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Abstract—Accurate representation of the physical layer is channel models used for multi-hop networks consider lirtk pa
required for analysis and simulation of multi-hop networking |osses to be independent. This is a simplifying assumption,
in sensor, ad hoc, and mesh networks. Radio links that are gjnca shadow fading is determined by environmental obstruc

geographically proximate often experience similar enviromental . . . . o
shadowing effects and thus have correlated shadowing. This tions, and geographically proximate links pass througfilam

paper presents and analyzes a non-site-specific statisticarop-  0bstructions. We hypothesize that links which pass through

agation model which accounts for the correlations that exis nearby parts of the environment have correlated shadowing
in shadow fading between links in multi-hop networks. We |osses. In this paper, we conduct extensive measurements to
describe two measurement campaigns to measure a large numbe verify this hypothesis.

of multi-hop networks in an ensemble of environments. The N it ifi th | del itical f i
measurements show statistically significant correlationsamong on-site-specinc _pa O_SS mQ els f”‘re cri '9?‘ or muft-
shadowing experienced on different links in the network, win hop network analysis and simulation. Site-specific modsés u
correlation coefficients up to 0.33. Finally, we analyze maithop  building floor plans or maps of the particular deploymentare
paths in three and four node networks using both correlated to predict path losses in the network, and have been critical
and independent shadowing models and show that independent for deployment planning for cellular systems and large WLAN
shadowing models can underestimate the probability of rous denl ts 131, [4]. H it ifi del t
failure by a factor of two or greater. eployments [3], [.]._ owever, site-specific models are no

valuable for determining the statistical performance ofieew
less network across the ensemble of possible deployments.
Non-site-specific path loss models, often referred to sagl
statistical path loss models, help system designers utathers
how network performance improves or degrades based on
. INTRODUCTION design decisions, in general environments.

Index Terms—Wireless sensor, ad hoc, mesh networks, shad-
owing, correlation, statistical channel model, wireless @anmuni-
cation, measurement, performance

Both simulation and analysis are critical to the developmen
of multi-hop networks, including mesh, ad-hoc, and sensf¢ Single-Link Path Loss Model
networks. However, current physical layer models do notiacc Radio propagation measurement and modeling for a single
rately represent radio channels in multi-hop wireless pete radio link has been reported extensively over the past cgntu
[1], [2]. As a result, there is a significant disconnect betwe [5], [6], [7], [8]. In general, when there is no site-specific
simulation and analysis, and real world deployment. Thereknowledge of the environment, the ensemble mean received
a significant interest in improving statistical models beyo power, P(d) (dBm), at a distancel from the transmitter, is
the current state-of-the-art, in order to decrease therdiffce [6], [7],
between simulation and analysis results and experimental P(d) = Pr — Iy — 10np10g10i7 (1)
deployment results. Ay

Path losses between pairs of nodes are critical in any simulghere Pr is the transmitted power in dBmy, is the path
tion or analysis of a multi-hop network. Path losses deteemiloss exponent, anil, is the loss experienced at a short ref-
the connectivity and performance of multi-hop wireless- negrence distancé\, from the transmitter antenna. This model
works. Path loss between an interferer and receiver detesniincorporates the free space path loss model whes 2, and
the received interference power, which determines whethsitends to practical (obstructed) multipath environmeriten
communication can exist during transmission of interfeeen n,, > 2.
In power control schemes, path losses between pairs of node9n a particular link, received power will vary from the
determine the energy consumption required for commumigatiensemble mean because faiding The measured received
between the nodes. In received signal strength (RSS)-bapetver for the link between transmittérand receiverj can
localization, path losses determine the errors in range apd written as,
position estimates of nodes. P, ; = P(di;) — Z:, (2)

This paper presents a non-site-specific statistical joath p

loss model between a set of static nodes. Current statisti%‘ere’divj is the distance between nodesnd j, and Z; ;

Is the fading loss. In general, shadow fading, narrowband or
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spaced closer than a wavelength do experience correlagesdstatistically independent. For example node 2 in Fig(ock 1
small-scale fading, and a large body of research has exploreay be connected while node 1 is not.
those correlations [9]. Recent research, including Hekmat and Van Mieghem [11]
This paper models the correlations among shadow fadiagd Bettstetter and Hartmann [10], has studied connectivit
on the various links in a network. Shadow fading, also calleatl hoc networks using the i.i.d. log-normal shadowing model
medium-scale fading [6], describes the loss experiencéideas Their analyses indicate that for a constant level of coriviggt
signal passes through or diffracts around major obstrostio node deployment density can be reduced when the variance
its path from the transmitter to the receiver. These obstms of the shadowing is increased. This increase in connegiwit
include walls and furniture indoors, and buildings, tetrrand largely a result of the model’s independence assumptiaoceSi
trees outdoors. losses in links in the same direction from a transmitter are
We hypothesize that shadowing losses on different linksdependent, if one link is disconnected because of hig los
are correlated when those links are geographically praotdmaanother node in the same direction is likely to be connected.
Since shadowing is central to the analysis in this paper, weln reality, if an obstacle in one direction from a transnitte
separate total fading loss; ; into two components, strongly attenuates its signal, any receiver behind théackes
g =X Y 3) is Iikely to e>_<per_ience high fading loss. For e_xam_p!e,_if the
“J “J b7 environment in Figure 2 causes severe shadowing, it isyliiel
whereX; ; represents the shadow fading loss, afd repre- cause additional path loss on both linkandb. In contrast, the

sents all other (non-shadowing) losses. i.i.d. log-normal shadowing model assumes that the shadpwi
across linkse andb will be independent and thus exaggerate
B. Application in Multi-hop Networking Research the connectivity. We quantify this argument in Section VI.
In the multi-hop networking simulation and analysis litera
ture, two path loss models are used: link a
1) The circular coverage mode¥; ; = 0 for all links, and 1@. 4
thus the coverage area is a perfect circle, as shown in
Figure 1(a). : link b
2) The i.i.d. log-normal shadowing model: For all links environment

(i,j)_, ran_dom V‘_ar'e_‘blegi-,j (m dB) a_re mdependent Fig. 2.  Example of factor in shadowing loss correlation. &ew® linka
and identically distributed Gaussian with zero mean argd link b cross the same environment, their shadowing losses tene to b

variances%, as shown in Figure 1(c). correlated.

