 we plot three
distributions: 1) the correlated charge distribution of 6He calculated with Eq. (F.6),
2) the correlated charge distribution of 6He calculated with Eq. (F.6) but neglecting
the folded diagrams, 3) the charge distribution calculated for two correlated protons
in the 1s 1

2
shell. A charge radius of 2.25 fm has been obtained for the distribution a),

a radius of 2.39 fm for the distribution b), and a radius of 2.09 fm for the distribution
c).

In Table II the calculated charge radii are compared with the radii calculated
by the other theoretical models and with the radius obtained by the IS theory. The
radius calculated with the distribution c) (single-particle) is in agreement with the
radius obtained by the IS theory and with those of the other theoretical models. The
BDCM increases, however, the charge radius of 6He. One reason for this slightly dis-
agreement can rely on the effect of the correlation operator which is neglected either
in the evaluation of the charge radii via the IS theory or in the other theoretical model
calculations. As shown in Ref. 3) the correlations are also important in the analysis
of the matter radius of 6He. Here the larger matter radius reproduces reasonable well
the proton elastic scattering cross section measured at GSI at 717 MeV/u calculated
by using the Glauber method in the whole range of data.35)
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Fig. 1. Calculated charge distributions of 6He: black — calculated with a full configuration mixed

base, blue — calculated without the particle-hole diagrams, and red — calculated for two protons

in the s 1
2

shell.

with p-hole without p-hole

6
Li levels comparison
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Fig. 2. Calculated spectrum of 6Li: Left: energy levels calculated by allowing the excitation of the

1s 1
2
- and the 1p 3

2
-hole. Right: energy levels calculated by restricting the hole to the 1s 1

2
.

The energy of the low lying spectrum of 6Li is calculated by defining a coupled
base in which a proton-neutron pair in the (psd) single-particle scheme of Table I
are interacting with the (3p1h) states generated by exciting the hole from the lowest
(1s) shell. Within the model dimension of 13 (2p) and 196 (3p1h) components we
define the ground state wave functions. The spectroscopic factor for the ground state
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Fig. 3. Calculated charge distributions of 6Li: blue — calculated by restricting the hole to the s 1
2
-

state; black — calculated by considering s 1
2
- and p 1

2
-hole. The configuration space considered

is formed by 13 two particle (shell model)-states and 512-(3p1h) states.

of 6Li and the most significant components of the ground state wave function are
given in Table X. By using this model space we obtain the spectrum shown on the
right-hand side of Fig. 2. For the ground state this model space is, however, not large
enough to reproduce the second 1+ level and the magnetic moment of the ground
state.36) The magnetic moment of the ground state calculated in this model space
is 0.875 nm therefore larger than the experimental value (0.822 nm). The second
spectrum is calculated introducing for the ground state a much larger space with
dimension of 525 components (13 two particle shell model states and 512 (3p1h)
states) which includes also the excitation of the particles from the 1p 3

2
state. Within

this dimensional space the spectroscopic factor for the ground state of 6Li, defined
in Appendix G, and the most significant components are given in Table XI. Within
this space we reproduce also the energy of the second 1+ level given on the left-hand
side of Fig. 2. To be considered that in other theoretical models the 1+ always lies at
an energy that is too high. Since we plot the spectrum relative to the ground state
energy, the effect of enlarging the base also for the other states is negligible at least
for the first plotted 2+ and 3+ levels. The magnetic moment of the ground state
calculated for the large model space is 0.821 nm. The value is in good agreement with
the experimental value. The charge distributions calculated within these two model
spaces are given in Fig. 3. The two distributions are labeled: 1) charge distribution
calculated for the small configuration space and 2) charge distribution calculated for
the large space. The calculated charge radii are respectively 〈r2ch〉

1
2 equal to 2.627 fm

for the small model space and to 2.55 fm for the large space. Both values reproduce
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well the charge radius of 2.55 fm obtained in Ref. 17) from the electron scattering
experiments. Calculation of the electric scattering form factor measured in Ref. 17)
for both charge distributions is presently under consideration.

§4. Conclusions

In this paper we have investigated the effect of the microscopic correlation op-
erators on the spectra and the charge distributions of 6He and 6Li. The microscopic
correlation has been separated in short- and long-range correlations according the
definition of Shakin.2) The short-range correlation has been used to define the effec-
tive Hamiltonian of the model while the long-range is used to calculate the structures
and the distributions of exotic nuclei. As given in the work of Shakin, only the two
body short-range correlation needs to be considered in order to derive the effective
Hamiltonian especially if the correlation is of very short range. For the long-range
correlation operator, however, the “three body component” of the correlation op-
erator is important and should not be neglected. The effect of the “three body
correlation operator” is to introduce in the theory a three body interaction. There-
fore the use of the genuine three body interaction of the other theoretical model
could, in the present theory, generate double counting of diagrams.

