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Abstract—Accurate representation of the physical layer is
required for analysis and simulation of multi-hop networking
in sensor, ad hoc, and mesh networks. Radio links that are
geographically proximate often experience similar environmental
shadowing effects and thus have correlated shadowing. This
paper presents and analyzes a non-site-specific statistical prop-
agation model which accounts for the correlations that exist
in shadow fading between links in multi-hop networks. We
describe two measurement campaigns to measure a large number
of multi-hop networks in an ensemble of environments. The
measurements show statistically significant correlationsamong
shadowing experienced on different links in the network, with
correlation coefficients up to 0.33. Finally, we analyze multi-hop
paths in three and four node networks using both correlated
and independent shadowing models and show that independent
shadowing models can underestimate the probability of route
failure by a factor of two or greater.

Index Terms—Wireless sensor, ad hoc, mesh networks, shad-
owing, correlation, statistical channel model, wireless communi-
cation, measurement, performance

I. I NTRODUCTION

Both simulation and analysis are critical to the development
of multi-hop networks, including mesh, ad-hoc, and sensor
networks. However, current physical layer models do not accu-
rately represent radio channels in multi-hop wireless networks
[1], [2]. As a result, there is a significant disconnect between
simulation and analysis, and real world deployment. There is
a significant interest in improving statistical models beyond
the current state-of-the-art, in order to decrease the difference
between simulation and analysis results and experimental
deployment results.

Path losses between pairs of nodes are critical in any simula-
tion or analysis of a multi-hop network. Path losses determine
the connectivity and performance of multi-hop wireless net-
works. Path loss between an interferer and receiver determines
the received interference power, which determines whether
communication can exist during transmission of interference.
In power control schemes, path losses between pairs of nodes
determine the energy consumption required for communication
between the nodes. In received signal strength (RSS)-based
localization, path losses determine the errors in range and
position estimates of nodes.

This paper presents a non-site-specific statistical joint path
loss model between a set of static nodes. Current statistical
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channel models used for multi-hop networks consider link path
losses to be independent. This is a simplifying assumption,
since shadow fading is determined by environmental obstruc-
tions, and geographically proximate links pass through similar
obstructions. We hypothesize that links which pass through
nearby parts of the environment have correlated shadowing
losses. In this paper, we conduct extensive measurements to
verify this hypothesis.

Non-site-specific path loss models are critical for multi-
hop network analysis and simulation. Site-specific models use
building floor plans or maps of the particular deployment area
to predict path losses in the network, and have been critical
for deployment planning for cellular systems and large WLAN
deployments [3], [4]. However, site-specific models are not
valuable for determining the statistical performance of a wire-
less network across the ensemble of possible deployments.
Non-site-specific path loss models, often referred to simply as
statistical path loss models, help system designers understand
how network performance improves or degrades based on
design decisions, in general environments.

A. Single-Link Path Loss Model

Radio propagation measurement and modeling for a single
radio link has been reported extensively over the past century
[5], [6], [7], [8]. In general, when there is no site-specific
knowledge of the environment, the ensemble mean received
power, P̄ (d) (dBm), at a distanced from the transmitter, is
[6], [7],

P̄ (d) = PT − Π0 − 10np log10

d

∆0
, (1)

where PT is the transmitted power in dBm,np is the path
loss exponent, andΠ0 is the loss experienced at a short ref-
erence distance∆0 from the transmitter antenna. This model
incorporates the free space path loss model whennp = 2, and
extends to practical (obstructed) multipath environmentswhen
np > 2.

On a particular link, received power will vary from the
ensemble mean because offading. The measured received
power for the link between transmitteri and receiverj can
be written as,

Pi,j = P̄ (di,j) − Zi,j , (2)

where,di,j is the distance between nodesi and j, and Zi,j

is the fading loss. In general, shadow fading, narrowband or
frequency-selective fading, and antenna and device lossesall
contribute toZi,j . Much research in antennas and propagation,
and in RFIC design, have developed models for losses due to
narrowband fading, antenna and device losses. Two antennas
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spaced closer than a wavelength do experience correlated
small-scale fading, and a large body of research has explored
those correlations [9].

This paper models the correlations among shadow fading
on the various links in a network. Shadow fading, also called
medium-scale fading [6], describes the loss experienced asthe
signal passes through or diffracts around major obstructions in
its path from the transmitter to the receiver. These obstructions
include walls and furniture indoors, and buildings, terrain, and
trees outdoors.

We hypothesize that shadowing losses on different links
are correlated when those links are geographically proximate.
Since shadowing is central to the analysis in this paper, we
separate total fading lossZi,j into two components,

Zi,j = Xi,j + Yi,j , (3)

whereXi,j represents the shadow fading loss, andYi,j repre-
sents all other (non-shadowing) losses.

B. Application in Multi-hop Networking Research

In the multi-hop networking simulation and analysis litera-
ture, two path loss models are used:

1) The circular coverage model:Zi,j = 0 for all links, and
thus the coverage area is a perfect circle, as shown in
Figure 1(a).

2) The i.i.d. log-normal shadowing model: For all links
(i, j), random variablesZi,j (in dB) are independent
and identically distributed Gaussian with zero mean and
varianceσ2

Z , as shown in Figure 1(c).
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Fig. 1. Graphical depiction of (a) circular coverage model,and (c) coverage
in the i.i.d. log-normal shadowing model, compared to the common depiction
of (b) in which coverage area is a random shape. In (a) and (b),nodes are
connected if and only if they are within the gray area, while in (c), nodes are
connected with probability proportional to the shade (darker is more probable).

We argue that the two models are at opposite extremes, and
both problematic. Note that ‘realistic coverage’ is commonly
depicted pictorially as a coverage area with random range
as a function of angle [10], [11], as in Figure 1(b), and
neither fading model produces such a random shape. It is easy
to recognize that the deterministic, circular coverage areas
are unrealistic for wireless communications links. However,
circular coverage has been a common assumption in ad hoc
and sensor network research and has been used to generate
foundational research results. It has been shown that the
majority of papers which require radio propagation models
in their simulation use the circular coverage model [12].

In comparison, the i.i.d. shadowing model eliminates the
concept of coverage area. Since the model has no spatial mem-
ory, even two nearly overlapping links would be represented

as statistically independent. For example node 2 in Figure 1(c)
may be connected while node 1 is not.

Recent research, including Hekmat and Van Mieghem [11]
and Bettstetter and Hartmann [10], has studied connectivity in
ad hoc networks using the i.i.d. log-normal shadowing model.
Their analyses indicate that for a constant level of connectivity,
node deployment density can be reduced when the variance
of the shadowing is increased. This increase in connectivity is
largely a result of the model’s independence assumption. Since
losses in links in the same direction from a transmitter are
independent, if one link is disconnected because of high loss,
another node in the same direction is likely to be connected.

