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Abstract

Background: Physiological processes aiding the conversion of muscle to meat involve many genes associated with

muscle structure and metabolic processes. MicroRNAs regulate networks of genes to orchestrate cellular functions,

in turn regulating phenotypes.

Results: We applied weighted gene co-expression network analysis to identify co-expression modules that

correlated to meat quality phenotypes and were highly enriched for genes involved in glucose metabolism,

response to wounding, mitochondrial ribosome, mitochondrion, and extracellular matrix. Negative correlation of

miRNA with mRNA and target prediction were used to select transcripts out of the modules of trait-associated

mRNAs to further identify those genes that are correlated with post mortem traits.

Conclusions: Porcine muscle co-expression transcript networks that correlated to post mortem traits were

identified. The integration of miRNA and mRNA expression analyses, as well as network analysis, enabled us to

interpret the differentially-regulated genes from a systems perspective. Linking co-expression networks of transcripts

and hierarchically organized pairs of miRNAs and mRNAs to meat properties yields new insight into several

biological pathways underlying phenotype differences. These pathways may also be diagnostic for many

myopathies, which are accompanied by deficient nutrient and oxygen supply of muscle fibers.

Background
Muscle is the major energy consuming and storage

organ. An imbalance of nutrients, energy, and oxygen

supply-and-demand in muscle cells is evident following

cardiac muscle or skeletal muscle attack, injury, or dam-

age. The consequences of these imbalances depend on

muscle structure and metabolism and, thus, the muscle’s

entire complement of proteins and their expression pat-

terns. Similar changes, i.e., termination of nutrient and

energy supplies and anoxia, also occur in muscle cells

post mortem. Indeed, these changes underlie the conver-

sion of muscle to meat in food production. The physio-

logical processes accompanying the change of muscle to

meat involve expression of many genes associated with

muscle structure and metabolic features [1,2]. Genes

active in the muscle could therefore potentially have

pathogenetic effects by disturbing muscle energy and

oxygen homeostasis in vivo, as well as conferring traits

related to meat quality post mortem.

Meat quality is complex and is affected by genetic and

environmental factors as well as slaughtering procedures

[3]. The conversion of muscle to meat is important not

only as an economic factor in pork production, but also

because these events mimic pathological processes asso-

ciated with muscle injury or damage in humans. Post

mortem traits for meat quality and carcass are influenced

by a complex network of gene interactions in muscle;

therefore, elucidating the relationships between genes

and how these genes, in turn, influence meat quality

and carcass traits is critical for developing a com-

prehensive understanding of the muscle to meat conver-

sion as well as muscle pathologic processes including

muscle atrophy, dystrophy, and hypoxia. Additionally,

pigs share many genomic and physiological similarities
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with humans and, therefore, provide a good model to

study the genetic determination of complex traits and as

a biomedical model [4,5].

Recent advances in functional genomic screening, which

can help determine molecular processes underlying phe-

notypic differences [6-8], have identified roles for micro

RNAs (miRNAs) in regulation of myogenesis [9-11] and

adipogenesis [12-14]. miRNAs are small, non-coding RNA

molecules of approximately 22 nucleotides. The primary

miRNA transcript has a stem-loop structure that is recog-

nized and cleaved via RNA processing enzymes to produce

a double-stranded duplex. miRNAs target mRNA tran-

scripts via base-pair complementarity, typically in the 3′

untranslated region [15,16], but also in the coding se-

quence [17]. This targeting can induce transcript cleavage,

degradation, destabilization, or repression of translation,

thereby modulating protein levels. It has been recently

shown that reduction of transcript level account for most

of the regulatory, repressive effects of miRNAs [18]. Target

genes that are regulated by miRNAs through degradation

of their respective transcripts consequently show negative

correlation of their mRNA with the miRNA regulator.