By using generalized linearization approximations and cluster factorization coef-
ficients we can perform expedite and exact calculations for the structure of 6He and
6Li. Very good results for the spectrum of 6Li have been obtained by considering
large configuration spaces. Within correlated distributions we obtain charge radii
slightly larger than those calculated within either non-correlated distributions or IS
experiments.

This result should serve as motivation to a reevaluation of the different terms
of the IS theory, i.e. the MS, which is mainly calculated in a perturbative approxi-
mation, and the FS, which is generally calculated in a point nucleus approximation,
should be reevaluated within the non-perturbative BDCM.

Appendix A
Definition of the Model CMWFs

In the BDCM the degree of linearization applied to the commutator equations
defines the CMWFs of the model. For A = 6 the model space is formed by two
valence particle states and by the full set of the (3p1h) CMWFs. These different
components are associated to the following linearization mechanism: a) In the zero
order linearization approximation we retain only two particle states:

Ψ2p(j1j2J) = [a†j1a
†
j2

]JM |0〉. (A.1)

For the two particles we distinguish between
1) effective valence space which is used to diagonalize the EoM,
2) complementary high excited single-particle states which are used to compute the
G-matrix.
b) In the first order linearization approximation we include in the dynamic theory
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also the (3p1h) terms. These are generated by the application of the correlation
operator of the third order to the particles in the open shell states. Within this
linearization approximation the CMWFs of the model are defined by

Ψdressed(j1j2J) = ([a†j1a
†
j2

] + [a†j1a
†
j2

]J12 [a†j3aj4 ]
J34)JM |0〉. (A.2)

The (3p1h) CMWFs are then expanded according to Eq. (2.22). This expansion
allows to orthogonalize the CMWFs in an easy way. c) The (4p2h) states which
characterize the second order linearization step are not included in the model space
but, linearized, generate the eigenvalue equation of the model (2p)+(3p1h) states.

Appendix B
Center of Mass Correction

Before performing the diagonalization of relative Hamilton operator in the
CMWFs defined in Appendix A we have to eliminate the spurious center of mass
states. We start to compute, following the calculations of Refs. 32) and 33), the per-
cent weights of spurious states in the model wave functions. These can be obtained
by calculating the energy of the center of mass according to the following equation:

ER =
∫
dRΨ †dressed(jijjJ)(R2)Ψdressed(jijjJ)

+2
∑
ij

∫
d�rid�rjΨ

†dressed(jijjJ)(�ri · �rj)Ψdressed(j′ij
′
jJ). (B.1)

In Eq. (B.1) the calculation of the integrals can be performed by using the expansion
for the (3p1h) states given in Eq. (2.22) and by considering that for two particle states
we have

〈jijjJ |(�ri · �rj)|jijjJ〉
= 4π

3 [ĵiĵj ]
(

ji 1 jj
−1

2 0 1
2

)2{
ji jj J
ji jj 1

}
〈li|r|lj〉2, (B.2)

where
ĵ = (2j + 1). (B.3)

By diagonalizing the above operator in the model space we obtain the energy of the
center of mass. The overlap with the model space give the degree of “spuriosity” of
the different components.

Appendix C
The Single-Particle Energies

The model space which characterize the BDCM is formed by adding even particle
to a closed-shell nucleus. The closed shell configuration can be described by a single
Slater determinant and one can use the Hartree-Fock theory to obtain the binding
energy and the single-particle energies. Alternatively one can remark that for a
closed shell nucleus (Z,N) the single-particle energies for the states above the Fermi
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surface are related to the binding energies differences:

ε>p = BE(Z,N) −BE∗(Z + 1, N) (C.1)

and

ε>n = BE(Z,N) −BE∗(Z,N + 1). (C.2)

The single-particle energies for the states below the Fermi surface are given by

ε<p = BE∗(Z − 1, N) −BE(Z,N) (C.3)

and

ε<n = BE∗(Z,N − 1) −BE(Z,N). (C.4)

The BE are ground states binding energies which are taken as positive values, and
will be negative for bound states. (BE∗ = BE − Ex) is the ground state bind-
ing energy minus the excitation energy of the excited states associated with the
single-particle states. Within this method, which recently has been reintroduced by
Brown,37) we derive the single-particle energies from the known spectra of neighbor
nuclei (see Table I).