In reality, if an obstacle in one direction from a transmitter
strongly attenuates its signal, any receiver behind the obstacle
is likely to experience high fading loss. For example, if the
environment in Figure 2 causes severe shadowing, it is likely to
cause additional path loss on both linksa andb. In contrast, the
i.i.d. log-normal shadowing model assumes that the shadowing
across linksa andb will be independent and thus exaggerate
the connectivity. We quantify this argument in Section VI.

link b

link a

1 2 3 4

environment

Fig. 2. Example of factor in shadowing loss correlation. Because linka
and link b cross the same environment, their shadowing losses tend to be
correlated.

C. Correlation Limits Link Diversity

Diversity methods are common means to achieve reliability
in unreliable channels. Multi-hop networking serves as a
network-layer diversity scheme by allowing two nodes to be
connected by any one of several multi-hop paths. All diversity
schemes are limited by channel correlations. Correlationshave
been studied and shown to limit diversity gains in time, space,
frequency and multipath diversity schemes [9], [6], [7], [13].

Yet little research has addressed fading correlations among
links in sensor, mesh, and ad hoc networks. This paper presents
an investigation into quantifying the correlation in the shadow
fading experienced on the different links of a multi-hop
network, as well as a statistical joint path loss model which
represents correlations in link shadowing. This investigation
is based on extensive experimental measurements, using full
link measurements of an ensemble of deployed networks
to estimate and test for statistical correlations. Further, we
quantify the effect that such correlation has on source-to-
destination path statistics. We show for a simple three node
network that the probability of path failure can be double
or more what would be predicted by the i.i.d. log-normal
shadowing model.

II. RELATED RESEARCH

Shadow fading correlations have been measured and shown
to be significant in other wireless networks. For example:



3

1) In digital broadcasting, links between multiple broadcast
antennas to a single receiver have correlated shadowing
which affects the coverage area and interference charac-
teristics [14].

2) In indoor WLANs correlated shadowing is significant
(with correlation coefficients as high as 0.95), and
strongly impacts system performance [15].

3) In cellular radio, correlation on links between a mobile
station (MS) and multiple base stations (BSs) signif-
icantly affects mobile hand-off probabilities and co-
channel interference ratios [16], [17], [18].

In cellular radio, the model of Gudmundson [19] is used to
predict shadowing correlation for the link between a mobile
station MS to a BS over time as the MS moves. In Section III,
we address the inability of this model to be directly applied
to model the correlations among links in multi-hop networks.
Wang, Tameh, and Nix [20] extended Gudmundson’s model
to the case of simultaneous mobility of both ends of the link,
for use in MANETs, and relate a sun-of-sinusoids method to
generate realizations of the shadowing process in simulation.
Both works use “correlated shadowing” to refer to the corre-
lation of path loss in asingle linkover time, while the present
work studies the correlation ofmany disparate linksat a single
time.

In [21], RSS measurements in a single network were used to
quantify fading correlations between two links with a common
node. Those results could not be complete because a single
measured network does not provide information about an
ensemble of network deployments. The present study uses the
data from two campaigns each consisting of multiple measured
networks to examine many pairs of links with the identical
geometry, both with and without a common node.

Finally, we note that the performance of other RSS-based
applications in wireless networks depend on accurate jointpath
loss models. Cooperative localization in sensor and ad hoc
networks uses signal strength to estimate node coordinates.
The error performance of such estimators is dependent on the
statistical model for path losses in the network. All previ-
ous analytical studies of location estimation bounds assume
independence of links [22], [23], [24], [25], [26], but new
work shows that bounds change when correlated shadowing is
taken into account [27]. Further, because multiple links will
measure the shadowing caused by an attenuating object, the
location of an attenuating object can be estimated. We have
shown that tomographic imaging can be used to estimate and
track the location of a moving RF attenuator such as a person
[27]. Accurate RF tomographic imaging requires a non-site-
specific statistical model which relates the attenuation field to
the shadowing losses measured on links. This paper presents
such a model, and more critically, provides experimental
measurements which justify such a model.

III. M OTIVATION

The present effort to model the shadowing correlation is
motivated by the fact that no existing correlated link shad-
owing model is valid for arbitrary pairs of links in ad-hoc
networks. Yet shadowing correlation plays a very important

role in determing the realistic performance of a network.
To date, there have been two relevant statistical models for
shadowing correlations:

1) The model of Gudmundson (1991), which predicts tem-
poral shadowing correlations for the MS-BS path loss
as the MS moves in a cellular network [19].

2) The model of Wang, Tameh and Nix (2006), an exten-
sion of Gudmundson’s model, which predicts temporal
shadowing correlations on a single link when there is
mobility on both ends of the link [20].

In this section, we show that neither model can be applied to
model shadowing correlation between arbitrary pairs of links
in multi-hop networks.

Gudmundson’s model has been widely applied to predict
shadowing correlations in cellular networks where a mobile
receiver (with a low antenna) communicates with a base station
(with a high antenna). The model predicts the correlation
in shadowing as the mobile receiver changes position with
respect to the base station as shown in Fig. 3. For a mobile
receiver going from positionxi to xj , the shadowing correla-
tion RX(xi,xj) is given as,

RX(xi,xj) = σ2
Xe−dij/D where dij = ‖xi − xj‖, (4)

andD is a distance constant, andσ2
X is the variance of shadow

fading.
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Fig. 3. Example of the motion of mobile receiver and base station position
in Gudmundson’s model

By design, the Gudmundson model does not apply to pairs
of links that do not have a common end point. For example,
consider a four node ad-hoc network as shown in Fig. 4. The
shadow fading on linksc andf have no specified covariance in
the model. In typical multi-hop networks with large numbers
of nodes, such link pairs occur very commonly – most pairs
of links do not share a common node.

A. Adaptation to Mobile-to-Mobile Link

Wang, Tameh, and Nix adapted the Gudmundson model
to a more generalized setting of one link with two mobile
nodes [20]. Letdt and dr be the distance moved the two
mobile nodes between two time instants. According to [20],
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Fig. 4. A simple four node ad-hoc network its six pairwise links.

the correlation between the shadow fading between the two
times is modified from (4) to be,RX(dt, dr) = σ2

Xe−
dt+dr

D .
However, the model is based on the assumption that the

distances between the two nodes is large compared withdt

and dr. The model cannot be directly applied to model the
covariance of two arbitrary links. We might consider applying
[20] to two links if those two links share very nearby end
points. For example, in Fig. 4, ifd23 << d12 and d14 <<
d12, one might use [20] to model the correlation between the
shadowing on linksa andd.

In general, very few link pairs in ad-hoc networks would
meet the above criteria. For example, ifd23, d24, d13, d14 are
of the same order of magnitude asd12 andd34, then there is
an ambiguity for which two distances should be used in the
model of [20]. There seems to be no universally appropriate
way to choose the two distances from the four available.

