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ABSTRACT

Motivation: The interaction between transcription factor (TF) and
transcription factor binding site (TFBS) is essential for gene
regulation. Mutation in either the TF or the TFBS may weaken their
interaction and thus result in abnormalities. To maintain such vital
interaction, a mutation in one of the interacting partners might be
compensated by a corresponding mutation in its binding partner
during the course of evolution. Confirming this co-evolutionary
relationship will guide us in designing protein sequences to target
a specific DNA sequence or in predicting TFBS for poorly studied
proteins, or even correcting and rescuing disease mutations in clinical
applications.
Results: Based on six, publicly available, experimentally validated
TF–TFBS binding datasets for the basic Helix–Loop–Helix (bHLH)
family, Homeo family, High-Mobility Group (HMG) family and
Transient Receptor Potential channels (TRP) family, we showed that
the evolutions of the TFs and their TFBSs are significantly correlated
across eukaryotes. We further developed a mutual information-based
method to identify co-evolved protein residues and DNA bases. This
research sheds light on the dynamic relationship between TF and
TFBS during their evolution. The same principle and strategy can
be applied to co-evolutionary studies on protein–DNA interactions in
other protein families.
Availability: All the datasets, scripts and other related files have been
made freely available at: http://jjwanglab.org/co-evo.
Contact: junwen@uw.edu
Supplementary Information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
The term co-evolution was first conceptualized by Charles Darwin
(1862) in his study on the two species, pollinators and orchids.
At the molecular level, co-evolution has been studied in the context
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of protein–protein interaction (Atwell et al., 1997; Moyle et al.,
1994; Pazos et al., 1997). A change in one of the binding protein’s
interaction surface is compensated by an appropriate change in the
interface of the partner protein. Studies have shown the co-evolution
of interacting proteins (Pazos and Valencia, 2001), as well as of
interacting protein and ligand (Goh et al., 2000). These studies have
had great impact in this area of research, such as in protein–protein
interaction and drug design (Izarzugaza et al., 2006; Tillier et al.,
2006; Tress et al., 2005).

A protein can bind to more than one DNA sequence, and
these corresponding binding sites are usually represented by a
binding profile called Position Weight Matrix (PWM) (Hannenhalli,
2008). Methods have been developed to compare the similarity of
different PWMs (Pietrokovski, 1996). By comparing the pairwise
similarities of all PWMs from a protein family, we can study the
evolution of DNA binding sites for this protein family. Thus far,
the co-evolutionary relationship between a transcription factor (TF)
and transcription factor DNA binding site (TFBS) has not been
systematically studied.

The interaction between TFs and their TFBSs is essential for
many biological processes. For instance, the interaction at the
core promoter regions determines the assembly of the pre-initiation
complex and the initiation of transcription (Wang and Hannenhalli,
2006; Wang et al., 2007), whereas, interactions in the distal
promoter/enhancer region determine the rate of transcription in
cell type-, tissue- and developmental stage-specific manner (Juven-
Gershon et al., 2008). Therefore, study of TF–TFBS interaction
is critical to our understanding of the transcriptional regulatory
network of gene expression (Qin et al., 2011).

In this study, we hypothesize that the evolutions of TFs
and their TFBSs are correlated. We used the basic helix–loop–
helix (bHLH), Homeo, high-mobility group (HMG) and transisent
receptor potential channels (TRP) protein families to illustrate
this principle of co-evolutionary relationship. We first performed
the analysis based on the bHLH family. The bHLH family is an
ancient component of transcriptional regulation with more than
100 members found in humans (Ledent et al., 2002). This protein
family has a strong selection force and plays critical roles in diverse
biological processes from cell proliferation to carcinogenesis (e.g.
the oncogene and iPSC reprogramming factor, cMyc). It has evolved
into 125 members in humans, and 94 of them are conserved in mice
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(Ledent et al., 2002). However, only a few of them have binding
site profiles that are experimentally identified. Therefore, we further
validated our results on three other TF families: Homeo, HMG
and TRP families. We investigated the evolutions of TFs and their
corresponding PWMs, and quantified the correlation between them
with rigorous statistical methods. We found consistently that, the
evolutions of TFs and their binding sites are significantly correlated
in multiple datasets.