Table I. Single-particle scheme and single-particle energies (MeV) used to form the model CMWFs.

hole 1s1/2

energy −20.58

hole/particle 1p3/2

energy 1.43

particle 1p1/2 1d5/2 2s1/2 1d3/2 1f7/2 2p3/2 1f5/2 2p1/2

energy 1.73 17.21 22.23 23.69 25.23 27.18 28.33 29.67

Table II. Calculated charge radii for 6He in fm compared with the results obtained in other theo-

retical models and with the radius derived within the IS theory.

charge radius of 6He Model

1.94434) no-core shell model

2.099) quantum Monte Carlo technique

2.25 this work BDCM

2.39 this work BDCM without the folded diagrams

2.06 this work two correlated 1s 1
2
-protons

1.9911) Cluster

1.9912) Cluster

1.9913) Cluster

2.054 ± .01410) Isotopic Shift (Exp.)
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Appendix D
Iteration Procedure to Calculate Dressed Eigenstates

Let us suppose we have two particles in the sd shell model states interacting via
the (3p1h) CMWFs. The configuration mixed wave functions are

Ψdressed
2p = [a†1d 5

2

a†2s 1
2

]2 + [a†1d 3
2

a†2s 1
2

]2

+
[
[a†1d 5

2

a†2s 1
2

]3[a†2s 1
2

a1s 1
2

]1
]2

+
[
[a†1d 3

2

a†2s 1
2

]2[a†1d 5
2

a1s 1
2

]3
]2

= ψ1 + ψ2 + ψ3 + ψ4. (D.1)

This is a solution of the eigenvalue matrix:


E1 + 〈ψ1|v(r)|ψ1〉 〈ψ1|v(r)|ψ2〉 〈ψ1|v(r)|ψ3〉 〈ψ1|v(r)|ψ4〉
〈ψ2|v(r)|ψ1〉 E2 + 〈ψ2|v(r)|ψ2〉 〈ψ2|v(r)|ψ3〉 〈ψ2|v(r)|ψ4〉
〈ψ3|v(r)|ψ1〉 〈ψ3|v(r)|ψ2〉 E3 + 〈ψ3|v(r)|ψ3〉 〈ψ1|v(r)|ψ4〉
〈ψ4|v(r)|ψ1〉 〈ψ4|v(r)|ψ2〉 〈ψ4|v(r)|ψ3〉 E4 + 〈ψ4|v(r)|ψ4〉




·

∣∣∣∣∣∣∣∣
ψ1|0〉
ψ2|0〉
ψ3|0〉
ψ4|0〉


 = 0.

(D.2)
By diagonalizing the matrix of Eq. (D.2) we obtain four eigenvalues Ẽ1, Ẽ2, Ẽ3 and
Ẽ4, and the four eigenvectors given below:

Ψ̃1 = χ1
1|ψ1〉 + χ1

2|ψ2〉 + χ1
3|ψ3〉 + χ1

4|ψ4〉, (D.3)

Ψ̃2 = χ2
1|ψ1〉 + χ2

2|ψ2〉 + χ2
3|ψ3〉 + χ2

4|ψ4〉, (D.4)
Ψ̃3 = χ3

1|ψ1〉 + χ3
2|ψ2〉 + χ3

3|ψ3〉 + χ3
4|ψ4〉, (D.5)

Ψ̃4 = χ4
1|ψ1〉 + χ4

2|ψ2〉 + χ4
3|ψ3〉 + χ4

4|ψ4〉. (D.6)
This eigenvalues and eigenvectors are then used to diagonalize the eigenvalue matrix
in the second iteration step:


Ẽ1 + 〈Ψ̃1|v(r)|Ψ̃1〉 〈Ψ̃1|v(r)|Ψ̃2〉 〈Ψ̃1|v(r)|Ψ̃3〉 〈Ψ̃1|v(r)|Ψ̃4〉
〈Ψ̃2|v(r)|Ψ̃1〉 Ẽ2 + 〈Ψ̃2|v(r)|Ψ̃2〉 〈Ψ̃2|v(r)|Ψ̃3〉 〈Ψ̃2|v(r)|Ψ̃4〉
〈Ψ̃3|v(r)|Ψ̃1〉 〈Ψ̃3|v(r)|Ψ̃2〉 Ẽ3 + 〈Ψ̃3|v(r)|Ψ̃3〉 〈Ψ̃3|v(r)|Ψ̃4〉
〈Ψ̃4|v(r)|Ψ̃1〉 〈Ψ̃4|v(r)|Ψ̃2〉 〈Ψ̃4|v(r)|Ψ̃3〉 Ẽ4 + 〈Ψ̃4|v(r)|Ψ̃4〉




= 0,
(D.7)

where
〈Ψ̃1|v(r)|Ψ̃1〉
= (χ1

1)
2〈ψ1|v(r)|ψ1〉 + (χ1

2)
2〈ψ2|v(r)|ψ2〉 + (χ1

3)
2〈ψ2|v(r)|ψ2〉 + (χ1

4)
2〈ψ4|v(r)|ψ4〉

+2χ1
1χ

1
2〈ψ1|v(r)|ψ2〉 + 2χ1

1χ
1
3〈ψ1|v(r)|ψ3〉 + 2χ1

1χ
1
4〈ψ1|v(r)|ψ4〉

+2χ1
2χ

1
3〈ψ2|v(r)|ψ3〉 + 2χ1

2χ
1
4〈ψ2|v(r)|ψ4〉 + 2χ1

3χ
1
4〈ψ3|v(r)|ψ4〉,

(D.8)
where the χi

j are the projections of the truncated model space on the basic vectors 2p,
3p1h. The procedure is re-iterated until the energy convergence has been obtained.
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Appendix E
Basic Equations for the CFT of the (3p1h) CMWFs