B. Adaptation to Multiple Links

In this section, we introduce what would be the direct
application of the Gudmundson (1991) model to an arbitrary
set of links in a multi-hop network and show that it does
not provide a valid statistical joint path loss model. First, we
define a direct, naı̈ve application of (4) to a general multi-link
network. For two linksa = (i, j) andb = (k, l), the covariance
between the shadowing on linksa andb would be given by,

C(a, b) =

{

0, if i 6= k, i 6= l, j 6= k, andj 6= l
σ2

Xe−dik/D, if j = l
(5)

wheredik is the distance between the non-common end points
of the two linksa andb.

Next, we prove by contradiction that such a model doesnot
guarantee a positive semi-definite covariance matrix and thus
is not a valid statistical model. Consider the four nodes and
the six links between them depicted in Fig. 4. For simplicity,
consider a subset of the links, the three linksa, d, ande. The
covariance matrix for the shadow fading experienced on these
three links is given by (5) as,

C = σ2
X





1 0 e−d24/D

0 1 e−d13/D

e−d24/D e−d13/D 1



 (6)

The determinant of this covariance matrix is,

Det(C) = σ2
X(1 − e−2d13/D − e−2d24/D).

When d13 and d24 are low, Det(C) < 0. A negative deter-
minant shows thatC is not positive semi-definite and thus
cannot be a valid covariance matrix. Thus the Gudmundson
covariance model cannot be directly applied to arbitrary sets
of links in a network.

C. Summary

In this section, we have explored application of the shadow-
ing covariance models proposed in [19] and [20] to arbitrary
sets of links in wireless networks. We have shown that neither
can be applied directly to any general set of links. The
Gudmundson model does not consider link pairs that do not
have a common endpoint. The adaptation proposed in [20]
when both the ends of a link are mobile cannot be applied
directly to ad-hoc networks as there would be an ambiguity
in which two distances to use in the covariance function.
We proved by counterexample that a naı̈ve application of the
Gudmundson model to model joint path losses in a multi-link
network does not guarantee a valid covariance matrix. These
arguments necessitate the development of new statistical path
loss model which jointly models multiple links in a mesh,
sensor, or ad hoc network.

IV. JOINT PATH LOSSMODEL

In this section, we propose a statistical joint path loss model
for arbitrary sets of links in a wireless network. As described
in Section III, existing path loss models are not adequate to
model correlations which exist in shadow fading between pairs
of links in a network. We provide such a model in this section
by connecting path losses in a network to a random shadowing
environment of deployment. By connecting path losses to an
environment, we preserve the physical relationships which
exist between links in real-world deployments. By making
the environment random, we preserve the non-site-specific
nature of the model and allow it to be used in general-purpose
simulation and analysis.

We start with the assumption that shadowing losses experi-
enced on the links in a network are a result of anunderlying
spatial loss fieldp(x). A spatial loss field quantifies the
shadowing loss experienced by a link which passes through
it – shadowing on a link increases when its path crosses areas
of high lossp(x). First, we assume and justify a model for the
spatial loss field. We then specify the functional relationship
between the random spatial loss fieldp(x) and path losses
below in (9). Finally, we show how this model results in
agreement with existing path loss models when considering
a single link, and how it models correlated shadowing losses
when considering multiple network links.

A. Spatial Loss Field

A statistical model for the spatial loss fieldp(x) is required
for the proposed joint path loss model. We first introduce
such a field model and then justify our choices. We assume
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that the underlying spatial loss fieldp(x) is an isotropic
wide-sense stationary Gaussian random field with zero mean
and exponentially-decaying spatial correlation. The covariance
betweenp(·) at arbitrary positionsxi andxj is given by,

E [p(xi)p(xj)] = Rp(xi,xj) = Rp(‖xj − xi‖)

=
σ2

X

δ
exp

(

−
‖xj − xi‖

δ

)

. (7)

where‖xj −xi‖ is the Euclidian distance betweenxi andxj ,
δ is a space constant andσX is the standard deviation of the
shadow fading. One realization of the random fieldp(x) is
shown in Fig. 5.

The use of a zero-mean Gaussian random field is justified
as follows.

1) A large-scale path loss equation such as (1) removes the
mean shadowing loss when parametersΠ0 and np are
estimated. ThusZi,j is zero-mean.

2) Shadowing losses are often modeled as Gaussian when
expressed in (dB). Our assumption of a Gaussian field
results in this desired model property, as discussed
below.

Two other assumptions about the statistical properties ofp(x)
are justified below.

1) Isotropy: The assumption that the covariance between
p(x1) andp(x2) is a function of‖x2 −x1‖ is valid when the
field p(x) is homogeneous and isotropic, which is suitable
for many applications [28], [29]. A particular environment
realization may have directional biases, but over an ensemble
of environments, we would not expect anisotropy. We note
that isotropic field models are the building blocks for more
sophisticated non-isotropic and non-stationary fields which
might be applied to future models for specific anisotropic
environments.

2) Exponential Decaying Covariance:Many mathemati-
cally valid spatial covariance functions for isotropic fields
are possible [30], [31]. We justify the use of the covariance
function in (7) because of its basis in a Poisson spatial random
process. Poisson processes are commonly used for modeling
the distribution of randomly arranged points in space, and
we suppose that attenuating obstructions can be modeled in
such a fashion as well. Certainly, particular environments(e.g.,
buildings in city blocks) have order which is not modeled in a
Poisson point process, but a general statistical model should be
neither specific to a particular type of environment nor overly
complicated for analysis.

Analysis of Poisson point processes leads to an exponen-
tially decaying covariance function. Assume that the attenuat-
ing field p(x) is defined as the number of obstructions within
a distanceR/2 of pointx. When the obstructions are modeled
as a 2-D Poisson process, the covariance,C(r), between two
points separated by a distancer can be written as [31],

C(r) =

{

σ2
[

1 − 2
π

[

S(r) + sin−1
(

r
R

)]]

r ≤ R
0 r ≥ R,

(8)

where S(r) = r
R

√

(

1 − r2

R2

)

and σ2 is the variance of the
attenuating fieldp(x), when r = 0. The behavior ofC(r)
in (8) is approximately equal to a function with exponential

decay inr for low r [31]. We propose, for simplicity, to use an
exponentially-decaying covariance function of (7) to describe
the spatial loss field.

link a

spatial field (x)p

link b

Fig. 5. A link pair in an underlying spatial loss fieldp(x).

B. Shadowing Losses

We propose to model the shadowing on linksXm,n, for
all pairs of nodes(m, n), as a function of the spatial loss
field p(x). The correlation between shadowing losses on many
links derives from the fact that all links’ shadowing values
are described as a function of the one spatial loss field.
Specifically, each link’s shadowing lossXm,n is a weighted
integral of the spatial loss field,

Xm,n ,
1

‖xn − xm‖1/2

∫

xn

xm

p(x)dx. (9)

In short, (9) estimates the shadowing on an arbitrary link asa
weighted line integral of the spatial loss field on which the link
impinges. The units ofXm,n are (dB); it is the shadowing loss
caused by the link impinging on the spatial loss fieldp(x).