2 METHODS

2.1 Collection of TFBS PWMs
We first collected all available bHLH PWMs (both individual and
family-wise PWMs) from JASPAR FAM database (Accession: MF0007.1)
(Portales-Casamar et al., 2010). After filtering out heterodimer members, we
obtained six remaining members from human and mouse, which we used to
form our mammalian dataset. We then collected all the other bHLH family
PWMs from JASPAR CORE database, again with heterodimers removed.
The remaining 16 members, which included the previous six, were used
as our eukaryote dataset from human, mouse, yeast and Drosophila. Both
datasets had been generated through traditional experimental methods, such
as Electrophoretic mobility shift assay (EMSA) or systematic evolution of
ligands by exponential enrichment (SELEX). To further independently test
our hypothesis, we used a recently published bHLH dataset from UniPROBE
database (Grove et al., 2009) as our CAEEL dataset. This dataset contains
20 TFs from one single species and was generated using high-throughput
protein array method.

Moreover, to support a general conclusion regarding the co-evolution,
we further validated our results by recruiting three more TF families from
JASPAR CORE database: Homeo family which contains 100 members,
HMG family which contains 15 members and TRP family which contains
11 members. Members within each of the three families are coming from
eukaryote and with heterodimers filtered.

The detailed information of all the PWMs involved in this study is listed
in Supplementary Table S1.

2.2 Quantifying co-evolution and assessing the
statistical significance

In order to quantify the co-evolution between TFs and TFBSs, we first
calculated pairwise sequence similarities among all the members in each
of our TF families. We then built a similarity matrix for all protein pairs
(Supplementary Material 1). Similarly, we calculated pairwise similarity
of PWMs (Pietrokovski, 1996) and constructed a PWM similarity matrix
for corresponding binding sites (Supplementary Material 2). We then
concatenated all the rows in each matrix into a vector and calculated the
Pearson’s correlation coefficient (PCC) between the two vectors (Fig. 1).

The statistical significances of co-evolution PCCs were assessed from
permutations of protein and binding site sequences (Supplementary
Material 3). We compared the observed PCC with a null distribution of
PCCs generated from permuted proteins and binding sites, and obtained
an empirical P-value (Li et al., 2010). To permute protein sequences, we
obtained all protein sequences and calculated their residue compositions.
We then used the compositions to generate random sequences that matched
the length of the original sequence. As an alternative to using a single
uniform distribution for all positions, we also calculated the composition in
a position-specific manner, and then permuted the sequence with a position-
specific distribution. To permute PWM, we obtained all the original binding
sites deriving the PWM and calculated the base composition. We then
generated the same number of random binding sites for each TF, keeping base
composition, length and label the same. The PWMs were then generated from
these permuted binding sites. The PCC was recalculated using the generated
PWMs and permuted protein sequences. This random process was repeated

Fig. 1. Schematic pipeline to measure the co-evolution between
transcription factors (TFs) and their binding sites. (a) From the phylogenetic
tree of the TFs, we can assume that the TFs are co-evolved with their
TFBS family-wise. The evolution of the TFs is represented by their
multiple sequences alignment. The evolution of TFBS is represented by the
comparison of each PWM of each TF binding sites dataset. (b) The pairwise
similarities between any TF pair and between any PWM pair were measured,
respectively. Note that for both matrices, a bigger value in the cell means a
higher similarity. (c) The similarity matrix of TFs was compared with that
of PWMs and PCC was calculated.

1000 times and the PCCs were sorted to obtain a background distribution of
PCCs. Given a new PCC, we could look up its ranking in this background
distribution and obtain its P-value.

2.3 Identification of co-evolved residues using mutual
information

Mutual information (MI) has been successfully used to identify contacting
residues in protein–protein interactions (Weigt et al., 2009), and co-evolving
residue pairs within a protein (Weil et al., 2009). Current MI methods deal
with protein sequences, where both interacting partners are in 1D linear
forms. However, in this study, we have to deal with protein–PWM interaction,
where one partner (protein) is in linear form, and the other partner (PWM)
is in a 2D matrix form.