The normalization factors for the π operators are calculated by using the re-
coupling algebra of Ref. 26). We obtain

Coef1=
∑

kJ′
rJr

√
[k̂Ĵ ](−1)i+i′+k+J2+J+1

{
Jr k J1

J J2 J ′
r

}
(1 − δj′2δj1(−1)j1+j2−Ji)δJsJ2 ,

(E.1)

Coef2=
∑

kJ′
rJ1

r J4
r JiJrJs

(Ĵ ′
rĴ

4
r )
√

[Ĵ1Ĵ2ĴiĴ1
r ĴsĴ4

r k̂Ĵ ](−1)i′+J′
r+J1

r +Jr+J+1

{
j1 j2 J1

J J2 J ′
r

}{
j3 j4 J2

J ′
r j1 J1

r

}{
i J4

r J ′
r

J j2 Jr

}{
k Js J4

r

Jr J J

}


i J ′
r J4

r

i′ j4 Js

Ji J1
r k




(1 − δj′3δj1(−1)j1+j3−Ji),
(E.2)

and

Coef3=
∑

kJ′
rJ1

r J4
r JiJrJs

√
[ĴiĴ ′

rĴrĴsk̂Ĵ ](−1)i+i′+j2+J′
r+J′

r

{
j1 j2 J1

J J2 J ′
r

}{
j3 j4 J2

J ′
r j1 J1

r

}{
i J4

r J ′
r

J j1 Jr

}{
k Js J4

r

Jr J J

}


i J ′
r J4

r

i′ j4 Js

Ji J1
r k




(1 − δj′2δj3(−1)j2+j3−Ji).
(E.3)

By using these normalization coefficients we obtain the CFT for the three partitions
by diagonalizing the following matrix:


Coef1∗Coef1 Coef1∗Coef2 Coef1∗Coef3

Coef2∗Coef1 Coef2∗Coef2 Coef2∗Coef3
Coef3∗Coef1 Coef3∗Coef2 Coef3∗Coef3




|([a†j1a†j2 ]Jr [a†j3aj4 ]

Js)J〉
|([a†j3a†j2 ]Jr [a†j1aj4 ]

Js)J〉
|([a†j1a†j3 ]Jr [a†j2aj4 ]

Js)J〉




=




5V
†(3,1)
J (α2J1|}λ1ε1Jr ε̄1Js) · 5V

(3,1)
J (α2J1|}λ1ε1Jr ε̄1Js)

5V
†(3,1)
J (α2J1|}λ2ε2Jr ε̄2Js) · 5V

(3,1)
J (α2J1|}λ2ε2Jr ε̄2Js)

5V
†(3,1)
J (α2J1|}λ3ε3Jr ε̄3Js) · 5V

(3,1)
J (α2J1|}λ3ε3Jr ε̄3Js)




|([a†j1a†j2 ]Jr [a†j3aj4 ]

Js)J〉
|([a†j3a†j2 ]Jr [a†j1aj4 ]

Js)J〉
|([a†j1a†j3 ]Jr [a†j2aj4 ]

Js)J〉


 .

(E.4)
The CFC coefficients associated to the u operators are derived within the same
computational method introduced for the π operators; the normalization factors
(cµi ;µi = 4, 5, 6) are given below:

Coef4=
∑

kJ′
rJ1

r J2
r JiJrJs

√
[Ĵ1Ĵ2Ĵ1

r ĴsĴik̂Ĵ ](−1)i+j1+j3+J2
r +J2+Jr+Js+J+1

{
j1 j2 J1

J ′
r j4 J1

r

}{
j3 j4 J2

J1 J J ′
r

}{
i j Ji

k J1
r J2

r

}{
i J2

r J1
r

J ′
r j2 Js

}

Js Jr J
J2

r j4 k
J ′

r j3 J


,
(E.5)

Coef5 =Coef4 ∗ (−1)j1+j2−J1 with (j1 → j2), (E.6)
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and

Coef6=
∑

kJ ′
rJr

√
[k̂Ĵ ](−1)j3+j4+1+k+J1+Jr

{
Jr k J2

J J1 J ′
r

}
δJsJ1 . (E.7)

By using these normalization coefficients we obtain the CFT for the three partitions
by diagonalizing the following matrix:
Coef4∗Coef4 Coef4∗Coef5 Coef4∗Coef6

Coef5∗Coef4 Coef5∗Coef5 Coef5∗Coef6
Coef6∗Coef4 Coef6∗Coef5 Coef6∗Coef6




 |([a†j1aj4 ]