A line integral along the path of the spatial loss field is an
intuitive approximation for a path’s loss, and has been used
in many previous site-specific path loss models. In [32], the
shadowing on an indoor-outdoor link at 5.85 GHz is modeled
in a “partition-based model” as a sum of the losses caused by
objects through which the straight line between the two nodes
crosses. Site maps and floor plans are used to calculate the
number of each kind of object for each link. The partition-
based model reduces the standard deviation of model error
to 2.6 dB, compared to a standard deviation of 8.0 dB using
a purely distance-based path loss model. In [33], shadowing
losses are also represented as a line integral for the purpose of
extrapolating signal strength measurements beyond the points
at which they have been measured. The model uses a land use
and terrain map to derive a piece-wise constant loss field (with
units of dB attenuation per unit distance). The total path loss
on a link is equal to the large scale path loss of (1) plus a line
integral of the loss field. The difference in our proposed model
is that the loss field is not a piece-wise constant function, and
is statistical, rather than determined by a map.
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The normalization in (9) is both necessary to explain
physical behavior of links and intuitively acceptable. Consider
an example of two different links: a short link of 5 m; and a
long link of 500 m. When an attenuating object (e.g., vehicle)
drives into the line of the short link, it attenuates the signal.
In relative terms, when the same vehicle drives into the line
of the long link, it typically attenuates the signal less strongly.
This is because the relative loss of diffracting or scattering
over or around the vehicle is less, typically, for the long link.
This is why the loss in a link cannot simply be a sum of
all attenuation caused in the line-of-sight path – it must be
a weighted integral that downweights loss for longer links.
The reason the weight must be proportional tod−1/2 is that
this function ofd makes the variance of shadowing constant
vs. d, which is required for the model to have Property I, as
described and proven below.

In summary, relevant site-specific models suggest that a
line integral is an appropriate model for shadowing caused by
major obstructions on a link. Weighting is suggested to agree
with the intuition that individual attenuating objects arenot as
important for links with longer path lengths. Next, we prove
that (9) agrees with known properties of shadowing loss on a
single link, and then show that it leads to positive covariances
between shadowing losses on multiple links.

1) Single-Link Properties:The proposed model agrees with
two important empirically-observed link shadowing properties:

Prop-I The variance of dB shadowing on a link
is approximately constant with the path length
[6],[7],[34].

Prop-II Shadow fading losses (in dB) are Gaussian.

The model in (9) can be seen to have Prop-II, sinceXm,n is
a scaled integral of a Gaussian field. The proposed model has
Prop-I when‖xj − xi‖ >> δ. We show this by considering
Var [Xa] for link a = (i, j),

Var [Xa] =
1

‖xj − xi‖

∫

xj

α=xi

∫

xj

β=xi

Rp(‖β − α‖)dαT dβ.

(10)
Using (7) as the model for spatial covariance, (10) is given by

Var [Xa] = σ2
X

[

1 +
δ

‖xj − xi‖
e−‖xj−xi‖/δ −

δ

‖xj − xi‖

]

,

(11)
and when‖xj − xi‖ >> δ,

Var [Xa] ≈ σ2
X . (12)

2) Joint Link Properties:Consider two linksa = (i, j) and
b = (k, l), as shown in Fig. 5, with shadowingXa and Xb,
respectively. The covariance ofXa andXb is,

Cov(Xa, Xb) =
σ2

X

δd
1/2
i,j d

1/2
k,l

∫

Ci,j

∫

Ck,l

e−
‖β−α‖

δ dαT dβ.

(13)
wheredi,j = ‖xi − xj‖ and,Cm,n is the line between points
xm andxn.

The solution to (13) is tedious to derive analytically. We use
numerical integration to compute the value ofρXa,Xb

. Matlab
calculation code for this purpose is available on the authors’
website [35].

C. Total Fading Model

Since shadowing lossXi,j is only one part of the total
fading lossZi,j = Xi,j + Yi,j , we must also consider the
model for non-shadowing lossesYi,j . We note that shadow
fading and non-shadow fading are caused by different physical
phenomenon, and thusXi,j and Yi,j can be considered as
independent. The variance of total fading, Var[Zi,j ], is thus,

σ2
dB , Var [Zi,j ] = Var [Xi,j + Yi,j ] = Var [Xi,j ]+Var [Yi,j ] .

(14)
Non-shadow fading is predominantly composed of narrow-
band or small-scale fading, which can be well-approximated
to have zero correlation over distances greater than a few
wavelengths. Since multi-hop networks typically have sensors
spaced more than a few wavelengths apart,{Yi,j}(i,j) are
considered independent across link pairs in this paper. If multi-
hop networks are designed with antennas spaced closer than a
few wavelengths, this independence assumption could easily
be replaced with a valid correlated small-scale fading model.

D. Analysis Using Proposed Model

In this section, we show how the model may be applied
in simulation or analysis. In short, the vector of all link
path losses{Zi,j}ij in a deployed network can be mod-
eled as a joint Gaussian random variables with zero mean
and a given covariance matrix. Specifically, definez =
[Zi1,j1 , . . . , ZiN ,jN

], where (i1, j1), . . . , (iN , jN ) is a list of
unique links in the deployed network andN is the total number
of links in the deployed network. According to the model, the
covariance matrix ofz is given by,

CZ(θ) = CX(θ) + INσ2
Y , (15)

whereIN is theN ×N identity matrix,σ2
Y is the variance of

non-shadow fading,i.e., σ2
Y = σ2

dB − σ2
X , and

CX(θ) = [[Cov(Xik,jk
, Xil,jl

)]]k,l , (16)

where Cov(Xik,jk
, Xil,jl

) is defined for arbitrary links in (13)
as a function of the parametersδ andσ2

X . Note that the total
fading values{Zi,j} are zero mean. Since we have assumed
{Zi,j} to be multi-variate Gaussian, the mean and covariance
matrix completely determine the distribution as a functionof
θ.

In simulation, Gaussian random vectors with an arbitrary
covariance matrix are generated by first generating i.i.d. Gaus-
sian vectors and multiplying them by the square root of the
covariance matrix. In analysis, Gaussian models are often con-
venient compared to more complicated distributional models.
Analysis in [27] used the given joint path loss model to find
an analytical lower bound for sensor localization variance. In
this paper, we present a mix of analysis and simulation results
in Section VI.

V. EXPERIMENTAL VALIDATION

A statistical joint path loss model must be validated by
measurements of the joint path loss across many deployed
networks. In this section, we present two measurement cam-
paigns, in a controlled indoor environment and in an un-
controlled outdoor environment, at 900 and 2400 MHz. We
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present the methods which we apply to the measurements
to validate the proposed model, quantify link correlations,
and estimate model parameters. The first part of this section
describes the measurement campaigns, including descriptions
of the environment, equipment, and measurement protocol.
In the second part of this section, we present the statistical
analysis of measurement data, including the estimation of the
model parameters, the space constantδ and the variance of
shadowingσ2

X .

