
latitudes, consistent with paleobotanical evi-

dence (31–33) (fig. S7).

Our results for the mid-Cretaceous are broadly

applicable throughout Earth history and dem-

onstrate that variations in atmospheric mass,

whether through changes in pO2 or other con-

stituents (i.e., pN2), were an important factor

in climate forcing on geological time scales that

must be included in paleoclimate models. We

also note the broad inverse correlation between

some pO2 records [e.g., (1, 9)] and global climate

change during the Phanerozoic; we speculate

that, to the extent that atmospheric pO2 and

pCO2 have been linked through photosynthetic

productivity and organic carbon burial, O2 may

have amplified CO2-driven climate change.
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BRAIN NETWORKS

Correlated gene expression supports
synchronous activity in
brain networks
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During rest, brain activity is synchronized between different regions widely distributed

throughout the brain, forming functional networks. However, the molecular mechanisms

supporting functional connectivity remain undefined. We show that functional brain

networks defined with resting-state functional magnetic resonance imaging can be

recapitulated by using measures of correlated gene expression in a post mortem brain

tissue data set. The set of 136 genes we identify is significantly enriched for ion

channels. Polymorphisms in this set of genes significantly affect resting-state functional

connectivity in a large sample of healthy adolescents. Expression levels of these genes

are also significantly associated with axonal connectivity in the mouse. The results

provide convergent, multimodal evidence that resting-state functional networks correlate

with the orchestrated activity of dozens of genes linked to ion channel activity and

synaptic function.

B
rain activity at rest exhibits intrinsic low-

frequency synchronization between ana-

tomically distinct brain regions (1). When

observed with functional magnetic reso-

nance imaging (fMRI), this coherence be-

tween regions (functional connectivity) defines

15 to 20 brain networks associated with such

canonical functions as vision, language, episodic

memory, and spatial attention (2–4). These func-

tional networks are disrupted in several neuro-

degenerative and neuropsychiatric diseases (5)

and may constitute the maps followed by neuro-

degenerative diseasesmarching, trans-synaptically,

across the brain (6). Although it has been shown

that connectivity within the default-mode net-

work (DMN) (7) and topological measures of

whole-brain networks (8) are heritable, the set

of genes promoting functional connectivity re-

mains unknown. To pursue this question, we

applied a network modeling approach to both

neuroimaging and gene expression data.

Using resting-state fMRI data from 15 healthy

right-handed subjects (eight females, age range

18 to 29 years), we computed 14 well-known and

reproducible functional networks (fig. S1) (9)

by using independent component analysis (ICA).

We then mapped samples from the Allen Insti-

tute for Brain Science (AIBS) human microarray

data set (six subjects, two contributed both hem-

ispheres, four contributed one hemisphere, one

female, age range 24 to 57 years, totaling 3702

brain samples) (table S1) (10) to these networks

by using normalized Montreal Neurological In-

stitute (MNI) coordinates. To avoid biases due

to gross transcriptional dissimilarities in differ-

ent brain regions, we excluded basal ganglia,

cerebellum, and deep gray matter (including

hippocampus), leaving only cortex samples (data

file S1). This removed the basal ganglia network,

leaving 13 networks. Of 1777 cortex samples, 501

were mapped to the 13 functional networks,

and 1276 to “non-network” regions of the brain.

We focused the analysis on four large nonover-

lapping networks: dorsal default-mode (dDMN),

salience, sensorimotor, and visuospatial (Fig. 1A),

comprising 241 samples total. These four net-

works were chosen because they are well char-

acterized in the imaging literature (2, 11–14),
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consist of noncontiguous regions in both hemi-

spheres, and have adequate coverage in the AIBS

data (Fig. 1B).