Jr [a†j2a
†
j3

]Js)J 〉
|([a†j2aj4 ]

Jr [a†j1a
†
j3

]Js)J 〉
|([a†j3aj4 ]

Jr [a†j1a
†
j2

]Js)J 〉




=




5U
†(3,1)
J (α2J1|}µ1η1Jrη̄1Js) · 5U

(3,1)
J (α2J1|}µ1η1Jr η̄1Js)

5U
†(3,1)
J (α2J1|}µ2η2Jrη̄2Js) · 5U

(3,1)
J (α2J1|}µ2η2Jr η̄2Js)

5U
†(3,1)
J (α2J1|}µ3η3Jrη̄3Js) · 5U

(3,1)
J (α2J1|}µ3η3Jr η̄3Js)




|([a†j1aj4 ]

Jr [a†j2a
†
j3

]Js)J〉
|([a†j2aj4 ]

Jr [a†j1a
†
j3

]Js)J〉
|([a†j3aj4 ]

Jr [a†j1a
†
j2

]Js)J〉


 .

(E.8)

Appendix F
A Numerical Application of the CFT

In this appendix we apply the method of the previous appendix to calculate
the CFC for a (1d 5

2
2s 1

2
)2(d 3

2
p−1

3
2

)1-(3p1h) CMWFs formed by coupling two particles

assumed to be in the 1d 5
2

and 2s 1
2

single-particle shell model states to the d 3
2
p−1

3
2

p-h

pair. By using Eq. (E.1) we write for Coef1:

Coef1 = −
∑
Jr

3.
{
Jr 1 2
1 1 1

}
(F.1)

which by restricting the quantum numbers to k = 1 for (J1 = 2, J2 = Js = 1, J =
1, Jr = 2) give the cases of Table III. The Coef2 given in Eq. (E.2) assumes for k = 1
the form

Coef2=
∑

J′
rJ1

r J4
r JrJs

(Ĵ ′
rĴ

4
r )[5 · 3 · 9ĴiĴ1

r Ĵs]
1
2 (−1)

3
2+J′

r+J1
r +Jr

{
5
2

1
2 2

1 1 J ′
r

}{
3
2

3
2 1

J ′
r

5
2 J1

r

}{
1
2 J4

r J ′
r

1 1
2 Jr

}{
1 Js J4

r

Jr 1 1

}


1
2 J ′

r J4
r

5
2

3
2 Js

Ji J1
r 1


 .

(F.2)
In Eq. (F.2) the range of the indices in the sum is running over the following possi-
bilities:

J ′
r = 3/2 J ′

r = 5/2 J ′
r = 7/2

J1
r = 0, 1, 2, 3 J1

r = 1, 2, 3, 4 J1
r = 2, 3, 4, 5

Js = 0, 1, 2, 3 Js = 0, 1, 2, 3 Js = 0, 1, 2, 3
J4

r = 1, 2, 3, 4 J4
r = 0, 1, 2, 3, 4, 5 J4

r = 2, 3, 4, 5
Jr = 0, 1, 2, 3, 4, 5 Jr = 0, 1, 2, 3, 4, 5 Jr = 0, 1, 2, 3, 4, 5
Ji = 1, 2, 3, 4 Ji = 1, 2, 3, 4 Ji = 1, 2, 3, 4

(F.3)

By summing over all the possible cases we obtain for this special case the Coef2
given in Table IV. The Coef3 coefficients are given in Eq. (E.3) and for k = 1 we
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obtain

Coef3
=

∑
J′

rJ1
r J4

r JrJs

[ĴiĴ ′
rĴrĴs3.3]

1
2 (−1)

1
2+J′

r+J1
r

{
5
2

1
2 2

1 1 J ′
r

}{
3
2

3
2 1

J ′
r

5
2 J1

r

}{
1
2 J4

r J ′
r

J 5
2 Jr

}{
1 J3

r J4
r

Jr 1 1

}


1
2 J ′

r J4
r

3
2

3
2 Js

Ji J1
r 1


 .

(F.4)
For this special example the calculated Coef3 are given in Table III. We see that
the matrix we have to diagonalize in order to get the cluster coefficients is of the
order of eight. By introducing the coefficient of Tables III and IV in Eq. (E.4) and
by diagonalizing the derived matrix we get the V -CFC given in Table V. Analogous
calculations can be performed for the u operators. The Coef4 given in Eq. (E.5)
assumes for k = 1 the form

Coef4=
∑

kJ′
rJ1

r J2
r JiJrJs

[Ĵ1Ĵ2Ĵ1
r ĴsĴik̂Ĵ ]