A. Measurement Campaign Overview

For validation of the proposed joint path loss model, we
have carried out two measurement campaigns. Each measured
several realizations of wireless sensor networks, each network
with several nodes and many measured links. In each network,
the received signal strengths of all pair-wise links are measured
and the results saved. In addition, in each deployment, the
actual positions of all nodes are carefully determined and
recorded. We believe that the time complexity of carrying out
such measurements has in the past been a barrier to the study
of link shadowing correlations in multi-hop wireless networks.

The two measurement campaigns presented in this section
are carried out in different manners in order to achieve
particular purposes. These purposes are:

1) Controlled Measurement Campaign: Study many real-
izations of networks with an identical node geometry
in a controlled, repeatable experimental setup. Many
identical-geometry measurements allow us to experi-
mentally characterize correlation for particular geome-
tries of pairs of links.

2) Field Deployment Measurement Campaign: Demon-
strate shadowing correlations between links in natural,
uncontrolled environments.

Campaign (1.) measured fifteen network realizations, each
with sixteen nodes; campaign (2.) measured six network
realizations, each with 16-19 nodes. In total, signal strength
measurements on over 2700 different links were made and
recorded. Campaigns (1.) and (2.) operated in the 902-928
MHz, and 2400-2483 MHz, U.S. ISM bands, respectively. For
each link, measurements were repeated at 16 different center
frequencies within the band of operation and repeated over
time in order to average out narrow-band fading effects and
changes due to motion in the environments. The large set of
data allows us to validate the claim that shadowing losses are
correlated between links, and to determine the parameters of
the proposed joint path loss model.

B. Controlled Measurement Campaign

The first measurement campaign is designed to provide a
random environment but yet provide a repeatable experimental
procedure. In this campaign, we leave sixteen nodes deployed
in a grid geometry in a classroom and then, before each
new measurement experiment, randomly vary the positions
of obstructions within the room. Fifteen different random
obstruction arrangements are created, corresponding to fifteen
realizations of a random environment.

This controlled experimental setup allows us to test many
wireless networks with the identical node geometry, without
the difficulty of finding that many different places which would
allow nodes to be positioned in exactly the same geometry.
Further, the experiment could readily be repeated by other
researchers who want to measure link shadowing correlations,
without access to the identical building used in this campaign.

The controlled measurement campaign begins by deploying
nodes in an empty classroom in the Merrill Engineering
Building at the University of Utah, in a 4x4 square grid of
node locations with 4 ft (1.22 m) spacing between neighboring
nodes. Nodes are placed on the floor at each grid point. Within
this deployment area, we generate arandom environmentby
randomly placing 10 cardboard boxes wrapped with aluminum
foil. Foil-wrapped cardboard boxes represent metal obstacles
which might be present in office environments. A Matlab script
generates the random location of these boxes within the area
of deployment.

This first experiment uses Crossbow Mica2 wireless sensor
devices [36], which operate in the 900-928 MHz band. Sensors
are programmed with a TinyOS 1.x/NesC program to collect
a large number of pairwise received signal strength (RSS)
measurements. Sensors use a TDMA-based MAC protocol in
which each wireless sensor broadcasts during an assigned slot
to avoid interference with other sensors. Each broadcast con-
tains the RSS values the sensor has measured during the most
recent measurement period. One node overhears all broadcasts
and logs the pairwise measurements over time. Nodes serially
change frequency to 14 different center frequencies in the
frequency band (902-928 MHz). The nodes are synchronized
and programmed to frequency hop and measure RSS at each
frequency. NesC code can be downloaded from the authors
website [35].

In summary, in this measurement campaign, we randomly
change the environment while keeping a constant grid geome-
try of the network nodes. We will show that the large number
of networks with an identical geometry allow the study of
particular geometries of pairs of links to show particular cases
of how geometries affect link shadowing correlation.

C. Field Deployment Measurement Campaign

The field deployment measurement campaign is carried out
in two natural areas near Salt Lake City, Utah. These areas
are Red Butte Canyon, an arid canyon area in the foothills
of the Wasatch Mountain range (about 5,200 ft elevation),
and Albion Basin, a high mountain valley at the top of Little
Cottonwood Canyon, at an elevation of 10,000 ft. Measure-
ments were conducted in Summer, and at the low elevation, the
vegetation consists of dry grasses, sage brush, and scrub oak.
At the high elevations, the vegetation consists of many trees,
including maples, pines, and willows, with a dense ground
cover of flowering plants and shrubs. In both environments,
terrain varies rapidly, with variation in ground height from
5-20 ft within a deployment area. We measure two network
deployments in Red Butte Canyon and four deployments in
Albion Basin.

In this campaign, measurements are carried out using a
network of nineteen Crossbow TelosB wireless sensor devices.
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(a)

(b)

Fig. 6. Figure (a) shows one realization of the network deployment at Albion
Basin. The map constructed by such deployment of wireless sensors is shown
in (b).

These are 802.15.4-compliant radios which operate 2.4-2.48
GHz ISM band. Wireless sensors are kept at a height of 1 m
using stands. After deployment, the coordinate of each sensor
is carefully determined using a measuring tape and a compass.
Such positioning measurements are overdetermined so that
we can verify that sensor positions are determined accurately.
The network geometry is random, depending on where it is
possible to position the sensors within the varying terrainand
vegetation. The sizes of network deployments range from 400
m2 to 1800 m2. A map of one such network deployment is
shown in Fig. 6.

In this campaign, deployments are significantly larger in
area than in the indoor campaign. Due to the range and
the varying terrain and vegetation, we do not have fully
connected networks. In particular, one eavesdropping node
cannot reliably overhear all packet traffic from all nodes in
the network. In these deployments, we use a protocol which
forwards all measured data (over possibly multiple hops) toa

root node for data collection purposes.
We accomplish data collection using a protocol which builds

upon the TinyOS 2.0 “Collection Tree” protocol. Collection
Tree creates a tree from the root node to each sensor based
on a link quality indicator (LQI) metric [37]. First, deployed
TelosB nodes perform a number of RSS measurements at a
single frequency, and then average them. Next, all average
RSS values are routed to the root node via Collection Tree
and recorded on a laptop. Similar to the first campaign, nodes
change center frequencies within the band of operation, and
synchronize such that all nodes are transmitting and receiving
on the same center frequency at the same time.

When one network deployment is finished measuring across
all center frequencies and we have verified that full data has
been recorded, we pick up the network, move up or down
the canyon, redeploy in a new area, and re-determine sensor
positions. The geometry of each network is unique because
the area in which it is placed introduces unique limitationson
where nodes can be positioned.

In summary, the field deployment measurement campaign
allows the deployment of relatively large networks in random
natural environments, each with a different network geometry,
and each in a naturally determined positioning of obstructions.

D. Statistical Analysis

With the large quantity of measured data, we hope to
accomplish two main goals:

1) Estimatethe parameters of the model in the two mea-
surement campaigns, and

2) Verify that the shadowing on pairs of link are correlated
and that the proposed model agrees with the measured
correlations.