We used the transcriptional similarity of gene

expression profiles between brain tissue sam-

ples to define correlated gene expression net-

works. In mouse brains, transcriptional similarity

reflects cytoarchitecture (15), but inhumanbrains,

the differences are more subtle across the neo-

cortex (10). As opposed to gene coexpression net-

works, which quantify gene-gene relationships

across tissue samples (16), a correlated gene ex-

pression network quantifies tissue-tissue rela-

tionships across genes. Nodes were defined by

brain tissue samples (Fig. 1B); edgeswereweighted

by similarity between vectors of gene expression

values at each sample. After preprocessing and

assigning one probe for each of the 16,906 genes

(data file S2) (17), we measured expression sim-

ilarity by means of Pearson correlation (17), set-

ting negative correlations to zero. Then we asked

whether there are observable genetic correlates

for the functional network organization: Are

gene expression correlations in functionally

grouped regions higher than can be expected

by chance?

We defined the strength fraction in functional

networks as a measure of the relationship be-

tween correlated gene expression within and

outside the set of functional networks of inter-

est. DenotingW the sum of all edge weights with-

in all functional networks,Wi the sum of weights

within the four functional networks of interest,

and T the brain graph’s total strength (sum of all

edge weights linking the full 1777-nodes graph),

the strength fraction is S = Wi/(T – W). Higher

values of S mean that the samples in the set of

functional networks are more similar to each

other, relative to the remaining brain regions

(fig. S2). We assessed significance using permu-

tation testing (18), randomly reshuffling 10,000

times the sample-to-network assignment in the

full 1777-nodes graph. In addition to consid-

ering only cortex samples, so as to avoid biasing

results toward similar tissues (10), before com-

putation we removed edges linking two samples

belonging to the same tissue class [defined by

means of regional ontology (fig. S3 and table S4)].

Grouping gene expression samples according

to functional networks yielded a higher strength

fraction than that of other groupings of samples;

the spatial organization of functional networks

corresponded to regions that have more highly

correlated gene expression than expected by

chance (P < 10
−4
). Given that we used only cor-

tical samples, that we removed edges linking

tissues of the same class, and that functional

networks are spatially distributed, this finding

cannot emerge from spatial proximity or gross

tissue similarity.

We next sought to identify which genes, spe-

cifically, drive the relationship between corre-

lated gene expression and functional networks.

We computed the marginal influence of each

gene on strength fraction of all four functional

networks together (17) and ranked genes across

all six different two-way splits of the six subjects

(17). Then, we computed list overlap statistics

(19) between the two brain subgroups at a false

discovery rate (FDR) of 5%. Combining results

from six splits, the final list was obtained via

stability selection (20), selecting genes that appear

in the majority of splits (four or more out of six).

This resulted in a consensus list of 136 genes

(table S2).

We validated our findings in vivo (supple-

mentary text) using paired genome-wide single-

nucleotide polymorphism (SNP) data and resting

state fMRI (rs-fMRI) recordings in n = 259 14-year-

olds (126 females) from the IMAGEN database

(21), which has more subjects, but not all were

usable (data file S3) (17). The strength fraction

for the combined four networks in the rs-fMRI

data was computed for every subject (as in the

AIBS gene expression data) and used as a quan-

titative imaging phenotype in a genome-wide

association study (GWAS) (fig. S4), correcting for

several covariates, includingmotion.We computed

a z statistic (22) for the enrichment of P values in

the consensus list. Genetic variation in the con-

sensus list was significantly associated with in vivo

rs-fMRI strength fraction (z = 2.55, P = 0.006).

Thus, not only gene expression levels but also

common polymorphisms in the consensus genes

were related to the strength of functional net-

works. Subjects at both ends of the spectrum of

multilocus genetic scores [representing themul-

tiallelic effect of the genes in the consensus list

on the functional connectivity phenotype (17)]

showed definite differences in functional con-

nectivity strength mostly within the functional

networks themselves, but also between the func-

tional networks (Fig. 2 and fig. S5).