We used a straightforward way to convert the 2D binding profile matrix
(PWM) into a 1D linear sequence based on the base composition of the PWM
(Fig. 2). As we know, each PWM is represented as 4×L matrix where 4 is
the number of bases (A/T/G/C) and L is the number of binding positions.
For a TF family with N PWMs, if the length of a PWM is different from the
family-wise PWM’s length M, we trimmed/extended the PWM to a length
of M according to the method described in Supplementary Material 2. We
therefore have N PWMs, each has M positions and thus, have a total of N ×M
positions. We then performed chi-square tests to compare the similarity
of any two of the N ×M positions. For each test, we used the A/T/G/C
compositions from both positions to test whether the two positions have
similar base compositions, measured by P-value. We then used P-value to
construct a pairwise similarity matrix with N ×M rows and N ×M columns.
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Fig. 2. Identification of interacting protein residue–DNA base pairs by
mutual information. Upper row: we calculated the pairwise similarity of
the profiles in any two positions, and clustered the positions based on the
similarity matrix. The positions were clustered into 15 clusters and the
cluster labels (in Greek alphabets) were assigned to each position. The 2D
PWMs were therefore converted into 1D alphabets and made ready for the
MI calculation. Middle row: we then used the MI formula to calculate the
dependency of protein residues and DNA positions. Lower row: we ranked
the residue base pairs based on their MI scores. The top 20 residues were
selected for further study.

The pairwise similarity matrix was then used to cluster these positions
into K clusters. If the positions are clustered together, they have similar
base compositions. We then assigned the cluster label to the positions. By
assigning a cluster label to each position, we successfully converted the 2D
binding profile (4×M) into a linear alphabet string (1×M). This string, as
a consensus, is a compact way to represent a set of DNA sequences of the
same length.

In this study, we had used two different values for K clusters, 7 and 15.
The rationale for using these two is described in Supplementary Material 8.
Since we had observed a better performance when K = 15, we had reported
all our results below with the number of clusters K = 15. The results of seven
clusters are shown in Supplementary Table S2j. After doing this, for each
position of the original PWM, a new cluster label was assigned to represent
the A/T/G/C base composition of that position.

After the conversion, the MI score for protein residue and DNA alphabet
could then be calculated with the following formula:

MI(X,Y )=
∑
x∈X

∑
y∈Y

p(x,y)log

(
p(x,y)

p1(x)p2(y)

)
(1)

where p(x,y) is the probability of x and y occurring together, and p1(x)
and p1(y) are the probabilities of x occurring in X , and y occurring in Y ,
independently.

3 RESULTS

3.1 Correlated evolution between protein sequences
and DNA binding sites

For the bHLH family, as illustrated in Figure 1, we first built the
similarity matrix for all protein pairs and the similarity matrix for
corresponding binding sites PWM pairs. We then calculated PCC
between these two matrices and assessed its statistical significance
as described in Section 2, Methods. The protein sequence similarity

Table 1. The co-evolution test of bHLH TFs and their TFBSs at whole
protein sequence and domain sequence levels

Data source Dataseta (name, size) Protein sequence

Whole Domain

PCC P-value∗ PCC P-value

JASPAR I (mammals, 6) 0.134 0.443 0.435 0.029
II (eukaryotes, 16) 0.036 0.143 0.353 0.002

UniPROBE III (CAEEL, 20) 0.309 7×10−6 0.329 2×10−6

aTFs in dataset I are from JASPAR FAM definition, dataset II include new additions
from JASPAR CORE, and dataset III are collected from UniPROBE database. All three
datasets exclude heterodimers.
PCC, Pearson’s correlation coefficient.
∗P-value was calculated from permutated protein sequences and PWMs (1000 times);
P<10−3 were obtained from a model-based t-test (see Supplementary Material for
details). P<0.05 are considered to be significant and are highlighted in bold.

can be calculated from either the whole protein sequences of the TFs
or only the binding domain sequences. The DNA binding domain
refers to the basic region of bHLH that is directly involved in DNA
binding, which might be most relevant to its DNA binding motifs.
However, the rest of the protein sequence might have long-range
effects on DNA recognition and thus the usage of whole protein
sequence might provide additional evolutionary information. We,
therefore, used both the whole protein sequence and the binding
domain to measure the evolution of the TFs.