C. Correlation Limits Link Diversity
3 % Diversity methods are common means to achieve reliability
intlep. random 1N UNreliable channels. Multi-hop networking serves as a
nnectivity network-layer diversity scheme by allowing two nodes to be

(c) 4 connected by any one of several multi-hop paths. All divgrsi

schemes are limited by channel correlations. Correlatiawe

been studied and shown to limit diversity gains in time, gpac
Fig. 1. Graphical depiction of (a) circular coverage modeld (c) coverage Y9 P

in the i.i.d. log-normal shadowing model, compared to thenemn depiction frequer_my and multipath diversity SCher_neS (el [6]1_ [713]1
of (b) in which coverage area is a random shape. In (a) andn@iges are  Yet little research has addressed fading correlations gmon

connected if and only if they are within the gray area, whil€d), nodes are |inks in sensor, mesh, and ad hoc networks. This paper pEesen
connected with probability proportional to the shade (dar& more probable). . . . . . . .
an investigation into quantifying the correlation in thedbw

We argue that the two models are at opposite extremes, dAding experienced on the different links of a multi-hop
both problematic. Note that ‘realistic coverage’ is comiyon "€Work, as well as a statistical joint path loss model which
depicted pictorially as a coverage area with random ranfRPresents correlations in link shadowing. This invesiige
as a function of angle [10], [11], as in Figure 1(b), anf based on extensive experimental measurements, usihg ful

neither fading model produces such a random shape. It is elldly measurements of an ensemble of deployed networks
to recognize that the deterministic, circular coverageasareto estimate and test for statistical correlations. Further

are unrealistic for wireless communications links. Howeveduantify the effect that such correlation has on source-to-
circular coverage has been a common assumption in ad flestination path statlstlcg._ We show for_ a simple three node
and sensor network research and has been used to gendfa¥ork that the probability of path failure can be double
foundational research results. It has been shown that (e ™oré what would be predicted by the i.i.d. log-normal
majority of papers which require radio propagation modeffiadowing model.
in their simulation use the circular coverage model [12].

In comparison, the i.i.d. shadowing model eliminates the Il. RELATED RESEARCH
concept of coverage area. Since the model has no spatial menshadow fading correlations have been measured and shown
ory, even two nearly overlapping links would be represented be significant in other wireless networks. For example:




1) In digital broadcasting, links between multiple broastcarole in determing the realistic performance of a network.
antennas to a single receiver have correlated shadowifig date, there have been two relevant statistical models for
which affects the coverage area and interference charabhadowing correlations:

teristics [14]. S 1) The model of Gudmundson (1991), which predicts tem-
2) In indoor WLANSs correlated shadowing is significant  poral shadowing correlations for the MS-BS path loss

(with correlation coefficients as high as 0.95), and as the MS moves in a cellular network [19].

strongly impacts system performance [15]. 2) The model of Wang, Tameh and Nix (2006), an exten-
3) In cellular radio, correlation on links between a mobile sion of Gudmundson’s model, which predicts temporal

station (MS) and multiple base stations (BSs) signif-  shadowing correlations on a single link when there is
icantly affects mobile hand-off probabilites and co- mobility on both ends of the link [20].

channel interference ratios [16], [17], [18]. In this section, we show that neither model can be applied to

In cellular radio, the model of Gudmundson [19] is used tgodel shadowing correlation between arbitrary pairs dédin
predict shadowing correlation for the link between a mobilgy multi-hop networks.

station MS to a BS over time as the MS moves. In Section “I, Gudmundson’s model has been W|de|y app“ed to predict

we address the inability of this model to be directly applieghadowing correlations in cellular networks where a mobile
to model the correlations among links in multi-hop networkseceiver (with a low antenna) communicates with a baseostati
Wang, Tameh, and Nix [20] extended Gudmundson’s modglith a high antenna). The model predicts the correlation
to the case of simultaneous mobility of both ends of the linlg shadowing as the mobile receiver changes position with
for use in MANETSs, and relate a sun-of-sinusoids method faspect to the base station as shown in Fig. 3. For a mobile
generate realizations of the shadowing process in sinoalati receiver going from positiow; to x;, the shadowing correla-
Both works use “correlated shadowing” to refer to the corrgpn R (xi,x;) is given as, '

lation of path loss in &ingle linkover time, while the present '

work studies the correlation afany disparate linkat a single ~ Rx (xi,x;) = oxe %/° whered;; = ||x; —x;[, (4)
time.

In [21], RSS measurements in a single network were used%r(:)ﬂr?gls a distance constant, ang, is the variance of shadow

quantify fading correlations between two links with a commmo
node. Those results could not be complete because a single BASE STATION
measured network does not provide information about an
ensemble of network deployments. The present study uses the
data from two campaigns each consisting of multiple measure
networks to examine many pairs of links with the identical
geometry, both with and without a common node.

Finally, we note that the performance of other RSS-based
applications in wireless networks depend on accurate ittt
loss models. Cooperative localization in sensor and ad hoc
networks uses signal strength to estimate node coordinates
The error performance of such estimators is dependent on the
statistical model for path losses in the network. All previ-
ous analytical studies of location estimation bounds assum
independence of links [22], [23], [24], [25], [26], but new
work shows that bounds change when correlated shadowing is
taken into account [2_7]‘ Further, because mU|t'F_’|e “nk_ﬂ WIFig. 3. Example of the motion of mobile receiver and basdastaosition
measure the shadowing caused by an attenuating object, itheudmundson’s model
location of an attenuating object can be estimated. We have
shown that tomographic imaging can be used to estimate andBy design, the Gudmundson model does not apply to pairs
track the location of a moving RF attenuator such as a persailinks that do not have a common end point. For example,
[27]. Accurate RF tomographic imaging requires a non-siteonsider a four node ad-hoc network as shown in Fig. 4. The
specific statistical model which relates the attenuatidd fie shadow fading on links and f have no specified covariance in
the shadowing losses measured on links. This paper preséhesmodel. In typical multi-hop networks with large numbers
such a model, and more critically, provides experimentaf nodes, such link pairs occur very commonly — most pairs
measurements which justify such a model. of links do not share a common node.

I1l. M OTIVATION A. Adaptation to Mobile-to-Mobile Link

The present effort to model the shadowing correlation is Wang, Tameh, and Nix adapted the Gudmundson model
motivated by the fact that no existing correlated link shade a more generalized setting of one link with two mobile
owing model is valid for arbitrary pairs of links in ad-hocnodes [20]. Letd; and d, be the distance moved the two
networks. Yet shadowing correlation plays a very importaniobile nodes between two time instants. According to [20],



2 The determinant of this covariance matrix is,
Det(C) = 0% (1 — e~ 2d13/D _ g=2d24/ D)),

When di3 and do4 are low, DetC') < 0. A negative deter-
a minant shows that”' is not positive semi-definite and thus
cannot be a valid covariance matrix. Thus the Gudmundson
d covariance model cannot be directly applied to arbitratg se
c of links in a network.