1
2 (−1)i+j1+j3+J2

r +J2+Jr+Js+J+1

{
5
2

1
2 2

J ′
r

3
2 J1

r

}{
3
2

3
2 1

2 1 J ′
r

}{
3
2

1
2 Ji

1 J1
r J2

r

}{
3
2 J2

r J1
r

J ′
r

1
2 Js

}

Js cJs 1
J2

r
3
2 1

J ′
r

3
2 1


.
(F.5)

By summing over all possible partitions we obtain the Coef4 coefficients which are
given in Table VI. For the Coef5 we use the previous formula by replacing j1 → j2,
and we calculated coefficients given in Table VI. The Coef6 are calculated from
Eq. (E.7) which in this special example takes the form

Coef6=
∑
Jr

3. ∗ (−1)1+2+Jr

{
Jr 1 1
1 2 1

}
. (F.6)

Now since Jr = 1, 2 we have for Coef6 the coefficients given in Table VII. By using
the coefficients Coef i, i = 4, 5, 6 we derive the CFC for the U operators given in
Table VIII. By recalling that the pair coupled to Jr is active we write for the matrix
elements calculated in the ((d 5

2
s 1

2
)2(d 3

2
p−1

3
2

)1)1 CMWF the following value:

〈d 5
2
s 1

2
d 3

2
p−1

3
2

|v(r)|d 5
2
s 1

2
d 3

2
p−1

3
2

〉1a
= (0.0617)2〈d 5

2
s 1

2
|vpp(r)|d 5

2
s 1

2
〉2a + (0.0589)2〈d 3

2
s 1

2
|vpp(r)|d 3

2
s 1

2
〉2a

+(−0.2088)2〈d 3
2
s 1

2
|vpp(r)|d 3

2
s 1

2
〉2a + (0.2352)2〈d 3

2
s 1

2
|vpp(r)|d 3

2
s 1

2
〉2a

+(0.6029)2〈d 5
2
d 3

2
|vpp(r)|d 5

2
d 3

2
〉2a + (−0.3346)2〈d 5

2
d 3

2
|vpp(r)|d 5

2
d 3

2
〉2a

+(0.6466)2〈d 5
2
d 3

2
|vpp(r)|d 5

2
d 3

2
〉3a + (0.0908)2〈s 1

2
p 3

2
|vph(r)|s 1

2
p 3

2
〉2a

+(−0.1504)2〈s 1
2
p 3

2
|vph(r)|s 1

2
p 3

2
〉2a + (0.4022)2〈d 3

2
p 3

2
|vph(r)|d 3

2
p 3

2
〉1a

+(−0.3278)2〈d 3
2
p 3

2
|vph(r)|d 3

2
p 3

2
〉2a + (0.7873)2〈d 3

2
p 3

2
|vph(r)|d 3

2
p 3

2
〉2a

+(0.2094)2〈d 5
2
p 3

2
|vph(r)|d 5

2
p 3

2
〉1a + (0.1883)2〈d 5

2
p 3

2
|vph(r)|d 5

2
p 3

2
〉2a. (F.7)

One has to note that in the ladder approximations only the first seven terms of
Eq. (F.7) contribute to the matrix elements.
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Table III. Coef1 as functions of Jr and Js.

Jr Js Coef1

2 1 0.0671

Table IV. Coef2 and Coef3 as functions of Jr and Js.

Jr Js Coef2 Coef3
2 1 −0.5909001110−01 −0.1050328410−02

2 2 −0.3650307710−02 0.1547969910−02

2 3 −0.2182041110−01 -

3 2 - −0.1612873310−02

Table V. Cluster factorization coefficients V 3,1
1 ([d 5

2
s 1

2
J1 = 2][d 3

2
p−1

3
2

J2 = 1]}[jijjJr][jlj
−1
m Js]) cal-

culated for the seven allowed partitions and related CMWFs.

λi Jr Js CFC wave function

1 2 1 0.0617 |((d 5
2
s 1

2
)Jr=2(d 3

2
p−1

3
2

)Js=1)1〉
2 2 1 0.0589 |((d 3

2
s 1

2
)Jr=2(d 5

2
p−1

3
2

)Js=1)1〉
3 2 2 −0.2088 |((d 3

2
s 1

2
)Jr=2(d 5

2
p−1

3
2

)Js=2)1〉
4 2 3 0.2352 |((d 3

2
s 1

2
)Jr=2(d 5

2
p−1

3
2

)Js=3)1〉
5 2 1 0.6029 |((d 5

2
d 3

2
)Jr=2(s 1

2
p−1

3
2

)Js=1)1〉
6 2 2 −0.3346 |((d 5

2
d 3

2
)Jr=2(s 1

2
p−1

3
2

)Js=2)1〉
7 3 2 0.6466 |((d 5

2
d 3

2
)Jr=3(s 1

2
p−1

3
2

)Js=2)1〉

Table VI. Coef4 and Coef5 as functions of Jr and Js.