As shown in Table 1, protein domain sequences are significantly
co-evolved with their binding sites in all three datasets. The PCC
values for mammalian, eukaryotes and CAEEL datasets are 0.435,
0.353 and 0.329, respectively, with P-values of 0.029, 0.002 and
2×10−6. Even though the whole protein sequences did not show
significant co-evolution with their binding sites in the mammalian
and eukaryotes datasets, they are significant in the CAEEL dataset,
with PCC = 0.309 (P = 7×10−6). In general, the protein domain
sequences show stronger co-evolution than the whole protein
sequences. The reasons might be as follows: (i) Although the TF
family is found in almost all eukaryotes, the one defining feature
of a bHLH protein is that it contains the basic region of around
15 conserved basic amino acids that bind to the specific DNA
sequence. The rest of the sequence is more diverse, and although
it is necessary for, it is independent of the DNA binding activity,
(ii) The protein–DNA complex structure (Supplementary Fig. S1)
for bHLH protein (PDB id: 1mdy) shows that the interacting surfaces
are mainly on the bHLH DNA binding domain (Ma et al., 1994).
To take into account the position effect on amino acid composition
of the TF family, we permuted the protein sequences in a position-
specific way (Supplementary Material 3) to calculate the P-value.
We have also performed a parametric test that is based on t-statistics
(Supplementary Material 4) and a non-parametric test based on
Spearman’s rank correlation (Supplementary Material 5) to assess
the significances of the correlations. The results from all these
methods produce significant P-values, as shown in Supplementary
Table S2.

Next, in order to draw a more general conclusion regarding the
co-evolution, we further validated our hypothesis in three more
protein families: Homeo (100 members), HMG (15 members) and
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Table 2. The co-evolution test of Homeo, HMG and TRP family TFs and
their TFBSs at whole protein sequence and domain sequence levels

Data source Dataset (name, size) Protein sequence

Whole Domain

PCC P-value∗ PCC P-value

IV (Homeo, 100) 0.245 <10−7 0.416 <10−7

JASPAR V (HMG, 15) 0.194 0.024 0.191 0.025
VI (TRP, 11) 0.441 3.8×10−4 0.345 0.005

∗P-value was calculated from permutated protein sequences and PWMs (1000 times);
P<10−3 were obtained from a model-based t-test (see Supplementary Material for
details). P<0.05 are considered to be significant and are highlighted in bold.

TRP (11 members). We performed correlation analysis on these three
families. The results are shown in Table 2. In all three families, both
whole and domain sequences are significantly co-evolved with their
binding sites. Especially for Homeo family, 100 members sample
size grants more confidence on the results. Its domain sequences
show stronger co-evolution (PCC = 0.416) than the whole protein
sequences (PCC = 0.245), which is consistent with what we have
observed in the bHLH family. For the other two families, whole
protein sequences show higher (yet not much higher) correlation
than domain sequences. In summary, the validation was based on
much larger datasets and more diverse protein families. The results
indicate that our discovery on the co-evolution between TFs and
their binding sites is general and reliable.

3.2 Control for the effects of speciation
As our datasets are from multiple species, we next asked whether
the observed correlations were due to the effects of speciation. For
this purpose we calculated the PCC between the bHLH’s binding
profiles and the domain sequences from Homeo family and HMG
family (Supplementary Table S3). The PCCs from both families
were not significant (Supplementary Table S4). We further computed
a similarity matrix from synonymous changes among the bHLH
family members and correlated this matrix with that of the bHLH
binding profiles. The PCC value between bHLH binding profiles
and inverse synonymous change distance matrix was 0.078, which
is not significant (P = 0.462, Supplementary Material 6). Both tests
suggested that the higher correlation between bHLH domains and
their PWMs was not due to speciation.