C. Summary

1 € 4 In this section, we have explored application of the shadow-
ing covariance models proposed in [19] and [20] to arbitrary
Fig. 4. A simple four node ad-hoc network its six pairwiseksin sets of links in wireless networks. We have shown that neithe
can be applied directly to any general set of links. The
) ] Gudmundson model does not consider link pairs that do not
the correlation between the shadow fading between the tyg,e 5 common endpoint. The adaptation proposed in [20]
times is modified from (4) to beRx (di,d;) = 0%e™ "7 . \yhen both the ends of a link are mobile cannot be applied
However, the model is based on the assumption that tgectly to ad-hoc networks as there would be an ambiguity
distances between the two nodes is large compared dvithjn which two distances to use in the covariance function.
and d,. The model cannot be directly applied to model thgye proved by counterexample that a naive application of the
covariance of two arbitrary links. We might consider applyi Gudmundson model to model joint path losses in a multi-link
[20] to two links if those two links share very nearby enchetwork does not guarantee a valid covariance matrix. These
points. For example, in Fig. 4, ifi;3 << di2 anddis << arguments necessitate the development of new statistatal p
d12, one might use [20] to model the correlation between thgss model which jointly models multiple links in a mesh,
shadowing on links: andd. sensor, or ad hoc network.
In general, very few link pairs in ad-hoc networks would
meet the above criteria. For exampledif;, doy, di3, d14 are
of the same order of magnitude ds, andds4, then there is ] ) o
an ambiguity for which two distances should be used in the IN this section, we propose a statistical joint path loss @hod

model of [20]. There seems to be no universally appropriaff%r arbitrary sets of links in a wireless network. As desedb

way to choose the two distances from the four available. N Section lll, existing path loss models are not adequate to
model correlations which exist in shadow fading betweenspai

of links in a network. We provide such a model in this section
B. Adaptation to Multiple Links by connecting path losses in a network to a random shadowing

In this section, we introduce what would be the dire@nVironment of deployment. By connecting path losses to an
application of the Gudmundson (1991) model to an arbitrag:v'ronmem' we preserve the physical relationships which
X
t

IV. JOINT PATH LOSSMODEL

set of links in a multi-hop network and show that it doe ist between links in real-world deployments. By making

not provide a valid statistical joint path loss model. Fimge e environment random, We preserve th_e non-site-specific
define a direct, naive application of (4) to a general mirit- nature of the model and allow it to be used in general-purpose

network. For two links: = (i, j) andb = (k, 1), the covariance Simulation and analysis. _ _
between the shadowing on linksand b would be given by We start with the assumption that shadowing losses experi-
" enced on the links in a network are a result ofuarderlying

0, if i #£ki#l,j#kandj#1 spatial loss fieldp(x). A spatial loss field quantifies the
a}e*dik/D, if j=1 shadowing loss experienced by a link which passes through
(5) it —shadowing on a link increases when its path crosses areas
whered;;, is the distance between the non-common end poirgshigh lossp(x). First, we assume and justify a model for the
of the two linksa andb. spatial loss field. We then specify the functional relatfops
Next, we prove by contradiction that such a model doefs between the random spatial loss fieiix) and path losses
guarantee a positive semi-definite covariance matrix and ttbelow in (9). Finally, we show how this model results in
is not a valid statistical model. Consider the four nodes argreement with existing path loss models when considering
the six links between them depicted in Fig. 4. For simplicitya single link, and how it models correlated shadowing losses
consider a subset of the links, the three linksl, ande. The when considering multiple network links.
covariance matrix for the shadow fading experienced orethes

C(a,b) = {

three links is given by (5) as, A. Spatial Loss Field
1 0 e~d2a/D A statistical model for the spatial loss fieldx) is required
C=o% 0 1 e~ s/D (6) for the proposed joint path loss model. We first introduce

¢=d2a/D  o—dis/D 1 such a field model and then justify our choices. We assume



that the underlying spatial loss field(x) is an isotropic decay in for low r [31]. We propose, for simplicity, to use an
wide-sense stationary Gaussian random field with zero meatponentially-decaying covariance function of (7) to dise
and exponentially-decaying spatial correlation. The davee the spatial loss field.

betweenp(-) at arbitrary positions; andx; is given by,

Elp(x)p(x))] = Bplxix;) = Ry(llx; — ) C/ ﬁ/}\}ﬁ; s
B . (sl g N\ spatial field pe9) =

where||x; — x;|| is the Euclidian distance betweean andx;,
0 is a space constant and, is the standard deviation of the
shadow fading. One realization of the random figlck) is
shown in Fig. 5.

The use of a zero-mean Gaussian random field is justified
as follows.

1) A large-scale path loss equation such as (1) removes the |
mean shadowing loss when parametdgsand n,, are
estimated. Thug; ; is zero-mean.

2) Shadowing losses are often modeled as Gaussian when
expressed in (dB). Our assumption of a Gaussian fiellg
results in this desired model property, as discussed
below.

Two other assumptions about the statistical properties ©f
are justified below. B. Shadowing Losses

1) Isotropy: The assumption that the covariance betweenye propose to model the shadowing on links,_,,, for
p(x1) andp(xz) is a function of|[x; —x; || is valid when the g pairs of nodes(m,n), as a function of the spatial loss
field p(x) is homogeneous and isotropic, which is suitablge|q ;(x). The correlation between shadowing losses on many
for many applications [28], [29]. A particular environmenfinks derives from the fact that all links' shadowing values
realization may have directional biases, but over an enempre described as a function of the one spatial loss field.
of environments, we would not expect anisotropy. We not§secifically, each link's shadowing 10s,, ., is a weighted
that isotropic field models are the building blocks for morgyegral of the spatial loss field, ’
sophisticated non-isotropic and non-stationary fieldsctwhi
might be applied to future models for specific anisotropic X, A 1 /x"p(x)dx_ 9)
environments. T = x|V

ﬁ) Exlr_J((j)nent[{gIIDecay!ng C(}van?ncerany_ mtathgmgt: In short, (9) estimates the shadowing on an arbitrary link as
cally vaild spatial covariance Iunctions 1or 1sotropic fie weighted line integral of the spatial loss field on which timé |

are possjble [30], [31]. W.e justify _the use of the Cc.’varian(iﬁ‘lpinges. The units oX,, ,, are (dB); it is the shadowing loss
function in (7) because of its basis in a Poisson spatialaand faused by the link impinéing on the spatial loss filet).
n

process. Poisson processes are commonly used for model H line integral along the path of the spatial loss field is an

the distribution of randomly arranged points in space, anlq - S )
: . tuitive approximation for a path’s loss, and has been used
we suppose that attenuating obstructions can be modeled in

h a fashi Il Certainl ficul . In"many previous site-specific path loss models. In [32], the
such atashion as well. Lertainly, particurar enwronméeug,_ shadowing on an indoor-outdoor link at 5.85 GHz is modeled
buildings in city blocks) have order which is not modeled in

) : - fh a “partition-based model” as a sum of the losses caused b
Poisson point process, but a general statistical modeldoau P y

. o . : objects through which the straight line between the two sode
neither specific to a particular type of environment nor tver :
. . crosses. Site maps and floor plans are used to calculate the
complicated for analysis.