Moreover, one miRNA can target several — even hun-

dreds of — genes. Therefore, a unique approach for identi-

fying miRNA-mRNA regulatory modules was recently

introduced, whereby paired miRNA-mRNA expression

profiles were constructed to predict putative target genes

of miRNAs [19,20].

Many studies used the network analysis for dissecting the

complex traits [21,22]. Weighted gene co-expression net-

work analysis (WGCNA) [23] has been successfully applied

in a variety of different settings [24-28]. WGCNA groups

genes into modules based on their co-expression across a

set of samples and finally relates these modules to the traits

of interest in order to elucidate relevant modules or genes.

In order to identify groups of co-expressed genes

(mRNAs) and on the hierarchically superior level of miR

NAs that are correlated with organismal traits related to

carcass and meat quality, we first applied weighted gene co-

expression network analysis (WGCNA) and subsequently

we adapted the paired expression profile approach. We

identified co-expression networks regulated by miRNA

after filtering of negatively-correlated miRNA-mRNA pairs

and predicting target genes. The integration of miRNA and

mRNA expression analyses as well as network analysis en-

abled us to interpret the differentially-regulated genes from

a systems perspective, yielding new insight into several bio-

logical pathways underlying phenotypic differences.

Results
Meat quality and carcass traits phenotypes

Elucidating the relationships between genes and how these

genes, in turn, influence muscle metabolic and structural

properties is critical for developing a comprehensive

understanding of the muscle to meat process as well as

muscle pathologic and regenerative processes related to

muscle atrophy, dystrophy and hypoxia. In total, 207

performance-tested crossbred pig [PI × (DL ×DE)] sam-

ples were used to investigate meat quality and carcass

traits. Descriptions of 7 carcass traits and 13 meat quality

traits, as well as means and standard deviations, analysed

in this study are shown in Table 1. High correlation coeffi-

cients were found between the same biochemical and bio-

physical parameters measured at different positions and at

different time points post mortem, like fatness traits or pH.

The other cluster covers the traits drip loss, protein con-

tent, and conductivity. This cluster was negatively corre-

lated to pH or fatness (Additional file 1: Figure S1).

Gene co-expression network construction for mRNA

To investigate the role of transcriptional networks in

muscle, we performed a weighted gene co-expression net-

work analysis (WGCNA) using expression data from M.

longissimus dorsi necropsies of the 207 performance-tested

crossbred pigs [PI × (DL ×DE)]. Expression analysis using

GeneChip Porcine Genome Arrays (Affymetrix) containing

24,123 probe sets identified 11,191 probe sets with consis-

tent expression according to MAS5 analysis; these were

used for further analysis. Using WGCNA, residuals derived

from the mixed-model analysis of expression levels of

11,191 probe sets were used for constructing the muscle

transcriptional network. WGCNA grouped genes into 22

modules based on patterns of co-expression. Each module

was labelled with a unique color identifier and was charac-

terized for enrichment of genes of specific gene ontology

(GO) categories (Table 2). To represent the gene expres-

sion profiles of the highly correlated genes inside a given

module, we used the first principal component, which is

referred to as the module eigengene (ME). We tested each

ME for correlation with meat and carcass traits.

Module-trait associations of mRNA

Sets of genes (modules) with common expression patterns

that were associated with particular traits were identified

based on the correlation between ME and organismal

phenotype. We identified five modules that significantly as-

sociated with meat quality. Modules dark-turquoise and

orange were correlated positively to pH traits and nega-

tively to drip loss (ME[dark-turquoise]: pH24MLD r = 0.34,

p = 5.3 × 10−7, DL r = −0.19, p = 5.6 × 10−3; ME[orange]: pH

24MLD r = 0.32, p = 3.7 × 10−6, DL r = −0.31, p = 5.8 ×

10−6) (Figure 1). Module dark-turquoise (31 annotated

genes) was highly enriched for genes belonging to the clus-

ter “glucose metabolic process” (GO: 0006006) and the

KEGG-pathway “insulin signaling” with an enrichment

score (ES) of 2.65. Module orange (26 annotated genes)

was enriched for transcripts of the functional annotation

clusters “response to wounding”, “defense response” and
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Table 1 Measured carcass and meat quality traits

