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We analytically show that it is possible to perform coherent imaging by using the classical correlation of two

beams obtained by splitting incoherent thermal radiation. A formal analogy is demonstrated between two such

classically correlated beams and two entangled beams produced by parametric down-conversion. Because of

this analogy, the classical beams can mimic qualitatively all the imaging properties of the entangled beams,

even in ways which up to now were not believed possible. A key feature is that these classical beams are

spatially correlated both in the near field and in the far field. Using realistic numerical simulations the perfor-

mances of a quasithermal and a parametric down-conversion source are shown to be closely similar, both for

what concerns the resolution and statistical properties. The results of this paper provide a scenario for the

discussion of what role the entanglement plays in correlated imaging.
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I. INTRODUCTION

The topic of entangled imaging has attracted noteworthy
attention in recent years [1–9]. This technique exploits the
quantum entanglement of the state generated by parametric
down-conversion (PDC), in order to retrieve information
about an unknown object. In the regime of single photon-pair
production of PDC, the photons of a pair are spatially sepa-
rated and each propagates through a distinct imaging system,
usually called the test and the reference arm. An object is
located in the test arm. Information about the spatial distri-
bution of the object is obtained by registering the coinci-
dence counts as a function of the transverse position of the
photon in the reference arm, which holds a known reference
system [1–6]. In the regime of a large number of photon
pairs, this procedure is generalized to the measurement of the
signal-idler spatial correlation function of intensity fluctua-
tions [7]. Such a two-arm configuration provides more flex-
ibility in comparison with standard imaging procedures. For
example, there is the possibility of illuminating the object at
a given light frequency in the test arm and of performing a
spatially resolved detection in the other arm with a different
light frequency, or of processing the information from the
object by only operating on the imaging system of the refer-
ence arm [6]. In addition, it opens the possibility for per-
forming coherent imaging by using, in a sense, spatially in-
coherent light, since each of the two down-converted beams
taken separately is described by a thermallike mixture and
only the two-beam state is pure (see Refs. [5,7]).

In this paper (see also Ref. [29]) we show that such a
scheme can be implemented using truly incoherent light, as
the radiation produced by a thermal (or quasithermal) source.
A comparison between thermal and photon-pair emission
was performed in Ref. [10], where an underlying duality ac-
companies the mathematical similarity between the two
cases. Here we consider a different scheme (Fig. 1) appro-
priate for correlated imaging, in which a thermal beam is
divided by a beam splitter (BS) and the two outgoing beams
are handled in the same way as the PDC beams in entangled
imaging. Our analysis points out a precise formal analogy
between the PDC and the thermal case. This analogy opens
the possibility for using classically correlated thermal light

for correlated imaging in the same way as entangled beams
from PDC.

Currently there is a very lively debate whether quantum
entanglement is a necessary ingredient to perform correlated
imaging [5,7–9]. The first coincidence imaging experiments
were performed using entangled photons from PDC [3,4]. At
that time, the authors of Ref. [3] suggested that “it is possible
to imagine some type of classical source that could partially
emulate this behavior.” A more recent theoretical analysis [5]

gave arguments that “the distributed quantum-imaging
scheme truly requires entanglement in the source and cannot
be achieved using a classical source with correlations but
without entanglement.” The topic became hot after the ghost
image experiment of Ref. [3] was successfully reproduced
using classically correlated beams [8]. In this experiment a
classical source produced pairs of single-mode angularly cor-
related pulses that served as classical analogs of momentum
correlated pairs of photons produced by PDC. In the accom-
panying theoretical discussion, the authors presented argu-

FIG. 1. Correlated imaging with incoherent thermal light. The

thermal beam a at the beam splitter BS is divided into two beams,

b1 and b2, which travel through, respectively, a test and a reference

system, described by their impulse response functions h1 and h2.

The test arm 1 includes an object. Detector D1 is either a pointlike

detector or a bucket detector. D2 is an array of pixel detectors. v is

a vacuum field.
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ments that although the results of any single experiment in

quantum imaging could be reproduced by classical sources

with proper statistical correlation, a given classical source

cannot emulate the behavior of a quantum entangled source

for any arbitrary test and reference systems. In agreement

with this we showed in a recent theoretical paper [7] that on

the one hand the results of any single quantum-imaging ex-
periment performed with entangled beams in a pure state
could be exactly reproduced by using separable (i.e., nonen-
tangled) states. On the other hand, we showed that a key
feature of the entangled state produced by PDC is the simul-
taneous presence of spatial correlation at the quantum level
in the near field and the far field of the signal-idler beams
(see also Ref. [11]). This corresponds to the simultaneous
quantum correlation of position and momentum of the pho-
tons in each pair. We showed that this feature could be ex-
ploited to produce both the image and the diffraction pattern
of an object by solely operating on the reference arm, and
argued that this could be done only in the presence of quan-
tum entanglement. This interpretation was received rather
well in the quantum-imaging community and was generally
viewed as a possibility to discriminate between the presence
of quantum entanglement and classical correlation in the
source.