. . . number of each kind of object for each link. The partition-
Analysis of Poisson point processes leads to an expongn.

tially decaving covariance function. Assume that the sed model reduces the standard deviation of model error
1aflly ying covar unction. u attEn to 2.6 dB, compared to a standard deviation of 8.0 dB using

ing field p(x) is defined as the number of obstructions within : .
: . ) purely distance-based path loss model. In [33], shadowing
a distanceR /2 of pointx. When the obstructions are modele I
; . osses are also represented as a line integral for the prigios
as a 2-D Poisson process, the covariaiitg;), between two : ; :
oints separated by a distancean be written as [31] extrapolating signal strength measurements beyond thespoi
pol P y ! wii ' at which they have been measured. The model uses a land use
Clr) = o [1—=2[S(r) +sin" (%)]] r<R ®) and terrain map to derive a piece-wise constant loss fieldh (wi
10 r> R, units of dB attenuation per unit distance). The total pa#slo
- on a link is equal to the large scale path loss of (1) plus a line
where S(r) = 41/(1 — %) and¢? is the variance of the integral of the loss field. The difference in our proposed etod
attenuating fieldp(x), whenr = 0. The behavior ofC(r) is that the loss field is not a piece-wise constant functiod, a
in (8) is approximately equal to a function with exponentiak statistical, rather than determined by a map.

. 5. Alink pair in an underlying spatial loss fieje(x).

m



The normalization in (9) is both necessary to explai@. Total Fading Model

physical behavior of links and intuitively acceptable. Gioler Since shadowing loss(; ; is only one part of the total
an example of two different links: a short link of 5 m; and fading lossZ;; = Xi; + Y, we must also consider the
long link of 500 m. When an attenuating objeetd, vehicle) model for non-shadowing |dssé$;7j_ We note that shadow
drives into the line of the short link, it attenuates the 8ign fading and non-shadow fading are caused by different paysic
In relative terms, when the same vehicle drives into the lifghenomenon, and thux, ; and Y;; can be considered as

of the long link, it typically attenuates the signal lesoegly. jngependent. The variance of total fading, Vai ;1. is thus,
This is because the relative loss of diffracting or scattgri

over or around the vehicle is less, typically, for the lomkli “ap = Var [Zi;] = Var [Xi ; +Y; ;] = Var [X; ;] + Var[Y; ;]

This is why the loss in a link cannot simply be a sum of o _ (14)

all attenuation caused in the line-of-sight path — it must g¥on-shadow fading is predominantly composed of narrow-
a weighted integral that downweights loss for longer link®and or small-scale fading, which can be well-approximated
The reason the weight must be proportionalitol/? is that 0 have zero qorrela‘uon over distances greater than a few
this function ofd makes the variance of shadowing constaffavelengths. Since multi-hop networks typically have sess

vs. d, which is required for the model to have Property |, agaced more than a few wavelengths apdif,;}; ; are
described and proven below. considered independent across link pairs in this paperulfim

In summary, relevant site-specific models suggest thathgp networks are dgsigned with antennas spaged closer thap a
line integral is an appropriate model for shadowing caused EW wavelengths, this independence assumption couldyeasil
major obstructions on a link. Weighting is suggested to agr@€ replaced with a valid correlated small-scale fading rhode
with the intuition that individual attenuating objects avet as ) )
important for links with longer path lengths. Next, we prov®- Analysis Using Proposed Model
that (9) agrees with known properties of shadowing loss on aln this section, we show how the model may be applied
single link, and then show that it leads to positive covaz@n in simulation or analysis. In short, the vector of all link
between shadowing losses on multiple links. path losses{Z; ;};; in a deployed network can be mod-

1) Single-Link PropertiesThe proposed model agrees witteled as a joint Gaussian random variables with zero mean
two important empirically-observed link shadowing prdps: and a given covariance matrix. Specifically, define =

Prop-I The variance of dB shadowing on a link  [Ziijis- - Zix,jn ], Where (i, ji),..., (in, jn) is a list of
is approximately constant with the path length  unique links in the deployed network afdis the total number
[6],[7].[34]. of links in the deployed network. According to the model, the
Prop-1l Shadow fading losses (in dB) are Gaussian. ~ covariance matrix of is given by,
The model in (9) can be seen to have Prop-Il, siigg ,, is Cz(6) = Cx(8) + I[No'%/’ (15)

a scaled integral of a Gaussian field. The proposed model haﬁc, . ) _ o, _
Prop-l when||x; — x;| >> . We show this by considering v erely is the N x N identity matrix,oy- is the variance of
Var [ X,] for "nkj a :1(1- h non-shadow fading,e., 03 = %5 — 0%, and

Var | X 1 Xj *i R datd Cx(0) = [[COV(XikyjkvXilvjl)]]k,l ’ (16)
ariXa] = =] /a . /@_xi p(I1B = al)dotdB. | oo CouX, 5, Xap) is defined for arbitrary links in (13)

_ _ _ ~ (10)  as a function of the parametefsand % . Note that the total
Using (7) as the model for spatial covariance, (10) is given Bading values{Z; ;} are zero mean. Since we have assumed
5 {Z; ;} to be multi-variate Gaussian, the mean and covariance

0 T
Var [X,] = 0% {1 + e mill/o matrix completely determine the distribution as a functidn

lIx; — x| lx; — x| |’

(11) 6.
and when||x; — x;|| >> 4, In simulation, Gaussian random vectors with an arbitrary
) covariance matrix are generated by first generating i.iai<s
Var [X,] = ok (12)  sian vectors and multiplying them by the square root of the

2) Joint Link Properties:Consider two links: = (i, ) and covariance matrix. In analysis, Gaussian models are otian ¢
b = (k,1), as shown in FiQ. 5, with shadowing aind X, venient compared to more complicated distributional meadel
i : ¢ " Analysis in [27] used the given joint path loss model to find

respectively. The covariance &f, and X, is, ) oS h
an analytical lower bound for sensor localization variarine

Cov(X,, X;) = 1C/f§< o / / e—Lf‘”daTdﬁ' _this paper, we present a mix of analysis and simulation tesul
6di,j ko Ci; JCuy in Section V1.
(13)
whered; ; = ||x; — x,|| and,C,,,.,, is the line between points V. EXPERIMENTAL VALIDATION
X, andx,,. A statistical joint path loss model must be validated by