This subsection presents the analysis to accomplish both goals.
Model parameter estimation includes:

1) Large-scale path loss parameters: np and PT − Π0 of
(2), and

2) Correlated shadowing parameters, δ andσ2
X of (7).

Large-scale analysis determines the average path loss vs. dis-
tance; shadowing and other types of fading are what remain
after large-scale path loss is removed. Thus large-scale path
loss parameters are estimated first.

1) Estimation of Large-Scale Path Loss Parameters:For
each realization of network,m ∈ {1, . . . , M}, whereM is
the total number of network realizations in each measurement
campaign, the frequency-averaged RSS (in dB) between two
nodesi and j, P

(m)
i,j , is represented by a distance-dependent

path loss model (2), (3)

P
(m)
i,j = PTj

− Π0 − 10np log
di,j

∆0
− X

(m)
i,j − Y

(m)
i,j , (17)

whereX
(m)
i,j is the shadow fading,Y (m)

i,j is the non-shadow
fading, for themth realization of link(i, j), which has length
di,j . BecauseYi,j is an average of measurements across many
different frequencies, we argue that it may be approximated
as Gaussian (in dB), regardless of the underlying frequency-
selective fading mechanism (e.g., Rayleigh or Ricean). Shadow
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fading is typically modeled as Gaussian (in dB) [34], so we
expect the total fadingZ(m)

i,j = X
(m)
i,j + Y

(m)
i,j (in dB) to be

Gaussian.
The model of (17) is a linear model for received power as

a function of the log of the path length. Thus we use linear
regression to estimate the “point” and “slope” of the linear
model, which are(PT − Π0) andnp. In our analysis, we use
∆0 = 1 m. All nodes are set to the same transmit power and
we monitor for equal battery voltages, so we expect transmit
powerPT to be approximately constant across nodes.

2) Estimation of Correlated Shadowing Parameters:Once
the large scale path loss model parametersnp and(PT −Π0)
are determined, the next step is to estimate the parameters
of correlated shadowing model introduced in Section IV. We
define the parameter vector to be estimated asθ, whereθ =
[

δ,
σ2

X

σ2
dB

]T

.
From the residues of the large-scale path loss linear re-

gression, the total fading lossZ(m)
i,j for each link (i, j)

and the overall variance ofZ(m)
i,j , i.e., σ2

dB, are deter-

mined. Then, we definez(m) =
[

Z
(m)
i1,j1

, . . . , Z
(m)
iN ,jN

]

, where

(i1, j1), . . . , (iN , jN ) is a list of unique measured links in the
network andN is the total number of links in the deployed
network. According to the model,z(m) is zero-mean with
covariance matrix given by (15).

We use maximum likelihood estimation for estimating pa-
rameterθ. In other words, we findθMLE which maximizes
the conditional likelihood function given by (18),

f(z|θ) =
∏

m

f(z(m)|θ)

=
∏

m

1

(2π)N/2|CZ(θ)|1/2
exp

[

−
1

2
z
(m)T C−1

Z (θ)z(m)

]

,

(18)

where|·| denotes the determinant of the matrix and·T denotes
the transpose. Equivalently,θMLE can be found by finding the
maximum of the log likelihood functionl(z|θ) = log f(z|θ),

l(z|θ) =
∑

m

[

−k −
1

2
|CZ(θ)| −

1

2
z
(m)T C−1

Z (θ)z(m)

]

.

(19)
wherek = N

2 log(2π) is a constant.
For lack of an analytical solution to the maximization of

(19), we use a brute force approach. The log likelihoodl(z|θ)
is computed for a wide range ofθ, specifically,δ ∈ [0.1, 0.9]
in increments of 0.01, andσ2

X/σ2
dB ∈ [0.1, . . . , 0.9] in

increments of 0.01. The value ofθMLE for the controlled
measurement campaign is found to beθMLE = [0.30, 0.41]T ,
and for the field deployment measurement campaign,θMLE =
[0.57, 0.55]T .

3) Discussion:The first parameterδ of the proposed model
is the distance constant in the correlated random spatial loss
field p(x). It describes the separation at which the correlation
between two points in that spatial loss field have correlation
coefficient ofe−1. Loosely, we can describe it as a measure
of the ‘size’ of attenuating obstructions in the environment.
Comparing the controlled and field deployment measurement
campaigns, the average sizes of obstructions in the indoor

controlled campaign (boxes) are smaller than in the field de-
ployment campaign (terrain and vegetation). Thus, we would
expect the parameterδ to be greater in field deployment
campaign compared to the controlled campaign, and in fact,
the δ parameter in the field deployment campaign is almost
double.

The second parameterσ2
X/σ2

dB represents the relative con-
tribution of shadowing,Xi,j , to total fading,Zi,j . It is a
function of the type of environment. Indoor environments have
a higher angular spread of arriving multipath, due to more sig-
nificant reflections, compared to the outdoor environments,so
narrowband fading will be more significant. The analysis from
the measurement campaigns concludes that for the outdoor
field deployment measurement campaign, the contribution of
shadowing to total fading is55%, compared to41% in the
indoor controlled measurement campaign.

E. Verification

The repeated geometries in the controlled measurement
campaign allow us to look at specific geometries of links
in more detail. First, we use the measurements to verify
that the shadowing on many realizations of specificlink pair
geometriesdo in fact show statistically significant correlations.
Second, we show that the proposed correlated link shadowing
model does suggest correlation coefficients similar to those
estimated from measurements.

We refer to a link pair geometryas any pair of links
with the same coordinates of endpoints within a translation
and rotation. For example, consider link pair geometry #1
in Table I. Any two links which have a common endpoint,
extend in the same direction from that endpoint, and have one
link of length one unit and the other link of length two units,
have link pair geometry #1. Many such link pair geometries
are shown in Table I. Since we have fifteen realizations of
identical-geometry networks, and many pairs of links within
each network which have an identical link pair geometry, we
verify from a large set of realizations that shadowing values
are correlated. Let{Zai

, Zbi
} be a set of measured total fading

pairs, where(a1, b1), . . . , (aP , bP ) are the pairs of measured
links which have a particular link pair geometry. Then we
compute the experimental correlation coefficientρ̂ between
{Zai

} and{Zbi
}.

Using a statistical test for correlation [38, pp. 427-431],we
test between the two hypotheses:

H0 : Za andZb haveρ = 0,

H1 : Za andZb haveρ 6= 0.