In this paper we will analyze a counter example, which
partially contradicts the picture emerging from Refs. [7,8].
The classical, thermal beams created by splitting thermal ra-
diation have several features that distinguish them from other
nonentangled beams considered in the previous literature
[7,8]. First of all, they are spatially multimode, unlike those
considered in Ref. [8]. Second, as we will see in Sec.IV they
have an imperfect level of spatial correlation, limited by the
classical shot noise introduced by the beam splitter. Nonethe-
less, they exhibit a high level of spatial correlation in both
the near-field and far-field planes, in contrast to the separable
mixtures considered in Ref. [7] that were perfectly correlated
in either plane. We will show that this imperfect spatial cor-
relation in both planes, although being completely classical,
is enough to qualitatively reproduce all the features of the
entangled imaging, provided that the spatial coherence prop-
erties of the thermal source are properly engineered. Finally,
they are probably the best classical analogs of the entangled
signal-idler beams produced by PDC, since the marginal sta-
tistics of the signal or idler beam alone is a thermal statistics.
Thus, they should provide an optimal test bed for under-
standing the role of entanglement in correlated imaging.

In Sec. II we demonstrate theoretically the analogy be-
tween thermal and entangled PDC beams in correlated imag-
ing. Section III discusses in analytical terms a specific imag-
ing scheme. In Sec. IV we discuss the origin of the spatial
correlation in the thermal case and relate it to the entangled
case. In Sec. V the performances of the two cases are com-
pared and we show a key numerical example that drops the
spatiotemporal translational invariance assumed in the ana-
lytical treatment. Section VI contains the conclusions and a
discussion. Finally, the Appendix discusses the degree and
visibility of the correlation between the thermal beams when
the finite detection area of the measurement apparatus is
taken into account.

II. ANALOGY BETWEEN THERMAL AND ENTANGLED

BEAMS IN CORRELATED IMAGING

In this section we are going to show a close analogy be-
tween the use of thermal light and entangled beams from
PDC in the imaging schemes based on correlation measure-
ments. For the sake of comparison, the two cases will be
treated in parallel. In the analytical treatment we consider for
simplicity only spatial variables and ignore the time argu-
ment, which corresponds to using a narrow frequency filter.
We will come back to this point in Sec. V. In addition, we
assume translational invariance in the transverse plane,
which amounts to requiring that the cross section of the
source is much larger than the object and all the optical ele-
ments.

In the entangled case, the signal and idler fields are gen-
erated in a type II xs2d crystal by a PDC process. Our starting
point is the input-output relations of the crystal, which in the
plane-wave pump approximation read [7,11,12]

bisqWd = UisqWdaisqWd + VisqWda j
†s− qWd, i Þ j = 1,2. s1d

Here, bisqWd=esdxW /2pde−iqW ·xWbisxWd, where bisxWd are the signal

si=1d and idler si=2d field envelope operators at the output

face of the crystal (distinguished by their orthogonal polar-
izations), xW being the position in the transverse plane. ai , i
=1,2 are the corresponding fields at the input face of the
crystal, and are taken to be in the vacuum state. The gain
functions Ui ,Vi are for example given in Ref. [11].

In the thermal case, we start from the input-output rela-
tions of a beam splitter

b1sxWd = rasxWd + tvsxWd, b2sxWd = tasxWd + rvsxWd , s2d

where t and r are the complex transmission and reflection
coefficients of the mirror, a is a thermal field, and v is a
vacuum field uncorrelated from a. We assume that the ther-
mal state asxWd is characterized by a Gaussian field statistics,

in which any correlation function of arbitrary order is ex-
pressed via the second-order correlation function [13]:

GsxW,xW8d = ka†sxWdasxW8dl =E dqW

s2pd2e−iqWsxW−xW8dknsqWdlth. s3d

Here knsqWdlth denotes the expectation value of the photon

number in mode qW in the thermal state. In writing the second
line of this equation, we implicitly used the hypothesis of
translational invariance of the source, under which GsxW ,xW8d
=GsxW −xW8d. In particular, the following factorization property

holds [13]:

k:a†sxWdasxW8da†sxW9dasxW-d:l = ka†sxWdasxW8dlka†sxW9dasxW-dl

+ ka†sxWdasxW-dlka†sxW9dasxW8dl ,

s4d

where :: indicates normal ordering.
In both the PDC and the thermal case each of the two

outgoing beams travels through a distinct imaging system,
described by its impulse response functions h1sxW1 ,xW18d and

h2sxW2 ,xW18d, respectively (see Fig. 1). Arm 1 includes an object.

Beam 1 is detected by D1, which is either a pointlike detector
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or by a “bucket9 detector which collects all the light in the
detection plane [6]; in any case D1 gives no information on
the object spatial distribution. In the other arm the detector
D2 spatially resolves the light fluctuations, as for example an
array of pixel detectors. The fields at the detection planes are
given by

cisxWid =E dxWi8hisxWi,xWi8dbisxWi8d + LisxWid, i = 1,2, s5d

where L1 ,L2 account for possible losses in the imaging sys-
tems, and depend on vacuum field operators uncorrelated
from b1 ,b2. Information about the object is extracted by
measuring the spatial correlation function of the intensities

detected by D1 and D2, as a function of the position xW2 of the
pixel of D2:

kI1sxW1dI2sxW2dl = kc1
†sxW1dc1sxW1dc2

†sxW2dc2sxW2dl . s6d

All the object information is concentrated in the correlation
function of intensity fluctuations:

GsxW1,xW2d = kI1sxW1dI2sxW2dl − kI1sxW1dlkI2sxW2dl , s7d

where kIisxWidl= kci
†sxWidcisxWidl is the mean intensity of the ith

beam. When using a bucket detector in arm 1, the measured
quantity corresponds to the integral over xW1 of both sides of
Eq. (7). Since c1 and c2

† commute, all the terms in Eqs. (6)

and (7) are normally ordered and L1 ,L2 can be neglected,
thus obtaining

GsxW1,xW2d =E dxW18E dxWi9E dxW28E dxW29h1
*sxW1,xW19dh1sxW1,xW18dh2

*sxW2,xW29dh2sxW2,xW28d

3fkb1
†sxW19db1sxW18db2

†sxW29db2sxW28dl − kb1
†sxW19db1sxW18dlkb2

†sxW29db2sxW28dlg . s8d

.
In the thermal case, by taking into account the transfor-

mation (2) and that v is in the vacuum state, b1 and b2 in Eq.
(8) can be simply replaced by ra and ta, respectively. Next,
by using Eq. (4), we arrive at the final result

GthsxW1,xW2d = utru2UE dxW18E dxW28h1
*sxW1,xW18dh2sxW2,xW28d

3ka†sxW18dasxW28dlU2

, s9d

where ka†sxW18dasxW28dl is given by Eq. (3).

Similarly, the four-point correlation function in Eq. (8)

has special factorization properties also in the PDC case. As
it can be obtained from Eq. (1) (see also Ref. [11]),

kb1
†sxW19db1sxW18db2

†sxW29db2sxW28dl = kb1
†sxW19db1sxW18dlkb2

†sxW29db2sxW28dl

+ kb1
†sxW19db2

†sxW29dlkb1sxW28db2sxW28dl .

s10d

By inserting this result in Eq. (8), one obtains

GPDCsxW1,xW2d = UE dxW18E dxW28h1sxW1,xWi8dh2sxW2,xW28d

3kb1sxW18db2sxW28dlU2

, s11d

where by using relations (1)

kb1sxW18db2sxW28dl =E dqW

s2pd2eiqW ·sxW18−xW28dU1sqWdV2s− qWd . s12d

At this point the analogy between the results in the two cases
clearly emerges. Apart from the numerical factor utru2 and the

presence of h1
* instead of h1, the thermal second-order corre-

lation ka†sxWdasxW8dl in Eq. (9) plays the same role as the PDC

signal-idler correlation function kb1sxWdb2sxW8dl in Eq. (11).

Consequently from Eqs. (3) and (12), the thermal mean pho-
ton number knsqWdlth plays the same role as U1sqWdV2s−qWd in

the PDC case. The correlation function ka†sxWdasxW8dl governs

the properties of spatial coherence of the thermal source
[13,14]. The correlation length, or transverse coherence
length lcoh, is determined by the inverse of the bandwidth Dq

of the function knsqWdlth. The same comments hold for the

correlation kb1sxWdb2sxW8dl, and the function U1sqWdV2s−qWd in

the entangled case. Most importantly, unlike the results for
the separable states considered in Refs. [5,7], in both Eqs. (9)

and (11) the modulus is outside the integral; this is the fea-
ture that ensures the possibility of coherent imaging via the
correlation function (see, e.g., Ref. [5]).

III. IMAGING SCHEMES: IMAGE AND DIFFRACTION

PATTERN OF AN OBJECT

Let us now analyze two paradigmatic examples of imag-
ing systems, borrowed from the discussion of Ref. [7] and
sketched in Fig. 2.

In both examples the setup of arm 1 is fixed, and consists
of an object, described by a complex transmission function
TsxWd, and a lens located at a focal distance f from the object

and from the detection plane. Hence,

h1sxW1,xW18d = −
i

lf
expS−

2pi

lf
xW1 · xW18DTsxW18d , s13d

with l being the wavelength. In arm 2 there is a single lens
placed at a distance z both from the source and from the
detection plane 2; for simplicity we take the two lenses iden-
tical.
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In the first example we assume z= f so that h2sxW2 ,xW28d=

−si /lfdexpf−s2pi /lfdxW2 ·xW28g. By inserting these propagators

into Eq. (9) and taking into account Eq. (3), we obtain

GthsxW1,xW2d ~ UKnS− xW2

2p

lf
DL

th

T̃SsxW2 − xW1d
2p

lf
DU2

, s14d

where T̃sqWd=esdxW /2pde−iqW ·xWTsxWd is the amplitude of the dif-

fraction pattern from the object. This has to be compared
with the result of the entangled case [see Eq. (7) of Ref. [7]],