Traits Definitions of traits Mean ± SD (N = 207)

loin eye area (LEA) [cm2] area of M. longissimus dorsi (Mld) at 13th/14th rib 52.96 ± 5.7

fat area (FA) [cm2] fat area on Mld at 13th/14th rib 14.97 ± 3.2

meat to fat ratio (MFR) ratio of meat and fat area 0.29 ± 0.1

fat depth at shoulder (FDS) [cm] depth of fat and skin on muscle, mean of 3 measures at thickest point 3.44 ± 0.4

fat depth at tenth rib (FDTR) [cm] depth of fat and skin on muscle, mean of 3 measures at thinnest point 1.92 ± 0.4

loin fat depth at loin (FDL) [cm] depth of fat and skin on muscle, mean of 3 measures at thinnest point 1.34 ± 0.4

average back fat (ABF) [cm] mean value of shoulder fat depth, back fat tenth rib and loin fat depth 2.23 ± 0.4

Drip loss (DL) % % of weight loss of Mld collected at 24 h post mortem, held for 48 h at 4°C 5.37 ± 2.2

LF24MLD Conductivity in Mld at 13th/14th rib 24 h post mortem 5.35 ± 2.2

LF45MLD Conductivity in Mld at 13th/14th rib 45 min post mortem 4.98 ± 1.6

Intramuscular fat content (MLDIMF) % Intramuscular fat content of Mld at 13th/14th rib 0.79 ± 0.4

Protein content (MLDP) % Protein content of Mld at 13th/14th rib 23.65 ± 0.5

Water content (MLDW) % Water content of Mld at 13th/14th rib 74.7 ± 0.6

Ash content (MLDA) % Ash content of Mid at 13th/14th rib 1.06 ± 0.1

meat colour (OPTO) meat colour 24 h post mortem in Mld at 13th/14th rib; OPTO star 68.56 ± 6.4

IMP24MLD Impedance of Mld at 24 h post mortem 44.63 ± 15.6

pH45MLD pH value in Mld at 13th/14th rib 45 min post mortem 6.15 ± 0.3

pH24MLD pH value in Mld at 13th/14th rib 24 h post mortem 5.48 ± 0.1

pH45MSM pH value in M. semimembranosus (Msm) at 45 min post mortem 6.24 ± 0.3

pH24MSM pH value in M. semimembranosus (Msm) at 24 h post mortem 5.53 ± 0.1

Table 2 List of the top GO terms in the most significant DAVID functional clusters for each muscle network module

Module Top term No. of genes in ME % count1 Top term P-value

blue GO:0044451 ~ nucleoplasm part 524 8.97 1.32E-11

light-green GO:0044429 ~mitochondrial part 97 59.79 3.24E-54

dark-orange GO:0006414 ~ translational elongation 24 41.67 1.37E-14

grey60 GO:0030163 ~ protein catabolic process 105 12.38 3.10E-04

magenta GO:0046907 ~ intracellular transport 208 10.58 3.43E-05

red GO:0005761 ~mitochondrial ribosome 315 5.08 4.41E-16

black GO:0005739 ~mitochondrion 436 27.06 4.88E-46

salmon GO:0006414 ~ translational elongation 137 45.99 4.93E-107

green GO:0032446 ~ protein modification by small protein conjugation 246 4.07 7.90E-05