We next investigated the relationship between

our gene list and the connectivity of axonal pro-

jections underlying functional networks. We

used the Allen Institute mouse brain atlas (15),

which offers finely sampled whole-genome ex-

pression data, together with a recent mesoscale

model of mouse connectivity derived from the

Allen Mouse Brain Connectivity Atlas (AMBCA)

(23). To match human data, we focused on the

mouse isocortex and used a 38-region parcella-

tion (Fig. 3A) (23). With 57 mouse orthologs for

our consensus gene list, we obtained a correlated

gene expression network, representing transcrip-

tional similarity between these 38 regions. We

computed a normalized, symmetric connectivity

matrix from the significant connections in the

ipsilateral connectivitymodel of the AMBCA (17).

We tested the association between the mouse

connectivity graph and transcriptional similarity

graph (Fig. 3, B and C) using a modified Mantel

procedure; we randomly selected gene subsets

of the same size as our ortholog consensus list

10,000 times in order to obtain a null distribu-

tion. The correlation between transcriptional

similarity in these 38mesoscale isocortex regions

and their axonal connectivity was significantly

higher when using our list than expected by

chance (P = 0.011, or P = 0.022 when using the

contralateral connectivity model).

Last, we categorized the consensus gene list

using Gene Ontology (GO) by computing statis-

tical overrepresentation for Biological Processes

(BP), Cellular Component (CC), and Molecular

Function (MF) with the Database for Annota-

tion, Visualization, and Integrated Discovery

(DAVID) 6.7 (24). The only significant MF an-

notation [P < 0.05, Benjamini-Hochberg False

Discovery Rate (FDRBH)–corrected] related to

ion transport. No BP annotation was signifi-

cant. Four out of six significant CC annotations

(P < 0.03 FDRBH) concerned ion channels, in

particular involving sodium channels such as

SCN4B or receptors such as GABRA5 (full an-

notation list is available in tables S5 and S6).

Significant associations with nine diseases, in-

cluding Alzheimer’s disease and schizophrenia
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(P < 0.05 FDRBH), which are network disorders,

were also found (table S10). We validated anno-

tations in vivo on IMAGEN data by restricting

the analysis to these seven significant GO terms.

Genetic variation in all but 1 GO term was sig-

nificantly associated with in vivo functional

connectivity (z > 4.02, P < 2.8 × 10
−5

uncor-

rected) (table S9). Using a mouse transcriptome

database (25), we also found that 39 mouse or-

thologs from our list were significantly en-

riched in neurons, 19 in astrocytes, and 14 in

oligodendrocytes (76 were not significantly over-

expressed in any of these three cell types). This

suggests that the relationship between gene ex-

pression and spatial organization into functional

networksmay be due to neuronal processesmore

than to support cell or white-matter processes.

Functional networks are fundamental tomany

brain processes in humans. Here, we show that

network strength was correlated with the ex-

pression of genes tightly linked to synaptic func-

tion. The preservation of the association between

functional networks and gene expression across

the lifespan (IMAGEN, 14-year-olds; AIBS, 24- to

55-year-olds) is remarkable and could be partly

explained by the relative stabilization of inter-

regional transcriptional similarity from adoles-

cence onwards (26). Genes in our list may also

play a role in certain diseases; some are impli-

cated in brain disorders such as Alzheimer’s and

schizophrenia (27), whose pathogenesis is thought

to relate, in part, to aberrant connectivity. Beyond

humans, it appears that similar mechanisms

extend to lower animals because our list is sig-

nificantly associated with mouse neural connec-

tivity, and several gene functions from our list

were found in a study examining genes support-

ing neural connectivity in rodents (tables S3, S7,

and S8) (28). Thus, our results show that across
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Fig. 1. Functional networks in MRI and gene expression data. (A) The four functional networks of interest. Red, dorsal default mode; yellow, salience;

green, visuospatial; blue, sensorimotor. (B) AIBS brain samples assigned to their corresponding functional network. Solid circles are samples assigned to

the four networks of interest, open circles show samples in the nine other networks, and dots show non-network AIBS samples.
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Fig. 2. In vivo functional connectivity differences related to the con-

sensus gene list. Difference in in vivo functional connectivity between the

averages of the top 20 and the bottom 20 subjects in IMAGEN, ranked by

genotype score with respect to the consensus list of genes. (A) Difference

matrix sorted by functional network (correlation differences smaller than

|0.05| are not shown). Positive values indicate connections that are stronger

in high genotype score subjects, and negative values indicate the opposite.