GPDCsxW1,xW2d ~ UU1S− xW2

2p

lf
DV2SxW2

2p

lf
DT̃SsxW2 + xW1d

2p

lf
DU2

,

s15d

where the combination xW2+xW1 appears instead of xW2−xW1 and
U1V2 instead of knlth. In both the thermal and the PDC case

the whole diffraction pattern from the object can be recon-
structed via the correlation function. This holds provided that
the spatial bandwidth Dq is larger than the maximal trans-
verse wave number q in the diffraction pattern, or equiva-
lently, provided that lcoh, l0, where l0 is the smallest scale of
variation of the object spatial distribution. Thus, both cases
have best performances of the scheme when spatially inco-
herent light (lcoh→0) is used. In contrast, as it is well known,
when lcoh, l0 no information about the diffraction pattern of
the object can be obtained without the correlations, i.e., if we
detect the light intensity distribution in arm 1 with an array
of pixels. In fact, one can easily obtain that

kI1sxW1dl = uru2E dq̃

slfd2UT̃SxW1

2p

lf
− qWDU2

knsqWdlth. s16d

For lcoh, lo, knsqWdlth can be taken out of the integral, and the

resulting expression does not depend on xW1 any more.
We incidentally remark that the result of Eq. (14) differs

from what one would obtain with a standard Hambury-
Brown and Twiss scheme [15], where the object is placed in
the thermal beam a before the beam splitter. In that case, one
would retrieve the Fourier transform of the modulus square
of the object transmission function (see, e.g., Ref. [13]), thus

losing any phase information. In our scheme instead, where
the object is located in only one arm of the two, phase infor-
mation about the object can be extracted and, e.g., the dif-
fraction pattern from a pure phase object can be recon-
structed.

In the second example, we set z=2f , so that h2sxW2 ,xW28d
=dsxW2+xW28dexps−iuxW2u2p /lfd. Inserting this in Eq. (9) and tak-

ing into account (13), we get

GthsxW1,xW2d ~ UE d xW18GsxW18 + xW2dT*sxW18de
is2p/lfdxW18·xW1U2

s17d

<UKnSxW1

2p

lf
DL

th

U2

uTs− xW2d2u , s18d

where in the second line lcoh, l0 was assumed. Since the
correlation function GsxW18+xW2d= ka†sxW18das−xW2dl is nonzero in a

region of size lcoh around xW18=−xW2, this condition ensures that
TsxW18d is roughly constant in this region and it can be taken

out from the convolution integral in Eq. (17), thus obtaining
Eq. (18). In this example the intensity correlation function
provides information about the image of the object. In the
general case (17), the image reconstructed via the correlation
function is a convolution of the object image with the
second-order correlation function (3); therefore the thermal
coherence length lcoh fixes the resolution of the imaging
scheme.

Under the same assumption lcoh, l0, a similar result holds
for the case of entangled beams [see Eq. (8) of Ref. [7]] [16]

GPDCsxW1,xW2d ~ uTs− xW2du2UU1S2pxW1

lf
DV2S−

2pxW1

lf
DU2

.

s19d

Also in this case the resolution of the scheme is limited by
the finite transverse coherence length of the PDC beams.

This section shows that the classical correlation of the
thermal beams offers imaging capabilities similar to those of
the entangled PDC beams; both the image and the diffraction
pattern of an object can be reconstructed and we can pass
from one to the other by only operating on the optical setup
in the reference arm. The performances of the imaging
schemes based on classical correlation and on entanglement
will be compared in Sec. V, both for what concerns the vis-
ibility, the statistical properties as well as the spatial resolu-
tion. The following section, instead, will explain the basic
mechanism that allows correlated thermal imaging with such
a degree of flexibility.

IV. NEAR- AND FAR-FIELD CORRELATION

IN THE THERMAL AND ENTANGLED CASE

As explained in detail in Ref. [7] the imaging schemes
described in the preceding section have a peculiar feature. In
the z= f scheme the diffraction pattern reconstruction is made
possible by the presence of spatial correlation in the far field
of the correlated beams (momentum correlation of the pho-
tons). In the z=2f scheme, it is the presence of spatial cor-

FIG. 2. Imaging scheme. L denotes two identical lenses of focal

length f . D1 is a pointlike detector.The distance z is either z= f or

z=2f .
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relation in the near-field (position correlation of the photons)

that ensures the possibility of reconstructing the image. Our
results for the thermal case may hence appear surprising if
one has in mind the case of a coherent beam impinging on a
beam splitter, where the two outgoing fields are uncorrelated,
i.e., GsxW1 ,xW2d=0. However, when the input field is an intense

thermal beam, i.e., the photon number per mode is not too
small, the two outgoing beams are well correlated in space
both in the near-field and in the far-field planes.

To prove this point, let us consider the number of photons
detected in two small identical portions S (“pixels”) of the
thermal beams in the near field immediately after the beam
splitter, Ni=eS dxWbi

†sxWdbisxWd, i=1,2, and the difference N−

=N1−N2. Making use of the transformation (2), for uru2

= utu2=1/2 it can be proved that the variance kdN−
2l= kN−

2l
− kN−l2 is given by

kdN−
2l = kN1l + kN2l , s20d

which corresponds exactly to the shot noise level. Remark-
ably, Eq. (20) holds regardless of the statistical properties of
the input beam a provided that in the other input port there is
the vacuum. On the other hand, by using the identity kdN−