In hypothesis testing,H0 is the null hypothesis. We assume
H0 is true, unless experimental evidence shows beyond a
reasonable doubt thatH0 is not true. Ifρ = 0, this does not
mean that every link pair geometry would measureρ̂ = 0.
The measurements are random, and in fact, the event{ρ̂ = 0}
has probability zero. Instead, the hypothesis test says that
when the measured|ρ̂| exceeds a particular threshold (which
is a function of the number of measurements and desired
probability of false alarm), it means thatH0 is very unlikely
to have been true. The threshold is determined by the desired
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Geometry Correlation ρ Geometry Correlation ρ
Meas- Prop. Meas- Prop.
ured Model ured Model

1 0.33*** 0.31 14 -0.04 0.09

2 0.21*** 0.25 15 0.12*** 0.18

3 0.23*** 0.35 16 0.08* 0.12

4 0.05 0.06 17 0.12*** 0.18

5 0.17*** 0.29 18 0.03 0.17

6 -0.05 0.01 19 0.21*** 0.22

7 -0.01 0.00 20 -0.02 0.13

8 -0.10** 0.01 21 0.23*** 0.26

9 -0.03 0.09 22 0.00 0.08

10 0.04* 0.15 23 0.08** 0.22

11 0.14*** 0.15 24 0.12 0.23

12 0.17*** 0.15 25 0.08 0.00

13 0.05 0.11 26 0.03 0.04
p-value, i.e., P [getting measuredρ|H0]

*** p < 0.005 ** p < 0.01 * p < 0.05

TABLE I
L INK GEOMETRY AND CORRELATION COEFFICIENTS(OBSERVED, PROPOSEDMODEL)

probability of false alarm,p, so that only in rare cases would
the test decideH1 if H0 was actually true. We report in Table
I the cases for which the test decidesH1 given three different
false alarm ratesp of 0.05, 0.01, and 0.005. In Table I tests
which are statistically significant at these three false alarm
rates are denoted with a *, **, and ***, respectively. There
are ten link geometries shown which have ap-value of less
than 0.005; it is extremely unlikely that fading on these pairs of
links is uncorrelated. We note that link pair geometries which
have greater “overlap” or “proximity” have higher correlation
in shadow fading. This is intuitive because a greater overlap
means a larger similarity in the environment through which
the two links pass.

The proposed model is shown to have positive shadowing
correlations between link pairs which do show significant
shadow fading correlations. Table I lists the correlation coef-
ficient computed from the correlated shadowing model (using
the parametersδ = 0.30 and σ2

X/σ2
dB = 0.41 estimated

from the controlled measurement campaign). The model-based
correlation valueρ is not equal to the experimental correlation
estimateρ̂, but is often very close, and generally is high when
the measured̂ρ is high. Measurements and model particularly
agree well when the number of measurements for the particular
link pair geometry is high; link pair geometry #1 is repeated
many (32) times in each measured network, many more times
than link pair geometry #5 (which is repeated 8 times in each
measured network).

Further, we expect that (1.) since each measurement is
random, theρ̂ computed from measurements is also random,
and (2.) that our proposed model does not explain all facets
of the environment which cause correlated shadowing. In

particular, we note that a link pair geometry #8 records a
statistically significant negative correlation coefficient, but that
our proposed model only predicts non-negative shadowing
correlations. Studying mechanisms which cause negative link
shadowing correlations is a topic of future research.

In summary, the results from the controlled measurement
experiment provide a large set of measurements from pairs
of links with identical relative geometries. These data show
that particular geometries of proximate link pairs show sta-
tistically significant correlation, in other words, it is highly
unlikely that link pairs of these geometries have uncorrelated
shadow fading. We can quantify these correlations and the
proposed method provides a statistical model to explain these
correlations.

VI. A PPLICATION OFJOINT MODEL

Correlated shadowing is important because it has a major
impact in mesh, ad hoc, and sensor networks. It is something
experienced in deployed multi-hop networks which is not,
in state-of-the-art statistical channel models, represented in
simulation or analysis of such networks. As discussed in
Section I-B, existing statistical and deterministic path loss
models have been applied in networking research. We show in
this section that the impact of correlated shadowing on end-
to-end performance statistics in deployed multi-hop networks
is significant. In this section, we give two examples of the
differences between performance results when comparing the
output of an i.i.d. shadowing model with the output of a
correlated shadowing model. In general, for arbitrary larger
deployments, we expect the effects of correlated shadowingto
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Measurement Campaign Controlled Field Deployment
Environment Indoor classroom Outdoor canyon
# Network Realizations 15 6
# Nodes 16 16-19
Freq. Band 900-928 MHz 2.4-2.48 GHz
Est. δ 0.30 0.57
Est. σ2

X/σ2

dB
0.41 0.55

TABLE II
SUMMARY OF TWO MEASUREMENT CAMPAIGNS

be even more significant, but we analyze two simple networks
in this section for clarity of explanation.

To simplify the analysis we assume,

1) Packets are received if and only if the received power is
greater than a receiver thresholdγ, and

2) No packets are lost due to interference.

These assumptions do not limit the results in this section.
In fact, performance in interference is also affected by joint
path losses between the interfering transmitter and the two
communicating nodes, and thus is also impacted by correlated
shadowing.

We denote thenormalized received power above the thresh-
old for a link (m, n), asβm,n,

βm,n =
Pm,n − γ

σdB
(20)

where γ is the threshold received power,Pm,n is received
power given in (2) andσdB is the standard deviation of
total fading in the network. Link(m, n), by assumption, is
connected if and only ifβm,n > 0. An important system
parameter is the expected value ofβm,n,

β̄m,n , E [βm,n] =
P̄ (dm,n) − γ

σdB
(21)

whereP̄ (dm,n) is given in (1). Intuitively,β̄m,n is the number
of standard deviations,σdB, of link margin we have in link
(m, n). If we design the multi-hop network with higher̄βm,n,
we will have a higher robustness to the actual fading in the
environment of deployment. For example, one could set the
inter-node distance to ensure thatβ̄m,n = 2, and then link
(m, n) would only be disconnected if total fading loss was
two standard deviations more than its mean.

A. A Three Node Multi-Hop Path

Consider the simple multi-hop path shown in Fig. 7(a),
which represents a part of a typical multi-hop network. In
this example,||xi −xj || = ||xj −xk||. For nodei to transmit
information to nodek, the message packet can take two routes.
One is the direct link(i, k) and the other is a two hop path
through a relay nodej, i.e., through link(i, j) and then through
link (j, k). If for our particular deployment, the link(i, k) fails
due to high shadowing, there is a chance that the message
can still arrive via links(i, j) and (j, k). This section shows
that this ‘link diversity’ method is not as robust as would be
predicted assuming independent link shadowing.

(a) i j k

(b)
i j k l

Fig. 7. Example multi-hop networks of (a) three and (b) four nodes.

We define two events relating to the connectedness of links,

A = {Link (i, k) is connected} = {βi,k > 0}

B = {Link (i, j) and link (j, k) are both connected}

= {βi,j > 0} ∩ {βj,k > 0}.

(22)

Then A ∪ B is the event that two nodesi and k can com-
municate, either directly or through an intermediate nodej.
The probability that nodei andk cannot communicate is the
probability of path failure,

1 − P [A ∪ B] = 1 − (P [A] + P [B]− P [A ∩ B]). (23)

From (21) and (1), the relationship betweenβ̄i,j , β̄j,k and
β̄i,k for the simple three-node network is,

β̄i,j = β̄j,k; and β̄i,k = β̄i,j − κ. (24)

whereκ =
10np log10 2

σdB
. According to the definition (22), the

probability of eventA is,

P [A] = P [{βi,k > 0}] = Q
(

−β̄i,k

)

= 1 − Q
(

β̄i,j − κ
)

(25)
where Q(·) is the complementary CDF of a standard Normal
random variable.