3.3 Correlated evolution between protein residues and
DNA binding sites

All the above datasets exhibited significant TF–TFBS co-evolutions
at the binding domain level. We then wanted to computationally
pinpoint the residues/base pairs that are co-evolved. We used a
MI-based method for this purpose. Here we used bHLH family
as our case study. Previous study has shown that the accuracy of
MI critically depends on the number of sequences in the alignment
(Fernandes and Gloor, 2010). If there are very few sequences, top
MI values could be occurring by chance. Therefore, the mammalian
dataset was not used for MI analysis.

Here the challenge is how to measure MI between sequences
and matrices (PWMs), which differs in protein–protein interaction
where MI between sequences is measured. To calculate MI between
protein and PWM, we first developed an algorithm, as described
in Section 2, Methods, to convert the 2D binding profile for each
TF into 1D alphabets, based on the similarities of the DNA base
composition at each position (Fig. 2). We then downloaded the
protein domain alignment from the Pfam database (Accession:
PF00010). Out of the 16 members in our eukaryote dataset, 13
were annotated in this alignment, which formed the basis of the MI
analysis. The remaining three members were manually aligned onto
the alignment with the help of ClustalW. For our Caenorhabditis
elegans dataset, all 20 members were directly extracted from Pfam
alignment. We calculated the MI for each residue position in the
protein domains and for each binding position in the profiles for
both eukaryote and C.elegans alignments. We took the top 20
residues with the highest MI scores for each DNA profile position.
After removing the redundancy, we identified 36 highly co-evolving
residue positions from 111 binding positions in our eukaryote
alignment, and 28 residue positions from 68 binding positions in
our C.elegans alignment.

Next, we used protein–DNA complexes with solved 3D
structure to test whether structurally determined interacting residue-
base pairs are co-evolved. We collected structurally annotated
interactions from the BIPA database (Atchley and Fitch, 1997)
(see Supplementary Material 7 for details of BIPA annotation).
Three members in dataset II have solved protein–DNA structures
in the PDB database: USF (1AN4) (Ferre-D’Amare et al., 1994),
PHO4 (1A0A) (Shimizu et al., 1997) and MAX (1HLO) (Brownlie
et al., 1997). As the annotated interacting residues/bases are
similar among them, we chose the most ancient bHLH TF
USF (Atchley and Fitch, 1997) as a template. Positions in the
binding domain alignment corresponding to hydrogen bonds,
water-mediated hydrogen bonds and van der Waals contacts were
selected (Supplementary Material 7). Specifically, for the eukaryote
alignment, out of a total of 19 interacting position pairs, 14 were also
identified as highly co-evolving position pairs by the MI method,
which showed a significant overlap with P<0.001 (Supplementary
Fig. S2a). For the C.elegans alignment, the overlapped position
amount is 10 (P = 0.107, Supplementary Fig. S2b).

Both MI selected residues and BIPA annotated residues showed
significant correlations with TFBSs: in eukaryote dataset, P = 0.003
for MI, and 0.002 for BIPA; in C.elegans dataset, P = 0.007 for MI,
and 2.5×10−6 for BIPA (Table 3), which indicates the critical roles
the important residues that play in TF–TFBS interaction. Moreover,
the BIPA annotated residues group showed higher correlations
(PCC = 0.369 for eukaryote dataset and 0.323 for C.elegans
dataset) than MI residues (PCC = 0.346 and 0.177). Specifically,
for eukaryote dataset, the correlation at interacting residues level
is even higher than binding domain level (PCC = 0.353). Also, one
interesting position at eukaryote alignment that was identified by
both BIPA and MI in this study is position 13. In general, most
bHLH TFs prefer to recognize and specifically bind to a 6mer
DNA sequence, 5′-CANNTG-3′, which is termed as an E-box
motif (Chaudhary and Skinner, 1999). As shown in Figure 3,
residues at position 13 dramatically correlated with different binding
preferences in the E-box region. When arginine is at this position, the
corresponding TF will bind to canonical CACGTG E-box; for any
other amino acid, the corresponding TF will bind to different E-box
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Table 3. The co-evolution test of TFs and their TFBSs based on mutual
information identified residues and BIPA annotated interacting residues