The solution to (13) is tedious to derive analytically. We usmeasurements of the joint path loss across many deployed
numerical integration to compute the valueaf, x,. Matlab networks. In this section, we present two measurement cam-
calculation code for this purpose is available on the athopaigns, in a controlled indoor environment and in an un-
website [35]. controlled outdoor environment, at 900 and 2400 MHz. We



present the methods which we apply to the measurementdhis controlled experimental setup allows us to test many
to validate the proposed model, quantify link correlationsvireless networks with the identical node geometry, withou
and estimate model parameters. The first part of this sectidwe difficulty of finding that many different places which wdu
describes the measurement campaigns, including descrptiallow nodes to be positioned in exactly the same geometry.
of the environment, equipment, and measurement protodélirther, the experiment could readily be repeated by other
In the second part of this section, we present the statisticasearchers who want to measure link shadowing correlgtion
analysis of measurement data, including the estimatiomef twithout access to the identical building used in this campai
model parameters, the space constamnd the variance of  The controlled measurement campaign begins by deploying
shadowingo?; . nodes in an empty classroom in the Merrill Engineering
Building at the University of Utah, in a 4x4 square grid of
node locations with 4 ft (1.22 m) spacing between neighlgprin
nodes. Nodes are placed on the floor at each grid point. Within
For validation of the proposed joint path loss model, Weis deployment area, we generateaadom environmeniy
have carried out two measurement campaigns. Each measigfiomly placing 10 cardboard boxes wrapped with aluminum
several realizations of wireless sensor networks, eashankt fojl. Foil-wrapped cardboard boxes represent metal olestac
with several nodes and many measured links. In each netwagich might be present in office environments. A Matlab scrip
the received signal strengths of all pair-wise links aresneed generates the random location of these boxes within the area
and the results saved. In addition, in each deployment, thedeployment.
actual positions of all nodes are carefully determined andThis first experiment uses Crossbow Mica2 wireless sensor
recorded. We believe that the time complexity of carrying oevices [36], which operate in the 900-928 MHz band. Sensors
such measurements has in the past been a barrier to the stu@yprogrammed with a TinyOS 1.x/NesC program to collect
of link shadowing correlations in multi-hop wireless netk®@ 3 |arge number of pairwise received signal strength (RSS)
The two measurement campaigns presented in this sectifBasurements. Sensors use a TDMA-based MAC protocol in
are carried out in different manners in order to achievghich each wireless sensor broadcasts during an assigoted sl
particular purposes. These purposes are: to avoid interference with other sensors. Each broadcast co
1) Controlled Measurement Campaig8tudy many real- tains the RSS values the sensor has measured during the most
izations of networks with an identical node geometrgecent measurement period. One node overhears all braadcas
in a controlled, repeatable experimental setup. Mamnd logs the pairwise measurements over time. Nodes geriall
identical-geometry measurements allow us to expegdhange frequency to 14 different center frequencies in the
mentally characterize correlation for particular geomdrequency band (902-928 MHz). The nodes are synchronized
tries of pairs of links. and programmed to frequency hop and measure RSS at each
2) Field Deployment Measurement CampaigDemon- frequency. NesC code can be downloaded from the authors
strate shadowing correlations between links in naturavebsite [35].
uncontrolled environments. In summary, in this measurement campaign, we randomly

Campaign (1.) measured fifteen network realizations, eaghange the environment while keeping a constant grid geome-
with sixteen nodes; campaign (2.) measured six netwoliy of the netwc_)rk nod_es. We will show that the large number
realizations, each with 16-19 nodes. In total, signal giien Of networks with an identical geometry allow the study of
measurements on over 2700 different links were made ap@ticular geometries of pairs of links to show particulases
recorded. Campaigns (1.) and (2.) operated in the 902-g%ighow geometries affect link shadowing correlation.

MHz, and 2400-2483 MHz, U.S. ISM bands, respectively. For . .
each link, measurements were repeated at 16 differentrcente Field Deployment Measurement Campaign

frequencies within the band of operation and repeated overThe field deployment measurement campaign is carried out
time in order to average out narrow-band fading effects affti two natural areas near Salt Lake City, Utah. These areas
changes due to motion in the environments. The large seta¢ Red Butte Canyon, an arid canyon area in the foothills
data allows us to validate the claim that shadowing losses & the Wasatch Mountain range (about 5,200 ft elevation),

correlated between links, and to determine the paramefers2gd Albion Basin, a high mountain valley at the top of Little
the proposed joint path loss model. Cottonwood Canyon, at an elevation of 10,000 ft. Measure-

ments were conducted in Summer, and at the low elevation, the
vegetation consists of dry grasses, sage brush, and sckub oa
At the high elevations, the vegetation consists of manystree
The first measurement campaign is designed to providenegluding maples, pines, and willows, with a dense ground
random environment but yet provide a repeatable expergtherdover of flowering plants and shrubs. In both environments,
procedure. In this campaign, we leave sixteen nodes degployerrain varies rapidly, with variation in ground height rino
in a grid geometry in a classroom and then, before eaBk0 ft within a deployment area. We measure two network
new measurement experiment, randomly vary the positiodsployments in Red Butte Canyon and four deployments in
of obstructions within the room. Fifteen different randomlbion Basin.
obstruction arrangements are created, correspondingéerfif  In this campaign, measurements are carried out using a
realizations of a random environment. network of nineteen Crossbow TelosB wireless sensor dgvice

A. Measurement Campaign Overview

B. Controlled Measurement Campaign



root node for data collection purposes.

We accomplish data collection using a protocol which builds
upon the TinyOS 2.0 “Collection Tree” protocol. Collection
Tree creates a tree from the root node to each sensor based
on a link quality indicator (LQI) metric [37]. First, depley
TelosB nodes perform a number of RSS measurements at a
single frequency, and then average them. Next, all average
RSS values are routed to the root node via Collection Tree
and recorded on a laptop. Similar to the first campaign, nodes
change center frequencies within the band of operation, and
synchronize such that all nodes are transmitting and rexgiv
on the same center frequency at the same time.

When one network deployment is finished measuring across
all center frequencies and we have verified that full data has
been recorded, we pick up the network, move up or down
the canyon, redeploy in a new area, and re-determine sensor
‘ ‘ . . positions. The geometry of each network is unique because
BE rag g eg the area in which it is placed introduces unique limitations

: where nodes can be positioned.
o ; : ol : In summary, the field deployment measurement campaign
: ' allows the deployment of relatively large networks in ramdo
_ : natural environments, each with a different network geoynet
;o8 3 E E and each in a naturally determined positioning of obstounsti

-9 g 816 '145 N D. Statistical Analysis
‘ : .%3 With the large quantity of measured data, we hope to

o1 .1é : accomplish two main goals:

o9 E : 1) Estimatethe parameters of the model in the two mea-
: : 5 5 surement campaigns, and
2) Verify that the shadowing on pairs of link are correlated
and that the proposed model agrees with the measured
i i correlations.
-15 -10 .—5 0 This subsection presents the analysis to accomplish batls.go
(b) X Coordinate (m) Model parameter estimation includes:

1) Large-scale path loss parameters, and Py — Il of

Y Coordinate (m)

|
(=]