dark-grey GO:0030036 ~ actin cytoskeleton organisation 37 16.22 8.94E-05

tan GO:0031012 ~ extracellular matrix 154 31.17 7.96E-39

midnightblue GO:0042060 ~ wound healing 122 7.38 5.38E-05

pink GO:0000323 ~ lytic vacuole 265 10.57 2.78E-16

dark-turquoise GO:0006006 ~ glucose metabolic process 31 16.13 3.00E-04

purple GO:0006986 ~ response to unfolded protein 143 6.38 8.28E-08

light-yellow GO:0006954 ~ inflammatory response 85 14.12 7.94E-07

orange GO:0009611 ~ response to wounding 26 23.08 1.37E-03

brown GO:0031981 ~ nuclear lumen 1436 15.48 2.72E-27

dark-red GO:0031981 ~ nuclear lumen 183 21.86 8.14E-10

cyan GO:0044265 ~ cellular macromolecule catabolic process 182 13.19 1.61E-06

dark-green GO:0019941 ~modification-dependent protein catabolic process 38 13.16 2.93E-02

grey GO:0008219 ~ cell death 3616 23.84 7.09E-17

1(number of genes in term/number of genes in ME) × 100).
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“inflammatory response” (ES = 2.42). Modules red, black,

and tan were correlated negatively to pH traits and posi-

tively to drip loss (ME[red]: pH45MLD r = −0.22, p = 1.8 ×

10−3, DL r = 0.20, p = 3.9 × 10−3; ME[black]: pH45MLD

r = −.23, p = 8.8 × 10-4, DL r = 0.16, p = 1.8 × 10-2; ME[tan]:

pH45MLD r = −0.22, p = 1.4 × 10−3, DL r = 0.19, p = 6.9 ×

10−3) (Figure 1). Further, modules red (315 annotated

genes), black (436 annotated genes), and tan (154 annotated

genes) were enriched for genes of the top functional annota-

tion clusters of “mitochondrial ribosome”, “mitochondrion”,

and “extracellular matrix” with ES of 10.23, 15.15, and 27.05,

respectively. Only one module (ME[dark-orange]) showed asso-

ciation with traits related to fatness (Figure 1).

Co-expression networks and module-trait associations

for miRNA

Transcriptional networks of muscle microRNAs were stud-

ied with a WGCNA using miRNA expression data on M.

longissimus dorsi from the same animals as above. Resid-

uals, derived from the analysis of expression levels after cor-

rection for systematic effects according to the mixed model,

were used for constructing the muscle miRNA transcrip-

tional networks, i.e., modules. Nine modules were identified

(Figure 2). Only 2 modules were associated with meat qual-

ity at a significance level of p < 0.05. Module purple was

correlated positively to LF24MLD at p = 0.03 and negatively

to pH24MLD and IMP24MLD at p = 0.04 and p = 0.03, re-

spectively. Module purple consisted of 8 miRNA families

(miR-17, miR-30. miR221, miR-185, miR-324, miR362,

miR-500, and miR-542). Module blue was positively cor-

related to pH45MLD and IMP24MLD at p = 0.02 and p =

0.01, respectively. Module blue comprised 29 miRNA

families (let-7, miR-15, miR-17, miR-31, miR-95, miR-103,

miR-105, miR-122, miR-124, miR-130, miR-138, miR-154,

miR-184, miR-185, miR-197, miR-202, miR-204, miR-212,

miR-214, miR-320, miR-326, miR-335, miR-346, miR-383,

miR-467, miR-491, miR-744, miR-1224, and miR-1296).

Individual miRNA expression profiles and correlated traits

In addition to miRNA modules, the expression of 675 indi-

vidual miRNAs probe sets, which corresponded to 513

unique sequences belonging to 159 miRNA families, were

profiled and examined for correlation with meat and carcass

traits. In total, 225 miRNA-phenotype pairs revealed correla-

tions at p < 0.01. Table 3 lists the top 20 miRNAs with highly

significant correlations to phenotypes (p < 0.005).

Endogenous correlation of expression profiles between

miRNA and mRNA

We performed pairwise correlation coefficient analysis

to evaluate association of expression levels between 675

miRNA probe sets and 11,191 mRNA probe sets.