Jr Js Coef4 Coef5
2 1 0.3199068110−01 0.11957474

2 2 0.5368016710−01 0.3506421710−01

2 3 - −0.10351003

Table VII. Coef6 as functions of Jr and Ji.

Jr Js Coef6
1 2 0.5000

2 2 0.0671

Table VIII. Cluster factorization coefficients U3,1
1 ([d 5

2
s 1

2
J1 = 2][d 3

2
p−1

3
2

J2 = 1]}[jij
−1
j Jr][jljmJs])

calculated for the seven allowed partitions and related CMWFs.

µi Jr Js CFC wave function

1 1 2 0.0908 |((s 1
2
p−1

3
2

)Jr=2(d 5
2
d 3

2
)Js=1)1〉

2 2 2 −0.1574 |((s 1
2
p−1

3
2

)Jr=2(d 5
2
d 3

2
)Js=2)1〉

3 1 2 0.4022 |((d 3
2
p−1

3
2

)Jr=1(d 5
2
s 1

2
)Js=2)1〉

4 2 2 −0.3278 |((d 3
2
p−1

3
2

)Jr=2(d 5
2
s 1

2
)Js=2)1〉

5 2 3 0,7873 |((d 3
2
p−1

3
2

)Jr=2(d 5
2
s 1

2
)Js=3)1〉

6 1 2 0.2094 |((d 5
2
p−1

3
2

)Jr=1(d 3
2
s 1

2
)Js=2)1〉

7 2 2 0.1883 |((d 5
2
p−1

3
2

)Jr=2(d 3
2
s 1

2
)Js=2)1〉
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Table IX. List of the most significant components of the ground state 0+, T = 1 wave function of
6He with E = −24.97 MeV.

Spect. fact. 1p 3
2
1p 3

2
1p 1

2
1p 1

2
(1p 3

2
1d 5

2
)2,1(1p 3

2
1s−1

1
2

)2,0 (1p 3
2
1d 5

2
)2,1(1p 3

2
1s−1

1
2

)2,1

0.9370 0.9680 0.1816 −0.1145 0.0628

Table X. List of the most significant components of the ground state 1+, T = 0 wave function of
6Li calculated within the small base with E = −19.30 MeV.

Spect. fact. 1p 3
2
1p 3

2
1p 3

2
1p 1

2
1p 1

2
1p 1

2
1d 5

2
1d 3

2
(1p 3

2
1d 5

2
)2,0(1p 3

2
1s−1

1
2

)1,0

0.7649 0.8746 0.4559 −.1009 0.0385 0.0261

Spect. fact. (1p 1
2
2s 1

2
)0,0(1p 3

2
1s−1

1
2

)1,0

0.7649 −0.0111

Table XI. List of the most significant components of the ground state 1+, T = 0 wave function of
6Li calculated within the large base with E = −21.2 MeV.

Spect. fact. 1p 3
2
1p 3

2
1p 3

2
1p 1

2
1d 5

2
1d 5

2
1d 5

2
1d 3

2
(1p 3

2
1d 5

2
)2,0(1p 3

2
1s−1

1
2

)1,0

0.6427 0.8017 0.4906 −0.0636 −0.1155 0.0653

Spect. fact. (1p 1
2
2s 1

2
)0,0(1p 3

2
1s−1

1
2

)1,0

0.6427 0.03725

Appendix G
Spectroscopic Factors of the Dressed Wave Functions

The spectroscopic factor of the ground states of mass A = 6 isotopes is defined
by

Sp 3
2

p 3
2

= 〈Φ2p|a†p 3
2

a†p 3
2

|0〉. (G.1)

The spectroscopic factor for the two neutrons in the 6He together with the more
significant components of the dressed J = 0+, T = 1 wave function of the ground
state are given in Table IX. For 6Li the spectroscopic factor and the more significant
components of the J = 1+, T = 0 ground state wave function are given in Table X
for the small configuration space. Corresponding values calculated with the large
configuration space are given in Table XI.

Appendix H
Charge Distribution for Two Correlated Particles

In this appendix we give the difference between the distribution calculated for
two non-correlated particles in shell model states and that calculated for two dressed
(correlated) particles. In the shell model the distributions are evaluated by using
the expectation values of the operators:

ρ(r) =
∑
α

〈α|δ(r − rα)|α〉a†αaα (H.1)
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between the two particle shell model states:

[(j1j2)J ] = a†j1a
†
j2
|0〉. (H.2)

By performing small algebra we obtain

ρ(r) = ρj1(r) + ρj2(r), (H.3)

where ρji is the single-particle distribution. This distribution is valid only in an ex-
treme single-particle model, i.e., Shell Model, Hartree-Fock and mean field theories.
In the BDCM the effect of the long-range correlation must be included consistently
in the calculation of the densities. We need therefore to calculate the distribution
starting from the correlated particle pair given below:

Ψ̃12 ≡ eSΨ12 = (1 + S1 + S2 + S3 + · · · )Ψ12, (H.4)

where the Si, i = 1, 2 · · · are the correlation operators of the i-th order. Within our
approximation the density should therefore be calculated from the model CMWFs:

Ψ̃12 =
∑
ij

χijΨij +
∑
ijkl

χijklΨijΨkl. (H.5)

By using the amplitudes of Eq. (2.21) and the CFC of Eq. (2.22) we derive, discarding
the isospin quantum numbers, the following equation:

ρJ(R) =
(∑

α1

χ2
α1

∑
nlNLλ

〈n1l1n2l2λ|}nlNLλ〉2angcoef(α1α1λλJ)Φ2
NL(R)

+2
∑
α1α2

χα1χα2

(∑
Jrεi

5V
(3,1)
J (α2J1J2|}εiJr ε̄iJs)

·
∑

nlNLλλ′
〈n1l1n2l2λ|}nlNLλ〉〈nilin

′
il
′
iλ

′|}nlNLλ′〉angcoef(α1εiλλ
′Jr)Φ2

NL(R)

+
∑
Jrαi

5U
(3,1)
J (α2J1J2|}αiJrᾱiJs)

·
∑

nlNLλλ′
〈n1l1n2l2λ|}nlNLλ〉〈nilin

′
il
′
iλ

′|}nlNLλ′〉angcoef(α1αiλλ
′Jr)Φ2

NL(R)
)

+
∑
α2β2

χα2χβ2

( ∑
JrJr′ εiεj

5V
†(3,1)
J (α2J1J2|}εiJr ε̄iJs)5V

(3,1)
J (β2J1J2|}εjJ ′

r ε̄jJs)

·
∑

nlNLλλ′
〈nilin

′
il
′
iλ|}nlNLλ〉〈njljn

′
jl
′
jλ

′|}nlNLλ′〉angcoef(εiεjλλ′J)Φ2
NL(R)

+
∑

JrJr′βiβj

5U
†(3,1)
J (α2J1J2|}βiJrβ̄iJs)5U

(3,1)
J (β2J1J2|}βjJ

′
rβ̄jJs)

·
∑

nlNLλλ′
〈nilin

′
il
′
iλ|}nlNLλ〉〈njljn

′
jl
′
jλ

′|}nlNLλ′〉angcoef(βiβjλλ
′J)Φ2

NL(R)
))

,

(H.6)
where R is the center of mass of the dressed particles, (nlNL) the relative and center
of mass angular momenta of the (αi, βi, εi) pairs, and the brackets are the Moshinski
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brackets.38),39) The χα1 are the shell model amplitudes and the χα2 the (3p1h)
amplitudes. The angcoef’s of Eq. (2.37) are angular momentum transformation
coefficients between the (jj) and the (ls) coupling given below:

angcoef(α1α
′
1λλ

′J)
= (1

2
1
2s, l1l2λ|}(1

2 l1)j1, (
1
2 l2)j2, λ)(1

2
1
2s

′, l′1l′2λ′|}(1
2 l

′
1)j

′
1, (

1
2 l

′
2)j

′
2, λ

′)

=
√

[ĵ1ĵ2]λ̂(−1)λ




1
2

1
2 s

l1 l2 λ
j1 j2 J12



{
L l λ
s J12 J

}

√
[ĵ′1ĵ′2]λ̂′(−1)λ′




1
2

1
2 s′

l′1 l′2 λ′
j′1 j′2 J ′

1′2′



{
L′ l′ λ′
s′ J ′

1′2′ J

}
. (H.7)

The angcoef(α1ε1λλ
′J), angcoef(ε1ε′1λλ′J), and angcoef(β1β

′
1λλ

′J) coefficients have
a form analogous to that of Eq. (H.7). The symbols α1, α′

1, β1, β
′
1, and ε1, ε

′
1 are

given below:

α1 −→ two valence particles,
α′

1, β1, and β′
1 −→ two particles from the (3p1h) CMWFs,

ε1 and ε′1 −→ particle-hole form the (3p1h) CMWFs. (H.8)

The effect of the folded diagrams on the calculated distributions is given in Fig. 1
where we compare the correlated distribution of 6He calculated with Eq. (H.4) by
neglecting the particle-hole diagrams with that calculated by including also these
diagrams. Analogous calculations will be performed for any operators. Until now
this effect has not been considered by the other theoretical models. The translational
invariant density of Ref. 40) is derived by assuming that the wave functions of the
nuclei are given in the terms of non-correlated Slater determinants.
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4) K. A. Brückner, The Many Body Problem (John Wiley and Sons, New York, 1959).
5) T. T. S. Kuo and E. Osnes, “Folded-Diagrams Theory of the Effective Interaction in Atomic

Nuclei”, Lecture Notes in Phys. 366 (Springer, Berlin, 1991).
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