: : *18 :

|
n

Fig. 6. Figure (a) shows one realization of the network dgaplent at Albion

Basin. The map constructed by such deployment of wirelessose is shown (2), and

in (b). 2) Correlated shadowing parameter® and % of (7).
Large-scale analysis determines the average path losssvs. d
tance; shadowing and other types of fading are what remain

These are 802154'C0mp||ant radios which operate 2.8-'24fter |arge-sca|e path loss is removed. Thus |arge-scal‘e pa

GHz ISM band. Wireless sensors are kept at a height of 1|85s parameters are estimated first.

using stands. After deployment, the coordinate of eachasens 1) Estimation of Large-Scale Path Loss Parametefar

is carefully determined using a measuring tape and a compaggch realization of networkp € {1,..., M}, where M is

Such positioning measurements are overdetermined so e total number of network realizations in each measurémen

we can verify that sensor positions are determined acdurate¢ampaign, the frequency-averaged RSS (in dB) between two

The network geometry is random, depending on where it i$,des; and j, ‘Pi(m)’ is represented by a distance-dependent
possible to position the sensors within the varying tereaid  path Joss model %2), (3)

vegetation. The sizes of network deployments range from 400
m? to 1800 n?. A map of one such network deployment is d -
shown in Fig. 6. pl.(;?” = Py, — Ty — 10, log AZ_J _ Xi(,?) _ Yif;n)7 17)

In this campaign, deployments are significantly larger in 0
area than in the indoor campaign. Due to the range amMereXi()T) is the shadow fadingY;f;”) is the non-shadow
the varying terrain and vegetation, we do not have fullfading, for themth realization of link(z, j), which has length
connected networks. In particular, one eavesdropping nadle;. Because; ; is an average of measurements across many
cannot reliably overhear all packet traffic from all nodes idifferent frequencies, we argue that it may be approximated
the network. In these deployments, we use a protocol whiaels Gaussian (in dB), regardless of the underlying frequency
forwards all measured data (over possibly multiple hops) toselective fading mechanisra.f, Rayleigh or Ricean). Shadow



fading is typically modeled as Gaussian (in dB) [34], so weontrolled campaign (boxes) are smaller than in the field de-
expect the total fading?fgl) = Xi(_”f) + Yif;”) (in dB) to be ployment campaign (terrain and vegetation). Thus, we would
Gaussian. expect the paramete¥ to be greater in field deployment
The model of (17) is a linear model for received power asampaign compared to the controlled campaign, and in fact,
a function of the log of the path length. Thus we use linedine 6 parameter in the field deployment campaign is almost
regression to estimate the “point” and “slope” of the lineattouble.
model, which argPr — IIp) andn,. In our analysis, we use The second parametef; /o7, represents the relative con-
Ao =1 m. All nodes are set to the same transmit power aridbution of shadowing,X; ;, to total fading, Z; ;. It is a
we monitor for equal battery voltages, so we expect transrfiitnction of the type of environment. Indoor environmentgéha
power Pr to be approximately constant across nodes. a higher angular spread of arriving multipath, due to moge si
2) Estimation of Correlated Shadowing Paramete@®nce nificant reflections, compared to the outdoor environmesuts,
the large scale path loss model parametgraind (Pr —IIy) narrowband fading will be more significant. The analysisifro
are determined, the next step is to estimate the parametbes measurement campaigns concludes that for the outdoor
of correlated shadowing model introduced in Section IV. Wield deployment measurement campaign, the contribution of
define the parameter vector to be estimated ashered = shadowing to total fading i$5%, compared to41% in the
[57 A indoor controlled measurement campaign.

o2 :

From the residues of the large-scale path loss linear re- -
gression, the total fading Iosgi(gl) for each link (i,j) E. Verification

and the overall variance oizi("?, i.e, o2, are deter- The repeated geometries in the controlled measurement

mined. Then, we define(™ — [Zi(m_) ’.“’Zi(m)_ _where Campaign allqw us to look at specific geometries of Imk;
o S . S NoIN | . in more detail. First, we use the measurements to verify
(i1,41),- ., (in, jn) is @ list of unique measured links in the

. ) X that the shadowing on many realizations of spedifik pair
network andN 'S the total number of Il_nks in the deplo_yedgeometrieﬁlo in fact show statistically significant correlations.
network. According to the modek("™) is zero-mean with

: trix i by (15 Second, we show that the proposed correlated link shadowing
covariance matrix given _y( )- L L model does suggest correlation coefficients similar to eéhos
We use maximum likelihood estimation for estimating p

ter0. In oth q find hich . %stimated from measurements.
rametere. In other words, we TiN@asLe WHICh MAXIMIZES — \ve refer to alink pair geometryas any pair of links
the conditional likelihood function given by (18),

with the same coordinates of endpoints within a translation
f(z|0) = Hf(z(m)|0) and rotation. For example, consider link pair geometry #1
m in Table I. Any two links which have a common endpoint,
- H 1 1 (T C=1(g)gm gxtend in the same djrection from thaF endpoint, and have_ one
~ L oneic, )iz P | 72" z (0)2"™| . link of length one unit and the other link of length two units,
m (18) have link pair geometry #1. Many such link pair geometries
are shown in Table I. Since we have fifteen realizations of
where|-| denotes the determinant of the matrix ahcdenotes identical-geometry networks, and many pairs of links withi
the transpose. Equivalentl§,, ., can be found by finding the each network which have an identical link pair geometry, we
maximum of the log likelihood functiof(z|@) = log f(z|6), verify from a large set of realizations that shadowing value

1 1 o are correlated. Le{Z,,, Z,, } be a set of measured total fading
1(2]60) = {—k —51Cz(0)] - §Z(m) Cy (O)Z(m)} : pairs, where(ay,b1), ..., (ap,bp) are the pairs of measured
m (19) links which have a particular link pair geometry. Then we

compute the experimental correlation coefficignbetween
1{Z,M} and{Z,}.

Using a statistical test for correlation [38, pp. 427-431¢,
test between the two hypotheses:

wherek = & log(2n) is a constant.