Figure 1 Correlation matrix of module eigengene values obtained for mRNAs and phenotypes. Weighted gene co-expression network

analysis (WGCNA) groups genes into modules based on patterns of gene co-expression. Each of the modules was labelled with a unique color as

an identifier. Twenty-two modules were identified; each module eigengene was tested for correlation with meat and carcass traits. Within each

cell, upper values are correlation coefficients between module eigengene and the traits; lower values are the corresponding p-values.
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Among the 7,553,925 Pearson correlation coefficients,

we detected significant correlation in 5,933 miRNA-

mRNA pairs at p-values ≤ 8.97 × 10-5 (FDR = 0.1). The

5,933 pairs comprised 408 miRNA probe sets belonging

to 128 miRNA families that were correlated with 2,296

mRNA probe sets. Of these 5,933 pairs, 4,005 and 1,928

pairs showed positive and negative correlations, respect-

ively. Positive correlations tended to be more dramatic

than negative correlations; the correlation between miR-

122 and VTN was the most significant (FDR = 4.33x

10-11). The most significant negative correlation was be-

tween miR-154 and LOC387820 (FDR = 1.1x10-5). The

most frequently involved miRNA family was miRNA-

221, which was correlated with 616 mRNAs. In total 96

miRNA families showed significantly negative correla-

tions with groups of up to 253 genes. We evaluated GO

classification for each miRNA-correlated gene set of

more than 50 genes (Table 4). The most striking findings

were from gene sets that were negatively correlated with

miR-23, miR-30, miR17, miR154, and miR-132. For miR-

23 and miR-17 the set of negatively correlated genes was

highly enriched for genes belonging to the clusters

“translation” (GO:0006412) and “translational elong-

ation” (GO:0006414). The set of genes negatively corre-

lated with miR-30 was enriched for “cytoskeletal protein

binding” (GO:0008092). The set of genes negatively

correlated with miR-154 was enriched for “threonine-

type peptidase activity” (GO:0070003), while miR132-

correlated genes were enriched for “proteasome com

plex” (GO:0000502).

Integration of negative correlation of miRNA and mRNA

with module-trait association and target prediction

A total of 1,928 pairs of miRNAs and mRNAs that

showed negative correlations at p-values ≤ 8.97 × 10-5

(FDR = 0.1) belonged to 1,073 mRNA probe sets (929

gene) and 264 miRNA probe sets (96 miRNA families).

Of these, 286 pairs were assigned to modules dark-

turquoise, red, black, and tan, which showed correlation

with traits related to meat quality (Figure 3). However,

no genes in module orange were negatively correlated

with miRNA at FDR < 0.1. Only one gene (CREM) in the

module dark-turquoise was negatively correlated with

miR-153 (r = −0.34 p = 2.11x10-06 FDR = 0.02). In mod-

ule black, 69 genes were negatively correlated with 21

miRNA families, totaling 140 miRNA-mRNA pairs. In

total, 101 and 43 pairs of miRNAs and mRNAs were

identified in modules red (22 miRNAs and 52 genes)

and tan (17 miRNAs and 26 genes). Known genes be-

longing to modules dark-turquoise, red, black, and tan

and their negatively-correlated miRNAs are shown in

Table 5. Out of 1,928 pairs of miRNAs and mRNAs that

Figure 2 Correlation matrix of module eigengene values obtained for miRNAs and phenotypes. Weighted gene co-expression network

analysis (WGCNA) groups miRNA into modules based on patterns of their co-expression. Each of the modules was labelled with a unique color as

an identifier. Nine modules were identified; each module eigengene was tested for correlation with meat and carcass traits. Within each cell,

upper values are correlation coefficients between module eigengene and the traits; lower values are the correspondent p-value.

Ponsuksili et al. BMC Genomics 2013, 14:533 Page 5 of 17

http://www.biomedcentral.com/1471-2164/14/533



showed negative correlations at p-values ≤ 8.97 × 10-5

(FDR = 0.1), 62 pairs were assigned to modules blue and

purple, which correlated with meat quality (Figure 4).