2l
= kdN1

2l+ kdN2
2l−2kdN1dN2l and taking into account that

kdN1
2l= kdN2

2l for uru2= utu2, the degree of spatial correlation is

described by

C =
def kdN1dN2l

ÎkdN1
2lÎkdN2

2l
= 1 −

kN1l

kdN1
2l

. s21d

For any state 0ø uC u ø1, where the upper bound is imposed
by the Cauchy-Schwarz inequality. The lower bound corre-
sponds to the coherent state, for which kdN1

2l= kN1l. For the

thermal state, there is always some excess noise with respect
to the coherent state kdN1

2l. kN1l, so that the correlation (21)

never vanishes. Remarkably, a high degree of spatial corre-
lation between beams b1 and b2 is ensured by the presence of
a high level of excess noise in the input beam. As shown in
detail in the Appendix, for thermal systems with a large num-
ber of photons, provided that the pixel size is on the order of
lcoh or larger, kN1l / kdN1

2l!1, and C can be made close to its

maximum value.
Even more important, in the absence of losses it is not

difficult to show that Eqs. (20) and (21) hold in any plane
linked to the near-field plane by a Fresnel transformation. Let
us assume that the propagation of beams b1 ,b2 is described
by a linear and unitary kernel H, bH,isxWd
=ed xW8HsxW ,xW8dbisxW8d, i=1,2. Then the form of the beam-

splitter transformation (2) is preserved during propagation,
provided that the thermal field a is substituted by the propa-
gated field aHsxWd=ed xW8HsxW ,xW8dasxW8d. Hence, Eqs. (20) and

(21) also hold for bH,1 and bH,2, because these equations are
just a consequence of the beam-splitter transformation (2)

with uru2= utu2=1/2. Moreover, the field aH after propagation
is still described by a thermal statistics, since the Gaussian
statistics and the factorization property (4) of the fourth-
order correlation function are preserved by a linear unitary
transformation. However, the coherence properties of the
field aH change upon propagation, as described by the well-

known Van Cittert-Zernike theorem (see, e.g., Ref. [13]). In
particular, in the far-field plane, where HsxW ,xW8d=

−si /lfdexpf−s2pi /lfdxW ·xW8g, they are described by a second-

order correlation function

kaH
† sxWdaHsxW8dl ~E dyW E dyW8eis2p/lfdsxW·yW−xW8·yW8dGsyW,yW8d .

s22d

By assuming translational spatial invariance of the source,
the far-field correlation function (22) is proportional to dsxW
−xW8d, as can be easily verified by substituting Eq. (3) into Eq.

(22). However, when this unrealistic assumption is removed,
the finite transverse size of the source wS has the effect that
the correlation length of the function (22) is also finite and is
inversely proportional to wS, as shown by the Van Cittert—
Zernike theorem. Hence, lcoh8 ~lf /ws, represents the coher-
ence length in the far-field plane. We can thus conclude that
a high level of pixel-by-pixel correlation can be observed
also in the far-field plane, provided that the size of the de-
tection regions S is not too small with respect to lcoh8 , and the
thermal beam is sufficiently intense (see the discussion in the
Appendix).

We remark that despite C can be made close to 1 by
increasing the mean number of photons, it never reaches the
quantum level, as shown by Eq. (20).

For the entangled beams produced by PDC, spatial corre-
lation is present both in the near and in the far field, with the
ideal result kdN−

2l=0, C=1 in both planes [11]. In this case,

the far-field correlation is between symmetric pixels, and the
coherence length in the far field is inversely proportional to
the pump beam waist, which therefore in this context plays
the same role as the source size wS for the thermal beams.

In Ref. [7] we analyzed the effect of replacing the pure
PDC entangled state with two mixtures that exactly preserve
the spatial signal-idler quantum correlations, either in the far
or in the near field. It turned out that when considering the
“far-field mixture” the pure state results could be exactly
reproduced in the z= f configuration of Fig. 2, but no infor-
mation about the image was present in the z=2f configura-
tion. The converse is true considering the “near-field mix-
ture.” This result is a consequence of the fact that the far-
field intensity and the near-field intensity are noncommuting
operators, and in the absence of quantum entanglement be-
tween the two beams they cannot simultaneously be corre-
lated up to a perfect degree (this point is related to that raised
in Ref. [17]). This led us to argue that only in the presence of
quantum entanglement the whole set of results can be ob-
tained by solely changing the setup in reference arm 2 [7].

However, nothing prevents two nonentangled beams to be
correlated in both planes up to an imperfect degree. The two
beams generated by splitting thermal light are actually im-
perfectly correlated both in the near and in the far field; but
by using intense thermal light, the classical intensity corre-
lation is strong enough to reproduce qualitatively the results
of both the z= f and the z=2f configuration.
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V. IMAGING PERFORMANCES IN THE CLASSICAL

AND QUANTUM REGIMES

A complete comparison of the performances in the classi-
cal and quantum regimes requires extended numerical inves-
tigations describing realistic thermal sources, which are out-
side the scope of this paper.