For lack of an analytical solution to the maximization o
(19), we use a brute force approach. The log likelihd@i)
is computed for a wide range @ specifically,é € [0.1,0.9]

in increments of 0.01, andr% /0%, € [0.1,...,0.9] in Hy : Z,andZ, havep =0,

increments of 0.01. The value @&, for the controlled H 7 and Z. have 0

measurement campaign is found totg ;= = [0.30,0.41]7, ! “ b p70.

and for the field deployment measurement campdgp, = In hypothesis testingH, is the null hypothesis. We assume
[0.57,0.55]7. Hy is true, unless experimental evidence shows beyond a

3) Discussion:The first parametef of the proposed model reasonable doubt thdi, is not true. If p = 0, this does not
is the distance constant in the correlated random spatal lonean that every link pair geometry would measyre= 0.
field p(x). It describes the separation at which the correlatiofFhe measurements are random, and in fact, the €yent 0}
between two points in that spatial loss field have correfatidvas probability zero. Instead, the hypothesis test says tha
coefficient ofe=!. Loosely, we can describe it as a measunghen the measureh| exceeds a particular threshold (which
of the ‘size’ of attenuating obstructions in the environmenis a function of the number of measurements and desired
Comparing the controlled and field deployment measuremagmbbability of false alarm), it means thaf, is very unlikely
campaigns, the average sizes of obstructions in the indaorhave been true. The threshold is determined by the desired
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Geometry Correlation p Geometry Correlation p
Meas- Prop. Meas- Prop.
ured Model ured Model

1 | =>~— .| 033 0.31 14 \ - -0.04 0.09
2 | =~ | 0.21% 0.25 15 -\ 0.12%** 0.18
3 | <= — | 0.23* 0.35 16 \ . 0.08* 0.12
4 | e—~— .| 0.05 0.06 17 \ 0.12%** 0.18
5 | ——— | 017 | 020 || 18]. "> | 003 0.17
6 ] ] o -0.05 0.01 19 \ 0.21%** 0.22
7 { [ . -0.01 0.00 20 \ -0.02 0.13
8 | -010% | 001 || 21 \ 0.23** | 0.26
9 j . -0.03 0.09 22 ]\ : 0.00 0.08
10 Y ] 0.04* 0.15 23 >< 0.08** 0.22
11 \ 0.14*** 0.15 24 | m== -~ | 0.12 0.23
12 \ 047%* | 015 || 25| — .| 0.08 0.00
13 \ . 0.05 0.11 26 | ———~ | 0.03 0.04
p-value,i.e, P [getting measure@|Ho)
% p < 0.005 5 < 0.01 * p < 0.05
TABLE |

LINK GEOMETRY AND CORRELATION COEFFICIENTS(OBSERVED, PROPOSEDM ODEL)

probability of false alarmp, so that only in rare cases wouldparticular, we note that a link pair geometry #8 records a
the test decidé?; if Hy was actually true. We report in Tablestatistically significant negative correlation coeffididout that
| the cases for which the test decidds given three different our proposed model only predicts non-negative shadowing
false alarm ratep of 0.05, 0.01, and 0.005. In Table | testorrelations. Studying mechanisms which cause negatike li
which are statistically significant at these three falsenala shadowing correlations is a topic of future research.
rates are denoted with a *, **, and ***, respectively. There In summary, the results from the controlled measurement
are ten link geometries shown which have-aalue of less experiment provide a large set of measurements from pairs
than 0.005; it is extremely unlikely that fading on thesepai  of links with identical relative geometries. These dataveho
links is uncorrelated. We note that link pair geometriesaluhi that particular geometries of proximate link pairs show sta
have greater “overlap” or “proximity” have higher corrétat tistically significant correlation, in other words, it isghily
in shadow fading. This is intuitive because a greater operlanlikely that link pairs of these geometries have uncoteela
means a larger similarity in the environment through whickhadow fading. We can quantify these correlations and the
the two links pass. proposed method provides a statistical model to explaisethe
The proposed model is shown to have positive shadowiggrrelations.
correlations between link pairs which do show significant
shadow fading correlations. Table | lists the correlatioefe
ficient computed from the correlated shadowing model (using
the parameter$ = 0.30 and 0% /025 = 0.41 estimated  Correlated shadowing is important because it has a major
from the controlled measurement campaign). The modelebasepact in mesh, ad hoc, and sensor networks. It is something
correlation value is not equal to the experimental correlatiorexperienced in deployed multi-hop networks which is not,
estimatep, but is often very close, and generally is high whem state-of-the-art statistical channel models, represkin
the measureg is high. Measurements and model particularlgimulation or analysis of such networks. As discussed in
agree well when the number of measurements for the panticugection I-B, existing statistical and deterministic patsd
link pair geometry is high; link pair geometry #1 is repeatethodels have been applied in networking research. We show in
many (32) times in each measured network, many more tinthss section that the impact of correlated shadowing on end-
than link pair geometry #5 (which is repeated 8 times in ea¢t-end performance statistics in deployed multi-hop neltwo
measured network). is significant. In this section, we give two examples of the
Further, we expect that (1.) since each measurementdifferences between performance results when comparing th
random, thep computed from measurements is also randoraytput of an i.i.d. shadowing model with the output of a
and (2.) that our proposed model does not explain all facetsrrelated shadowing model. In general, for arbitrary darg
of the environment which cause correlated shadowing. tteployments, we expect the effects of correlated shadoteing

VI. APPLICATION OFJOINT MODEL
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Measurement Campaign Controlled Field Deployment
Environment Indoor classroom Outdoor canyon
# Network Realizations 15 6
# Nodes 16 16-19
Freq. Band 900-928 MHz 2.4-2.48 GHz
Est. ¢ 0.30 0.57
Est. 03 /025 0.41 0.55

TABLE Il

SUMMARY OF TWO MEASUREMENT CAMPAIGNS

be even more significant, but we analyze two simple networks
in this section for clarity of explanation.
To simplify the analysis we assume,

I
1) Packets are received if and only if the received power is (@)
greater than a receiver threshejdand
2) No packets are lost due to interference. ) i ]

These assumptions do not limit the results in this section.
In fact, performance in interference is also affected bytjoiFig- 7. Example multi-hop networks of (a) three and (b) foodes.
path losses between the interfering transmitter and the two

communicating nodes, and thus is also impacted by cortelate ] . ]
shadowing. We define two events relating to the connectedness of links,

We denote th@ormalized received power above the thresh- 4 — {Link (i, k) is connecte}i= {3, , > 0}
old for a link (m,n), as B n, B = {Link (i, ) and link (j, k) are both connectdd (22)
5777‘7” = M (20) = {Bi,j > O} n {ﬁj,k > O}

gdB Then AU B is the event that two nodesand & can com-
where v is the threshold received poweF,, ,, is received municate, either directly or through an intermediate ngde
power given in (2) ando;p is the standard deviation of The probability that node and k£ cannot communicate is the
total fading in the network. Linkm,n), by assumption, is probability of path failure
connected if and only if3,,,, > 0. An important system
parameter is the expe)::te% \’/alueﬂ;,fw, P ’ 1-P[AUB|=1-(P[A]+P[B] - P[ANB]). (23)
) Pldy ) — _ From (21) and (1), the relationship b_etweénj, B and
B = EBmn] = \Gmn) 7 (21) Bix for the simple three-node network is,