Connections are mostly increased within functional networks, but also be-

tween some functional networks. (B) MNI space sagittal view of within-

network connections that are stronger in high-genotype-score subjects.

Regions (disks) are coded according to the functional network they belong

to: red, dorsal default mode; yellow, salience; green, visuospatial; blue,

sensorimotor. Connections (lines) are color-coded to their functional net-

works. (C) Same, for connections that are stronger in low-genotype-score

subjects. The majority of connections are strengthened in high-genotype-

score subjects.
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developmental stages and species, functional con-

nectivity in brain networks is integrally linked

to the machinery of synaptic communication.

REFERENCES AND NOTES

1. M. D. Fox, M. E. Raichle, Nat. Rev. Neurosci. 8, 700–711

(2007).

2. S. M. Smith et al., Proc. Natl. Acad. Sci. U.S.A. 106,

13040–13045 (2009).

3. R. M. Birn, Neuroimage 62, 864–870 (2012).

4. Z. Shehzad et al., Cereb. Cortex 19, 2209–2229 (2009).

5. M. D. Fox, M. Greicius, Front. Syst. Neurosci. 4, 19

(2010).

6. W. W. Seeley, R. K. Crawford, J. Zhou, B. L. Miller,

M. D. Greicius, Neuron 62, 42–52 (2009).

7. D. C. Glahn et al., Proc. Natl. Acad. Sci. U.S.A. 107, 1223–1228

(2010).

8. A. Fornito et al., J. Neurosci. 31, 3261–3270 (2011).

9. W. R. Shirer, S. Ryali, E. Rykhlevskaia, V. Menon, M. D. Greicius,

Cereb. Cortex 22, 158–165 (2012).

10. M. J. Hawrylycz et al., Nature 489, 391–399 (2012).

11. D. Mantini, M. G. Perrucci, C. Del Gratta, G. L. Romani,

M. Corbetta, Proc. Natl. Acad. Sci. U.S.A. 104, 13170–13175

(2007).

12. N. U. F. Dosenbach et al., Proc. Natl. Acad. Sci. U.S.A. 104,

11073–11078 (2007).

13. Y. Golland, P. Golland, S. Bentin, R. Malach, Neuropsychologia

46, 540–553 (2008).

14. S. D. Roosendaal et al., Brain 133, 1612–1621 (2010).

15. L. Ng et al., Nat. Neurosci. 12, 356–362 (2009).

16. B. Zhang, S. Horvath, Stat. Appl. Genet. Mol. Biol. 4, e17

(2005).

17. Materials and methods are available as supplementary

materials on Science Online.

18. J. Richiardi, A. Altmann, M. Greicius, in Proceedings of the 3rd

International Workshop on Pattern Recognition in NeuroImaging

(PRNI) (PRNI, Philiadelphia, 2013), pp. 70–73.

19. L. Natarajan, M. Pu, K. Messer, Ann. Appl. Stat. 6, 521–541

(2012).

20. N. Meinshausen, P. Bühlmann, J. R. Stat. Soc. Series B Stat.

Methodol. 72, 417–473 (2010).

21. G. Schumann et al. IMAGEN consortium, Mol. Psychiatry 15,

1128–1139 (2010).
22. D. Nam, J. Kim, S.-Y. Kim, S. Kim, Nucleic Acids Res. 38

(Web Server), W749–W754 (2010).

23. S. W. Oh et al., Nature 508, 207–214 (2014).

24. W. Huang, B. T. Sherman, R. A. Lempicki, Nat. Protoc. 4, 44–57

(2009).