However, some general remarks can be made concerning
the key issue of the visibility of the information in the two
regimes. The information about the object is retrieved by
subtracting the background term kI1sxW1dlkI2sxW2dl from the

measured correlation function (6), as indicated in Eq. (7). A
measure of this visibility is given by evaluating the following
quantity in relevant positions:

V =
GsxW1,xW2d

kI1sxW1dI2sxW2dl
=

GsxW1,xW2d

kI1sxW1dlkI2sxW2dl + GsxW1,xW2d
s23d

with 0øVø1.
A first remark concerns the presence of knsqWdlth in Eq. (9)

in place of U1sqWdV2s−qd in Eq. (11). As a consequence, in the

thermal case GthsxW1 ,xW2d scales as knsqWdlth
2 . In the entangled

case, GPDCsxW1 ,xW2d scales as uU1sqWdV2s−qdu2= knsqWdlPDC

+ knsqWdlPDC
2 , where knsqWdlPDC= uV2s−qWdu2= uV1sqWdu2 is the mean

number of photons per mode in the PDC beams, and
uU1sqWdu2=1+ uV1sqWdu2 (see, e.g., Ref. [11]). The difference be-

tween the two cases is immaterial when the mean photon
number is large, while it emerges clearly in the small photon
number regime fknsqWdl!1g. Actually, in the thermal case the

visibility does not exceed the value 1/2, whatever the value
of knsqWdlth, since GthsxW1 ,xW2d scales in the same way as the

background term. On the contrary, in the PDC case the vis-
ibility can approach the value 1 in the small photon number
regime, since in this case the leading scale of GPDCsxW1 ,xW2d is

knsqWdlPDC and this term becomes dominant with respect to

the background kI1sxW1dlkI2sxW2dl~ knsqWdlPDC
2 . Hence, in the re-

gime of single-photon pair detection the entangled case pre-
sents a much better visibility of the information with respect
to classically correlated thermal beams (see also Ref. [18]).

A second remark concerns the role of the temporal argu-
ment. Standard calculations show that the visibility scales as
the ratio between the coherence time of the source tcoh and
the detection time (see also Refs. [10,19]). This implies that
conventional thermal sources, with very small coherence
times, are not suitable for the schemes studied here. A suit-
able source should present a relatively long coherence time,
as for example a sodium lamp, for which tcoh<10−10 s
[15], or the chaotic light produced by scattering a laser beam
through a random medium (see, e.g., Ref. [20]).

As a special example of a thermal source, one can con-
sider the signal field or the idler field generated by PDC.
Figure 3 shows the results of a numerical simulation [21] for
the reconstruction of the diffraction pattern of a double slit,
in the scheme z= f of Fig. 2. It compares the use of the
entangled signal and idler beams [curve a], and two classi-
cally correlated beams obtained by symmetrically splitting
the signal beam [curve b]. The parametric gain is such that
knsqWdlPDC<750 at its maximum for a, and knsqWdlPDC

<1500 for b, so that the mean photon numbers of beams b1,

b2 are approximately equal in the two simulations. From our
simulations it clearly emerged that the number of pump shots
necessary for reconstructing the diffraction pattern up to a
desired accuracy is the same for both curves a and b. Notice
that Fig. 3 plots only GsxW1 ,xW2d, which contains the object

information and represents the relevant part of the intensity
correlation. This was obtained by subtracting a large back-
ground term kI1sxW1dlkI2sxW2dl from the correlation function of

the intensities kI1sxW1dI2sxW2dl. Consideration of these quanti-

ties (not shown in the figure) allowed us to calculate the
visibility V, as defined by Eq. (23), which turned out to be
V<0.05 in both cases. Although this is a rather poor visibil-
ity, the crucial point is that the fringes shown in Fig. 3 could
be correctly reconstructed after a reasonable number of pump
shots.

The simulations of Fig. 3 were repeated but changing the
setup in the reference arm to the z=2f configuration. The
results are shown in Fig. 4, and confirm that the classical
correlation can be used to reconstruct both the diffraction
pattern and the image of the object by operating only in the
optical setup in the reference arm 2. Also in this case
the efficiency of the reconstruction is the same for curves
a and b.

These examples clearly show that in the regime of high
photon number the quantum and classical correlations offer
similar performances.

Another important aspect that emerges from these ex-
amples is that the classical and quantum-imaging schemes
apparently offer the same spatial resolution. This is most
evident in the plot of Fig. 4, where the spatial resolution of
both schemes is not good enough to reproduce the sharp
details of the double slit image, but the reconstructed images
are almost identical. As a matter of fact the analytical
results—given by the general formulas (9)–(11) for the cor-
relation function of intensity fluctuations, the results (14) and
(15) for the diffraction pattern reconstruction, and the results
(18) and (19) for the image reconstruction—show clearly

FIG. 3. Numerical simulation of the reconstruction of the dif-

fraction pattern of a double slit in the scheme z= f of Fig. 2.

GsxW1 ,xW2d is plotted vs xW2 after 104 pump shots for a entangled

signal/idler beams from PDC, b classically correlated beams by

splitting the signal beam. c is the analytical result of Eq. (14).

Parameters are those of a 4 mm b-barium-borate crystal

(=16.6 mm, tcoh=0.97 ps). The pump waist is 664 mm, and the

pulse duration is 1.5 ps. The slits are 36 mm wide and slit separa-

tion is 122 mm. x0 is defined as Dqlf / s2pd.
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that the spatial resolution of both schemes depends only on
the spatial coherence properties of the sources. Provided that
the spatial coherence properties of the classical source emu-
late those of the entangled source, there is no reason why the
two schemes should offer different spatial resolutions. This
requirement is not unrealistic at all, since the typical trans-
verse coherence length of the entangled beams from PDC is
on the order of tens of microns. An example of “thermal”
light whose coherence properties can be engineered is of-
fered by, e.g., chaotic radiation obtained by scattering laser
light through random media [20].