Data source Dataset* Protein residues

MI Interacting (BIPA)

PCC P-value∗ PCC P-value

JASPAR II (eukaryotes, 16) 0.346 0.003 0.369 0.002
UniPROBE III (CAEEL, 20) 0.177 0.007 0.323 2.5×10−6

∗P-value was calculated from permutated protein sequences and PWMs (1000 times);
P<10−3 were obtained from a model-based t-test (see Supplementary Material for
details). P<0.05 are considered to be significant and are highlighted in bold.

motifs other than canonical CACGTG. Our observation is consistent
with previous studies on the important role of this position in E-box
binding affinity (Ma et al., 1994; Shimizu et al., 1997).

The results indicate that co-evolved residues and structurally
important residues are not identical but related; they both play
important roles in a protein’s function. This observation may also
indicate the potential of applying such criteria to filter out less
important residues for a long binding domain. The results also
show that PCCs from MI identified residues are not necessarily
higher than the PCCs from the domain sequences (Tables 1 and 3).
This is because different perspectives of MI and PCC focusing
on: MI considers individual residue, whereas, PCC considers entire
sequence. MI is computed in a position-independent manner from
alignment of protein binding domain sequences and alignment of
our clustered strings from PWMs. It assumes each position in
the alignment is independent. As a result, a co-evolved position
(residue) pinpointed by MI indeed highly correlates with one or
several positions in the PWM-converted string alignment. While
PCC measures the correlation at sequence level, which means the
joint of best hits (i.e. residues) pinpointed by MI may not guarantee
a best PCC (though they are fairly related).

3.4 DNA binding sites symmetry
The bHLH proteins bind to DNA as homodimers as shown in
Supplementary Figure S1, and their DNA binding sites and E-
boxes are indeed symmetrical motifs. Such a symmetric feature
has been widely used for TF binding motif discovery (Tan et al.,
2005). Here, we have also performed the same correlation analysis
based on such symmetrical motifs. A strong correlated evolution
between these symmetrical PWMs and their TFs at the domain and
residue levels is observed [Supplementary Table S2 (g and h)]. In
general, the correlations here follow similar distribution and are even
∼25% greater than using original PWMs. This further supports our
observations of co-evolution.

4 DISCUSSION
We used the bHLH, Homeo, HMG and TRP family TFs and
their TFBSs to test the hypothesis that the evolutions of TFs
and their binding sites are correlated. For bHLH family, we
used three datasets: the mammalian dataset and eukaryote dataset
from the JASPAR database and the CAEEL dataset from the

Fig. 3. The amino acid at position 13 in the bHLH protein’s basic region
is significantly co-evolved with the central two positions of E-box binding
sites. (a) On the left is one segment containing the basic region of bHLH
proteins from the Pfam multiple sequence alignment of the eukaryote bHLH
dataset. Interacting residues annotated by the BIPA database are highlighted
and the critical position 13 is marked. On the left is the schematic alignment
of DNA binding profiles corresponding to the bHLH TFs on the right. The
central two positions of the E-box binding motif (CANNTG), which vary
from different bHLH subgroups, are also marked. (b) The position 13 of
the bHLH protein’s basic region and central two positions of E-box binding
sites can be closely compared with each other. Here, the positions on DNA
binding profiles are presented as our novel clustered sequences derived from
the base composition in PWMs. Significant co-varying patterns are shown
with the corresponding calculated high MI scores.

UniProbe database. In all families and datasets that we tested, the co-
evolutionary relationship between TF and TFBS can be seen clearly,
showing that the observations were not dependent on the platform
used to obtain the TFBSs. Moreover, irrespective of whether the
TFs are among different species (bHLH family mammalian and
eukaryotes) or within one species (bHLH family, C.elegans), we
have observed similar co-evolution relationship. This observation
strengthens our hypothesis that such an co-evolutionary relationship
exists between TFs and their TFBSs.