These 62 pairs of miRNAs and mRNAs belonged to 14

miRNA families and 40 genes (Table 6).

Further, TargetScan and RNAhybrid were used to scan

miRNA and mRNA sequences (porcine RefSeq), to ob-

tain additional evidence for their functional link; these

sequences corresponded to 1,928 pairs of negatively-

correlated miRNAs and mRNAs. In total, 474 pairs of

miRNA and mRNA were confirmed by either of the two

in silico prediction methods: 331, 195, and 32 miRNA-

mRNA pairs were predicted by RNAhybrid, TargetScan,

or both methods, respectively. The 474 miRNA-mRNA

pairs covered 121 probe sets of miRNAs (65 miRNA

families) and 331 targets probe sets (297 genes). When

focusing on genes of the trait-correlated modules dark-

turquoise, orange, red, black, and tan, 73 out 286 pairs

of miRNAs and mRNAs were confirmed with at least

one in silico method. These 73 pairs comprised 26

miRNA families and 51 genes (Tables 5 and 6 in bold).

Discussion
Here, we present an integrative approach to identify

transcriptomic differences that may contribute to vari-

ation of the kinetics of metabolic processes under di-

minished oxygen and nutrition supply that is evident

during muscle conversion to meat. The speed and ex-

tend of the switch from aerobic to anaerobic ATP pro-

duction, until final total failure of energy production,

and of protein degradation processes largely affect meat

quality [29]. In order to identify functional networks of

genes contributing to these processes an approach was

used based on a multi-level integration of weighted

gene co-expression network analysis (WGCNA) of

mRNA and miRNA with mRNA-miRNA pair correl-

ation and miRNA target prediction.

Table 3 Correlation coefficient of carcass and meat quality traits with abundance of individual miRNAs and the

positions of miRNAs

Trait miRNA_family r p-value Chromosome Position (bp)

DL miR_184 −0.23 1.35E-03 7 5.38E + 07

DL miR_142 0.23 1.77E-03 12 3.59E + 07

DL miR_23 −0.21 4.42E-03 10 3.29E + 07

DL miR_181 −0.20 4.62E-03 10 2.74E + 07

IMP24MLD miR_217 −0.25 6.01E-04 3 8.87E + 07

IMP24MLD miR_184 0.25 6.41E-04 7 5.38E + 07

IMP24MLD miR_221 −0.24 8.12E-04 X 4.34E + 07

LF24MLD miR_221 0.25 4.49E-04 X 4.34E + 07

MLDP miR_185 −0.21 3.86E-03 14 5.58E + 07

MLDIMF miR_467 0.24 1.03E-03 9 1.29E + 08

OPTO miR_1827 0.24 1.03E-03 1 2.33E + 08

PH24MLD miR_133 −0.27 1.86E-04 6 9.92E + 07

PH24MLD miR_217 −0.26 2.36E-04 3 8.87E + 07

PH24MLD miR_181 0.25 4.74E-04 10 2.74E + 07

PH24MLD miR_130 −0.23 1.26E-03 2 1.31E + 07

PH24MSM miR_133 −0.24 8.24E-04 6 9.92E + 07

PH24MSM miR_363 0.23 1.39E-03 X 1.17E + 08

FDS miR_103 −0.24 6.65E-04 17 3.65E + 07

FDS miR_107 −0.24 7.63E-04 14 1.11E + 08

FDS miR_17 −0.24 8.61E-04 X 1.17E + 08

Table 4 List of the top GO terms in the most significant

DAVID functional clusters of genes negatively-correlated

with the listed miRNAs

miRNA Top term No. of
genes1

% count2 Top term
P-value

miR-23 GO:0006412 ~ translation 253 6.14 2.25E-11

miR-30 GO:0008092 ~ cytoskeletal
protein binding

96 14.03 1.83E-03

miR-17 GO:0006414 ~ translational
elongation

87 24.69 1.60E-25

miR-154 GO:0070003 ~ threonine-
type peptidase activity

72 5.88 3.98E-05

miR-132 GO:0000502 ~ proteasome
complex

64 4.84 1.63E-02

1number of genes with negative correlation to the respective miRNAs.
2(number of genes in term/number of genes in ME) × 100).
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mRNA abundance and co-expression networks linked to