A final remark concerns the form of the analytical results
of Eqs. (14) and (15) for the diffraction pattern reconstruc-
tion. Specifically, the diffraction pattern on the rhs of Eq.
(15) depends on the sum xW1+xW2 of the positions of the pixels
in the detection planes of beam 1 and 2. This feature was
exploited in the experiment of Ref. [22] (see also Ref. [23]),
which was performed by registering coincidence counts of
pairs of photons generated by PDC in a configuration similar
to the z= f scheme of Fig. 2 [24]. The interference fringes
from a double slit were observed by scanning the pixel de-
tectors in the two beams together, i.e., with xW1=xW2. A halving
of the period of the interference fringes with respect to those
observed by illuminating the object with coherent light was
then observed. This effect was claimed to be a consequence
of the entanglement of the two-photon state. This effect is
evident from Eq. (15), where by setting xW1+xW2=xW the PDC

correlation function gives uT̃f2xWs2p /lfdgu2. By inspecting

Eq. (14), we notice that the same effect could in principle be
observed in the scheme that uses the classically correlated
thermal beams, provided that the pixels in the detection
planes of the two beams are scanned symmetrically, i.e., set-
ting xW1=−xW2 [25]. Therefore, the discussion is open whether
quantum entanglement has a crucial role in this observed
halving of the period of the interference fringes, or whether
this is just a consequence of the spatial correlation of the two
beams and of the particular detection scheme used.

VI. CONCLUSIONS

In conclusion we have suggested a way of producing clas-
sically correlated beams suitable for correlated imaging.

These beams are the outcome of mixing an intense thermal
beam with the vacuum state on a beam splitter. We have
shown a deep analogy between the use of entangled beams
originating from PDC and these classically correlated beams.
The analogy arises because of the similar structure of Eqs.
(9) and (11), which implies that the outcomes of correlation
measurements with the classical source can emulate those
obtained with the entangled beams, for any choice of the test
and reference arm optical setups. This holds provided the
spatial coherence properties of the source are chosen to
mimic the marginal statistics of the individual PDC beams.

This analogy relies on the high level of spatial correlation
that exists between the two beams emerging from the beam
splitter as a consequence of the large excess noise of the
thermal input. A key point is that a pixel by pixel correlation
is present not only in the near-field plane immediately after
the beam splitter but also in the far-field plane. Although the
correlation is limited by shot noise, it allows to reconstruct
both the image and the diffraction pattern of an object by
only acting on the optical setup of the reference arm. This
was hitherto thought of as a feature that truly required en-
tanglement between the two beams [7].

We have investigated the imaging performances of the
quantum and classical schemes. Both our analytical results
and a specific numerical example show that the spatial reso-
lution limitations of the two schemes have similar origins,
namely, the finite transverse coherence length of the light.
Thus, also in this respect the classical beams mimic the re-
sults of the entangled beams.

On the other hand, in the small photon number regime a
definite advantage of the quantum configuration is repre-
sented by a better visibility, as it was already recognized in
other contexts (see, e.g., Ref. [26]). Thus, in imaging
schemes where the visibility represents a crucial issue one
should take this into account. However, as the number of
photons per mode becomes large this advantage disappears
and the visibility tends to be the same for the quantum and
the classical source. This result suggests that the peculiar
difference between the use of the two kind of sources is not
given by the entanglement, but rather by the possibility of
working in the photon counting regime in the quantum case.

A further advantage of the PDC source may lie in the
possibility of using a fraction of the source laser as a refer-
ence field in order to perform balanced homodyne detection.
We will show in a future theoretical work that the homodyne
scheme makes it possible to perform phase-sensitive corre-
lated imaging with a high degree of visibility even in the
large photon number regime [27]. Another advantage of us-
ing the PDC source relies on the possibility of multiwave-
length imaging, as mentioned in the introduction.

Our results implies that it is possible to perform coherent
imaging without spatial coherence by using thermal light in
combination with a beam splitter. This is reminiscent of the
Hanbury-Brown and Twiss interferometric method for deter-
mining the stellar diameter [13], as well as of detecting the
fringes arising from interference of two independent thermal
sources [28]. However, here we define a technique to achieve
a fully coherent imaging of the object through correlation
measurements with a high degree of flexibility. Moreover,
since the required correlation is classical, a high quantum
efficiency of the detectors is not necessary.

FIG. 4. Numerical simulation of the reconstruction of the image

of a double slit in the scheme z=2f of Fig. 2. GsxW1 ,xW2d is plotted vs

xW2 after 104 shots for a entangled signal and idler beams from PDC,

b classically correlated beams by splitting the idler beam. c is the

analytical result of Eq. (18). Parameters are as in Fig. 3.
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The results of this paper suggest experiments of correlated
imaging with thermal light, which could provide a useful test
bed for the imaging experiments with quantum entangled
sources. Experiments like that simulated by the numerics of
Sec. V may open possibilities, offered by the combination of
the correlated imaging from entangled beams and from clas-
sically correlated beams.
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APPENDIX

This appendix investigates how the degree of spatial cor-
relation between the beams obtained by splitting thermal
light depends on the size of the pixels used to detect the
light, and on the mean number of thermal photons.