0dB
whereP(d,, ) is given in (1). Intuitively,3,, ,, is the number Big = Bsws - and Bik = fij = . (24)
of standard deviationsryz, of link margin we have in link wherex = 222218102 " According to the definition (22), the
(m,n). If we design the multi-hop network with highg,, ., probability of eventA is,
we will have a higher robustness to the actual fading in the _ _
environment of deployment. For example, one could set thel’ Al = P[{Bir >0}/ =Q (_@'Jf) =1-Q (@',j - “)
inter-node distance to ensure tr‘@,tw = 2, and then link ) (25)
(m,n) would only be disconnected if total fading loss wa¥/n€re Q) is the complementary CDF of a standard Normal

two standard deviations more than its mean. random variable. _ _
1) Case of i.i.d. ShadowingJnder the assumption that the

shadowing across links in a network is i.i.d., the probapili
A. A Three Node Multi-Hop Path of eventB is

Consider the simple multi-hop path shown in Fig. 7(a),P [B] = P[{3;,; > 0} N {B,x > 0} = (I_Q(Bi,j))Q- (26)
which represents a part of a typical multi-hop network. In N _ )
this example||x; — x,]|| = ||x; — x| For nodei to transmit From (26) and (23), the probability of path failure is
information to nodé:, the message packet can take two routes. ; _ A 2 \o A
One is the direct link(i, k) and the other is a two hop path L= PIAUB]=Q(fi; —#)Q(Ai5) 2 - Q(Aig)l- (27)
through a relay nodg i.e., through link(i, ) and then through ~ 2) Case of Correlated Shadowingdzrom the correlation
link (7, k). If for our particular deployment, the linf, k) fails values reported in Table I, we know that linKs, j) and
due to high shadowing, there is a chance that the mességée:) of Fig. 7(a) are nearly uncorrelated. Thus, the probability
can still arrive via links(i, ) and (4, k). This section shows for event5 is approximately the same as in i.i.d. case. The
that this ‘link diversity’ method is not as robust as would berobability P [.A N B] for the case of correlated shadowing is
predicted assuming independent link shadowing. derived in the appendix. Combining the results from appendi
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(23), (24) and (26), the probability of path failure whemetwork by designing it for highep; ; only increases the
shadowing on links is correlated is disconnect between the two models. It is only when we design

P = \\g the network for very unreliable linke(g, 3; ; = 0, for which
1= PAUB]=Q(fi; — k) = (1=Q(fi))* + PIANB], link (7, 7) is connected half of the time) that the models have a

(28) similar result. Path connectivity is much more likely unttes
where i.i.d. model than under the realistic correlated link shaidg
PIANB] = model.
2 ) ) The four-node example shows that as paths become longer,
/ Q —H - M g it becomes increasingly important to consider correlabe |
Bi, k>0 /1 — pQXijaXi . ' shadowing. While the 3-node network had a 120% increase
T in probability of path failure, the 4-node network showed a
and,p = Bi; + (Bik — Bij + K)PXs, X 200% increase in the same probability. While Fig. 8 show
the results up to3; ; = 2.5, higher values correspond to
B. A Four Node Multi-Hop Network higher reliability links, and reliable networks will be dgsed

. . N with even higher link margins. When networks are designed

_Ne_xt, consider the four node link shown in Fig. 7(b). I:01r0r high religbility, the ef?ects of ignoring link shadovg%l
this linear deploym'ent we assu_rﬁ&i —_xj|| =||x; —xx|| = correlations are dramatic.
||xx—x;||. For node to communicate with nodk the message
packet can be routed in four different ways, as shown in
Fig. 7(b).

An analytical expression for the probability of path fadus We presented the need for statistical path loss models for
tedious, so instead we simulate the network shown in Fig. 7(fulti-hop (sensor, ad hoc, and mesh) networks which model
in both the cases of correlated and i.i.d. link shadowing. We correlation in shadow fading between proximate linke. W
take 10° samples of the normalized received powers unddiscussed why existing correlated shadowing models do not
both correlated shadowing and i.i.d shadowing models. VEgply to arbitrary geometries of links like those which éxis
then determine from the result the probability of path falu in multi-hop networks. We present a new statistical jointhpa
i.e., that there exist®o connected path from nodeto node loss model that relates the shadow fading on different links
l. in a multi-hop network to the random underlying spatial loss

field. Two measurement campaigns are conducted to measure

‘ ‘ ‘ ‘ ‘ path losses in indoor and outdoor environments and in two
— 3 node network different bands, 900 and 2400 MHz. The data sets demonstrate
—%-4 node network statistically significant shadowing correlations amondipa-
lar geometries of link pairs and show that correlated shaupw
can be measured in a repeatable experimental setup as well as
in natural outdoor environmental sensor network deploytsen
Model parameters are given for these two campaigns. Finally
we analyze path connectivity statistics in simple multgho
networks to show the importance of the consideration of
shadowing correlation in reliable network design. Using th
i.i.d. shadowing model, the probability of end-to-end path
failure is underestimated by a factor of two or more.

Future work will test other ensembles of deployments in
a wider variety of environments. We are working towards
implementations of the simulation model for standard net-
working simulation environments such as- 2. The effects
of correlated shadowing will have impact on higher layer
Fig. 8.  The percentage increase iR [link failure] for correlated, N€tworking protocols and algorithms, and in interference a
vs. iid. shadowing, for 3 and 4 node multi-hop network eplm, as a multiple-access control, and future work will quantify siee
function of 3; ;. effects.

VIlI. CONCLUSION
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IX. APPENDIX

Here we present the derivation of the probability.A N 5]
for the case of correlated shadowing given in (28). From,(20)
we note thatg; ;, 8;, and §; are joint Gaussian random
variables. Thus the conditional distribution3; ;|5;.x = b)
and f(8,.x|3:x = b), are also Gaussian. From the measure-
ment data the link paifi, j) and(j, k) of Fig. 7 are observed
to have very small or no correlation between them (see link
pair geometry #4 in Table ). Thus the joint distribution,
f(Bij, BiklBik =b), can be approximated as:

f(Big, BiklBin =) = f(Bi 8k = ) f(B)klBir =b).
(29)
The joint distribution of3; ;, 5;.r and gk, f(Bi;, Bj k. Bik)s
can be simplified using (29) and can be written as:

F(Bijs Biks Bik) = f(Bij|Bik = 0) f(BjrlBik = 0) f(Bik)-

(30)
The probability P AN B] can be written in terms of joint
distribution as,

PIANB] = P[{Bi;>0}n{Bjr >0}t N{Bir >0},

- /{61 ;>0} /{B] >0} /{B >0}

ﬁz 7|ﬁz k) (57k|51 k) (ﬁz k)dﬁz 7d57 kdﬁz ks
/ [Q( (B, k— ﬁl 1)
Bi,1>0

—m /)] e ik, (31)
wherepy £ E[{85518ix}] = Bij + (Bik — Bij + K)px., X0
andp; = /1 — pg(i,j.,Xi,,k'

Note that for the link pairs geometry considered,
PX; 0 X:x = PX.;.X:, Which results in the square of Q
in (31).
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