muscle and meat properties

We used transcriptional network analysis to identify co-

expression modules (dark-turquoise, orange, red, black,

and tan) that correlated to meat quality phenotype. These

modules were highly enriched for genes involved in “extra-

cellular matrix”, “glucose metabolic process”, and “mi-

tochondrion” (“oxidative phosphorylation” KEGG_PATH

WAY); i.e. processes affecting structural and metabolic

properties.

A dominant role of mitochondria is the production of

ATP by oxidative phosphorylation that depends on oxy-

gen supply. When oxygen is limited (post mortem or

during prolonged vigorous exercise) the glucose meta-

bolism occurs by anaerobic respiration, a process that is

independent of the mitochondria. A shift from aerobic

to anaerobic metabolism - favouring the production of

lactic acid - results in a pH decline post mortem and

thereby influence the meat quality [29]. So the biological

process of mitochondria as well as the way of glucose

metabolism play a significant role in the muscle cell and

finally impact on meat quality. Indeed, mitochondrial

dysfunction resulting in decreased cellular energy pro-

duction is also responsible for a variety of human myop-

athies and cardiomyopathies [30-33].

Genes assigned to the GO category of “extracellular

matrix” encode proteins belonging to the myofibrillar scaf-

fold. The characteristics of the myofibrillar scaffold and

the kinetics of their fragmentation were associated with

tenderness and water-holding capacity of meat. In particu-

lar, the proteolysis of muscle proteins affects the shrinkage

of myofibrils, the development of pores in the cell mem-

branes, so called drip channels, and the non-covalent

binding of water molecules [34,35]. Collagens are major

constituents of the extracellular matrix (ECM). In our

study there were many collagen genes that are reported to

be correlated with various muscle disorders [36-39]. For

example, collagen type VI (COLVI), an important com-

ponent of skeletal muscle ECM, is involved in maintaining

tissue integrity [40]. Col6a1−/− mice show a complete

Figure 3 Regulatory network of negatively-correlated mRNAs and miRNAs. Genes in modules dark-turquoise, red, black, and tan that were

significantly associated with meat quality and were negatively correlated with various miRNAs as indicated by the arrows. Colors of symbols of

mRNA encoded proteins indicate the assignment to the respective module (grey = black).
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Table 5 Genes belonging to the modules dark-turquoise, red, black, and tan and their negatively-correlated miRNAs

Modules miRNA
family

Genes within modules negatively correlated with miRNA1

Dark-turquoise miR-153 CREM

Black miR-1 NDUFB9, ATP5C1, DNAJC12, NDUFC2, TOMM6, RRN3, PSTK, C1orf151

miR-103 GLRX3, LOC202051

miR-130 SLC22A23, LOC727762

miR-132 NDUFB9, ACBD6, GHITM, DNAJC12, GLRX3, CBR1, ANAPC13, RRN3, HIBCH, MCEE, GYG1, UFC1, COPS4, GALK2, LOC665103,
VTI1B

miR-133 RRN3, COPS4, FLJ11506

miR-146 GLIS2

miR-15 KIF1B, TACC2, Wipf3, SLC22A23

miR-154 NDUFB9, GHITM, GLRX3, LOC100132911, CHPT1, GYG1, UFC1, LANCL1, LOC728620, ATP6V1G1, MRPL35, VTI1B, CHCHD2

miR-17 SLC25A3, PRDX3, GHITM, SAR1A, ATP5C1, COX17, BIN1, GLRX3, MYL2, TPM3, LOC647081, CNPY2, dJ196E23.2, LOC727762,
MSRA