We applied multiple statistical tests to quantify the statistical
significance of any co-evolutionary relationship and all tests were
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positive. By default, we used a non-parametric test that is based
on background distribution of PCCs obtained by permuting both
protein sequences and DNA binding sites (see Section 2, Methods).
To allow for different amino acid compositions at different positions,
we also permuted the protein sequence in a position-specific way
(Supplementary Material 3). We further used two alternative tests,
one is a parametric test assuming that null PCCs form a t-distribution
(Supplementary Material 4) and another is a non-parametric test by
Spearman’s rank correlation coefficient (Supplementary Material 5).
All these tests showed significant co-evolution between TFs and
TFBSs.

The observed co-evolutionary relationship was not due to
speciation. When we calculated the PCC between the PWMs from
bHLH and protein sequence of other families, such as Homeo and
HMG from the same species, the co-evolutionary relationship was
no longer significant. Furthermore, we observed very significant co-
evolution from the bHLH CAEEL dataset, in which the TFs are from
only the single species C.elegans.

As the advances of new technologies, such as high-throughput
protein arrays, more binding sites for a TF will be identified and as a
result, the PWM will be continuously refined. To evaluate the effect
of PWM’s stability (i.e. the number of TFBS used to construct a
PWM) on our observation, we performed a bootstrap experiment. We
downloaded all the available TFBS original sites of bHLH eukaryote
dataset (9 TFs out of 16) from JASPAR database and performed the
evaluation based on them. We sampled 80% of the original binding
sites for each TF to rebuild its PWM, and computed the PCC with all
new PWMs; we repeated the sampling procedure for 1000 times to
get a distribution of PCC so that we evaluated the effect of PWMs’
stabilities by assessing the standard deviation of PCC. As a result,
the sample standard deviation is as small as 0.011, which suggests
the robustness of PWMs used in this study.

We carried out co-evolutionary tests at both whole protein
sequence level and binding domain sequence level. Our results
showed that domain level of bHLH TFs have significant co-
evolution with TFBSs. These results are also consistent with
previous studies (Atchley and Fitch, 1997; Jones, 2004; Ledent
et al., 2002) showing that sequences outside the conserved bHLH
domain are extensively rearranged family-wide, and indicates that
their evolution may be relatively more independent of TFBSs.
For the other three families, both domain and whole sequence
levels showed significant co-evolution with TFBSs which further
validated our results. Our analyses also showed that at residue level,
highly co-evolved amino acid residues are not entirely the same as
DNA-interacting residues but they are strongly related.

Previous studies have observed correlated TF residues and
TFBS bases in prokaryotes (Huang et al., 2009) and metazoans
(Noyes et al., 2008). However, TF–TFBS interactions are not
only determined by single residue base pairs, but also by long-
range context of the surrounding residues (Pazos and Valencia,
2008). Previous analyses have not taken into account this context
information for co-evolving residues, and the relationship between
TFs and TFBSs, as a whole, has not been systematically studied.

This research establishes the dynamic, co-evolutionary
relationship between TFs and TFBSs. The confirmation of
this relationship has long-term implications that will impact the
field in many ways, similar to the discovery of co-evolutionary
relationship of protein–protein interaction (Pazos and Valencia,
2001) and protein–ligand interaction (Goh et al., 2000). For

example, using this co-evolutionary relationship, we can rationally
design proteins to specifically target a DNA sequence, similar to
the design of zinc finger nucleases (Urnov et al., 2005). On the
other hand, we can use this relationship to predict TFBS on the
DNA for a novel protein (Alleyne et al., 2009). Clinically, it is
also conceivable to correct disease mutations by rational design of
compensatory ‘repairs’.

Although the current study is based on four families, the principle
and the framework established here could be readily applied to other
TF families. As more data sources become available in the future,
subsequent studies will lead to a more thorough understanding of
protein–DNA interactions and transcriptional regulation.
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