As shown by Eq. (21) a high level of spatial correlation
can be present between the beams b1 ,b2 after the beam split-
ter as a consequence of a high level of excess noise in the
thermal beam a. The relevant quantity to consider is the ratio
k:dN1

2:l / kN1l, where k:dN1
2:l is defined by kdN1

2l= kN1l
+ k:dN1

2:l, and represents the noise in excess with respect to

the coherent state level.
By using the beam-splitter transformation (2) and the fac-

torization property (4) of the fourth-order thermal correlation
function, we get

k:dN1
2:l = uru4E

S

dxWE
S

dxW8uGsxW − xW8du2, sA1d

where GsxW −xW8d is the thermal correlation function defined by

Eq. (3). On the other hand, the mean number of photons

detected over the pixel is

kN1l = uru2SGs0d ~ uru2
S

lcoh
2 nmax, sA2d

where we introduced the parameter

nmax = knsqW = 0dlth sA3d

that represents the mean number of photon in the most in-
tense mode qW =0 in the spectrum. Moreover, we used Gs0d
=edqW / s2pd2knsqWdlth~1/ lcoh

2 nmax, where the proportionality

constant depends on the actual shape of the spectrum. When
the pixel size is much smaller than lcoh, the correlation func-
tion in Eq. (A1) is approximately constant over the integra-
tion regions S, so that

k:dN1
2:l → uru4S2Gs0d2 = kN1l2. sA4d

Hence, in this limit of a small detection region the noise
takes the form of the usual single-mode result for thermal
light kdN1

2l= kN1l+ kN1l2. However, as shown by Eq. (A2) the

mean number of photons is also small in this limit, so that
the excess noise and the correlation tend to be both small.

On the other side, when the detection regions grow much
larger than the coherence area the excess noise does not scale
any more with the square of the mean number of detected
photons. In the limit of large detection regions the r.h.s. of
Eq. (A1) can be approximated as

k:dN1
2:l → uru4SE

trv.plane

djWuGsjWdu2

= uru4SE dqW

s2pd2 knsqWdlth
2

~ uru4
S

lcoh
2 nmax

2 < uru2nmaxkN1l . sA5d

For a large detection region the excess-noise scales propor-
tionally to the mean number of detected photons, so that the
ratio k:dN1

2:l / kN1l reaches a limiting value, which depends

on nmax.
We have investigated more in detail the role of the size of

the detection region in the degree of correlation by assuming

FIG. 5. Degree of spatial correlation C between two identical

detection regions of the beams obtained by splitting thermal light,

as a function of the ratio d between the pixel size and the coherence

length. nmax is the mean photon number in the most intense mode.

C=1 represents the maximum degree of correlation.

FIG. 6. Visibility VS of the spatial correlation between two iden-

tical detection regions of the beams obtained by splitting thermal

light, as a function of the ratio d between the pixel size and the

coherence length.
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square pixels with sides of size D, as well as a Gaussian

correlation function GsjWd=Gs0de−s1/2dujWu2/lcoh
2

, which is a good

approximation of a smooth correlation function decaying on
a distance lcoh. By substituting this in Eq. (A1) and using the
result of Eq. (21), we get the two relevant asymptotic behav-
iors of the degree of correlation (21):

C →
1

4p

d2nmax

1 +
1

4p
d2nmax

for d ! 1, sA6d

C →
1

4

nmax

1 +
1

4
nmax

for d → ` , sA7d

where d=D / lcoh is the ratio of the pixel size to the coherence
length. The curves in Fig. 5 show the general behavior of the
degree of correlation C as a function of the pixel size for
different values of the mean photon number per mode nmax.
The consequence of this figure is that when the input thermal
beam is intense enough, a high degree of spatial correlation
can be achieved. This is provided that the pixel size is not
too small with respect to the coherence length describing the
decay of the thermal spatial correlation function.

Another relevant parameter that characterizes the spatial
correlation between two beams is the visibility of the corre-
lation, which in the spirit of Eq. (21) we define here as

VS =
kdN1dN2l

kN1N2l
. sA8d

This definition is analogous to that of Eq. (23), where, how-
ever, a small pixel was implicitly considered so that no inte-
gration over the pixel area was performed. This quantity is
easily calculated in the same manner as above. Figure 6 plots
the visibility of the spatial correlation between the thermal
beams as a function of the pixel size scaled to the coherence
length. This plot was obtained under the same assumption of
Fig. 5. The visibility turns out not to depend on the mean
thermal photon number nmax, so that only one curve is plot-
ted.

Unlike the degree of correlation, the best visibility is ob-
tained when the detection pixel is not large with respect to
the coherence length. The main conclusion of this appendix
is therefore: in order to achieve both a good visibility as well
as a high degree of spatial correlation, the best choice is a
detection pixel with a size approximately equal to the coher-
ence area.
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