1) Case of i.i.d. Shadowing:Under the assumption that the
shadowing across links in a network is i.i.d., the probability
of eventB is

P [B] = P [{βi,j > 0} ∩ {βj,k > 0}] = (1−Q
(

β̄i,j

)

)2. (26)

From (26) and (23), the probability of path failure is

1 − P [A ∪ B] = Q
(

β̄i,j − κ
)

Q
(

β̄i,j

)

[2 − Q
(

β̄i,j

)

]. (27)

2) Case of Correlated Shadowing:From the correlation
values reported in Table I, we know that links(i, j) and
(j, k) of Fig. 7(a) are nearly uncorrelated. Thus, the probability
for eventB is approximately the same as in i.i.d. case. The
probabilityP [A ∩ B] for the case of correlated shadowing is
derived in the appendix. Combining the results from appendix,
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(23), (24) and (26), the probability of path failure when
shadowing on links is correlated is

1−P [A ∪ B] = Q
(

β̄i,j − κ
)

− (1−Q
(

β̄i,j

)

)2 + P [A∩ B] ,
(28)

where

P [A ∩ B] =

∫

βi,k>0



Q





−µ1
√

1 − ρ2
Xi,j ,Xi,k









2

e−
(βi,k−β̄i,j+κ)2

2 dβi,k,

and,µ1 = β̄i,j + (βi,k − β̄i,j + κ)ρXi,j ,Xi,k
.

B. A Four Node Multi-Hop Network

Next, consider the four node link shown in Fig. 7(b). For
this linear deployment we assume||xi − xj || = ||xj − xk|| =
||xk−xl||. For nodei to communicate with nodel, the message
packet can be routed in four different ways, as shown in
Fig. 7(b).

An analytical expression for the probability of path failure is
tedious, so instead we simulate the network shown in Fig. 7(b)
in both the cases of correlated and i.i.d. link shadowing. We
take 105 samples of the normalized received powers under
both correlated shadowing and i.i.d shadowing models. We
then determine from the result the probability of path failure,
i.e., that there existsno connected path from nodei to node
l.
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Fig. 8. The percentage increase inP [link failure] for correlated,
vs. i.i.d. shadowing, for 3 and 4 node multi-hop network examples, as a
function of β̄i,j .

C. Discussion

We compare the probability of path failure between node
i and nodek for both the cases of i.i.d. and correlated link
shadowing in Fig. 8. The analysis shows that when a multi-hop
network is designed for̄βi,j = 2, ∀(i, j), then the probability
of path failure is 120% greater in correlated shadowing as
compared to i.i.d. shadowing. Increasing the reliability of the

network by designing it for higher̄βi,j only increases the
disconnect between the two models. It is only when we design
the network for very unreliable links (e.g., β̄i,j = 0, for which
link (i, j) is connected half of the time) that the models have a
similar result. Path connectivity is much more likely underthe
i.i.d. model than under the realistic correlated link shadowing
model.

The four-node example shows that as paths become longer,
it becomes increasingly important to consider correlated link
shadowing. While the 3-node network had a 120% increase
in probability of path failure, the 4-node network showed a
200% increase in the same probability. While Fig. 8 show
the results up toβ̄i,j = 2.5, higher values correspond to
higher reliability links, and reliable networks will be designed
with even higher link margins. When networks are designed
for high reliability, the effects of ignoring link shadowing
correlations are dramatic.

VII. C ONCLUSION

We presented the need for statistical path loss models for
multi-hop (sensor, ad hoc, and mesh) networks which model
the correlation in shadow fading between proximate links. We
discussed why existing correlated shadowing models do not
apply to arbitrary geometries of links like those which exist
in multi-hop networks. We present a new statistical joint path
loss model that relates the shadow fading on different links
in a multi-hop network to the random underlying spatial loss
field. Two measurement campaigns are conducted to measure
path losses in indoor and outdoor environments and in two
different bands, 900 and 2400 MHz. The data sets demonstrate
statistically significant shadowing correlations among particu-
lar geometries of link pairs and show that correlated shadowing
can be measured in a repeatable experimental setup as well as
in natural outdoor environmental sensor network deployments.
Model parameters are given for these two campaigns. Finally,
we analyze path connectivity statistics in simple multi-hop
networks to show the importance of the consideration of
shadowing correlation in reliable network design. Using the
i.i.d. shadowing model, the probability of end-to-end path
failure is underestimated by a factor of two or more.

Future work will test other ensembles of deployments in
a wider variety of environments. We are working towards
implementations of the simulation model for standard net-
working simulation environments such asns-2. The effects
of correlated shadowing will have impact on higher layer
networking protocols and algorithms, and in interference and
multiple-access control, and future work will quantify these
effects.
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IX. A PPENDIX

Here we present the derivation of the probabilityP [A ∩ B]
for the case of correlated shadowing given in (28). From (20),
we note thatβi,j , βj,k and βi,k are joint Gaussian random
variables. Thus the conditional distributions,f(βi,j |βi,k = b)
and f(βj,k|βi,k = b), are also Gaussian. From the measure-
ment data the link pair(i, j) and(j, k) of Fig. 7 are observed
to have very small or no correlation between them (see link
pair geometry #4 in Table I). Thus the joint distribution,
f(βi,j , βj,k|βi,k = b), can be approximated as:

f(βi,j , βj,k|βi,k = b) ≈ f(βi,j |βi,k = b)f(βj,k|βi,k = b).
(29)

The joint distribution ofβi,j , βj,k andβi,k, f(βi,j , βj,k, βi,k),
can be simplified using (29) and can be written as:

f(βi,j , βj,k, βi,k) ≈ f(βi,j |βi,k = b)f(βj,k|βi,k = b)f(βi,k).
(30)

The probabilityP [A ∩ B] can be written in terms of joint
distribution as,

P [A∩ B] = P [{βi,j > 0} ∩ {βj,k > 0} ∩ {βi,k > 0}] ,

=

∫

{βi,j>0}

∫

{βj,k>0}

∫

{βi,k>0}

f(βi,j |βi,k)f(βj,k|βi,k)f(βi,k)dβi,jdβj,kdβi,k,

=

∫

βi,k>0

[Q(−µ1/ρ1)]
2
e−

(βi,k−β̄i,k)2

2 dβi,k, (31)

whereµ1 , E[{βi,j |βi,k}] = β̄i,j + (βi,k − β̄i,j + κ)ρXi,j ,Xi,k

andρ1 =
√

1 − ρ2
Xi,j ,Xi,k

.

Note that for the link pairs geometry considered,
ρXj,k,Xi,k

= ρXi,j ,Xi,k
which results in the square of Q(.)

in (31).