25. J. D. Cahoy et al., J. Neurosci. 28, 264–278 (2008).

26. M. Pletikos et al., Neuron 81, 321–332 (2014).

27. A. Heck et al., Neuron 81, 1203–1213 (2014).

28. L. Wolf, C. Goldberg, N. Manor, R. Sharan, E. Ruppin, PLOS

Comput. Biol. 7, e1002040 (2011).

ACKNOWLEDGMENTS

We thank C.-K. Lee for help with AIBS data normalization and

C. Quairiaux for help with mouse brain anatomy. Functional

networks imaging data are at http://findlab.stanford.edu/

functional_ROIs.html. Human microarray data are at

http://human.brain-map.org. IMAGEN data are available by

application to consortium coordinator G. Schumann

(http://imagen-europe.com) after evaluation according to

an established procedure. Mouse gene expression data are at

http://mouse.brain-map.org. Connectivity model data are from

(23). J.R. is supported by a Marie Curie Fellowship from the

European Union (299500). M.D.G. is supported by grants from

the Feldman Family Foundation and the National Institutes of

Health (RO1NS073498). This work received additional support

from the following sources: the European Union-funded FP6

Integrated Project IMAGEN (Reinforcement-related behavior in

normal brain function and psychopathology) (LSHM-CT- 2007-

037286), the FP7 projects IMAGEMEND (602450; IMAging

GEnetics for MENtal Disorders) and MATRICS (603016), the

Innovative Medicine Initiative Project EU-AIMS (115300-2), a

Medical Research Council Programme Grant ‘‘Developmental

pathways into adolescent substance abuse’’ (93558), the

Swedish funding agency FORMAS, the Medical Research Council

and the Wellcome Trust (Behavioral and Clinical Neuroscience

Institute, University of Cambridge), the National Institute for

Health Research (NIHR) Biomedical Research Centre at South

London and Maudsley NHS Foundation Trust and King’s College

London, the Bundesministerium für Bildung und Forschung

(BMBF; grants 01GS08152, 01EV0711, eMED SysAlc01ZX1311A, and

Forschungsnetz AERIAL), the Deutsche Forschungsgemeinschaft

(DFG; grants FOR 1617, EXC 257, SM 80/7-1, SM 80/7-2, and SFB

940/1), the U.S. National Institutes of Health (Axon, Testosterone

and Mental Health during Adolescence; RO1 MH085772-01A1),

Eranet–Neuron grant (project AF12-NEUR0008-01 - WM2NA),

MILDECA, Fondation pour la Recherche Médicale, NIH Consortium

grant U54 EB020403, which is supported by a cross-NIH

alliance that funds Big Data to Knowledge Centers of Excellence,

and the Allen Institute for Brain Science.

SUPPLEMENTARY MATERIALS

www.sciencemag.org/content/348/6240/1241/suppl/DC1

Materials and Methods

Supplementary Text

Figs. S1 to S5

Tables S1 to S10

IMAGEN Consortium Author List

References (29–55)

Data Files S1 to S3

12 May 2014; accepted 7 May 2015

10.1126/science.1255905

1244 12 JUNE 2015 • VOL 348 ISSUE 6240 sciencemag.org SCIENCE

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

FRP
MOp
MOs

SSp-n
SSp-bfd

SSp-ll
SSp-m
SSp-ul
SSp-tr

SSs
GU

VISC
AUDd
AUDp
AUDv
VISal

VISam
VISl

VISp
VISpl

VISpm
ACAd
ACAv

PL
ILA

ORBl
ORBm
ORBvl

AId
AIp
AIv

RSPagl
RSPd
RSPv
PTLp
TEa

PERI
ECT

0

0.05

0.1

0.15

0.2

0.25

0.3

Fig. 3. Mouse mesoscale connectivity and transcriptional similarity. (A) Mouse isocortex parcellated into 38 regions (23). (B) Corresponding

symmetrized, thresholded, and normalized ipsilateral axonal connectivity weights. (C) Transcriptional similarity (genetic correlation), using our consensus

list of genes.
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