miR-181

miR-19 SSBP3

miR-205 SH3PXD2A, PEAR1

miR-324 CIC, UBAP1

miR-330 DNAJC12, VTI1B

miR-339 Ncor1

miR-375 VTI1B

miR-379 C15orf24, GHITM, CIP29, TSPAN3, GLRX3, PSMA2, ANAPC13, C8orf38, SRP14, CXorf26, LOC100132911, MRPS14, MCEE, GYG1,
UFC1, LANCL1, LOC728620, COPS4, PSMA6, FLJ11506, VTI1B, TMEM126B

miR-425 BIN1, DBI, LAPTM4A

miR-467 DNAJC12

miR-503 SPCS2, GHITM, BIN1, PARK7, DBI, LOC728620, H2AFY, dJ196E23.2, CHCHD2

miR-99 Ncor1

Red miR-1 FDPS, GCHFR, C20orf24, STRA13

miR-103 PPP1R7, PSMC3

miR-124 HSBP1, STRA13

miR-130 STRA13

miR-132 SNRNP25, PPP1R7, PSMC3, FDPS, N6AMT2, MRPS26, PSMB5, Snf8, DHDH, COPS6, HSD17B8, PQBP1, MRPS7, C7orf30, TFDP1,
NHP2, LOC152217, PBXIP1, DNPEP, C12orf44, UROD, MRPL48

miR-133 FDPS, TTC28

miR-146 CHCHD7

miR-154 PSMB2, WBSCR22, PPP1R7, PSMC3, LSM4, FDPS, PIH1D1, MRPS26. 5330431N19Rik, PSMB5, Snf8, JTB, DHDH, COPS6, PSMB7,
LOC646330, MRPS34, PQBP1, SIVA1, MRPS7, STK24, RUVBL1, MRPL23, PFDN6, SSSCA1, PBXIP1, PRPS1, MRPL55, COMTD1,
UROD, ROBLD3, C1orf144

miR-17 MYOZ1, CHCHD4, RUVBL1, PRPS1

miR-196 MRPS7

miR-202 STRA13

miR-204 MRPS26, STRA13

miR-214 RUVBL1

miR-26 STRA13

miR-330 PPP1R7, FDPS, MRPS7

miR-335 PIH1D1

miR-342 MRPS7, RUVBL1

miR-375 FDPS, LOC100039220, MRPS7, MRPL48

miR-379 MRPS7, MRPL48

miR-467 WBSCR22, PSMC3, FDPS, MRPS7, STRA13, STRA13
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absence of collagen VI chains and display a myopathic

phenotype, abnormal mitochondria, and increased apop-

tosis of muscle fibres [41,42].

miRNA abundance and co-expression networks linked to

muscle and meat properties

Our finding of the relevance of mitochondrial metabolic

pathways, including oxidative phosphorylation, and mu-

scle structural protein composition to post mortem pro-

cesses affecting meat quality is in line with our previous

results obtained in other populations [1,6,7]. Addi-

tionally, while the previous studies focused on trait-

associated mRNA expression, here another hierarchical

level in the regulatory network relevant to processes oc-

curring under conditions of insufficient oxygen, energy,

and nutrient supplies is provided. In fact, miRNA was

integrated into this study as a regulator molecule of

muscle transcripts. miRNAs with identical seed se-

quences (the same family) [43] or that are closely located

on the same chromosome (the same cluster) [44,45]

have similar expression trends. This was confirmed in

our study, where most of the modules consisted of the

same families of miRNAs or miRNAs located on the

same chromosome. In this study, marginal association of

miRNA co-expression modules to organismal traits was

found compared to mRNA co-expression modules. On

the one hand, co-expressed miRNAs of the same family

or cluster might not regulate the same trait. On the

other hand, this may be caused by indirect regulation of

organismal traits by miRNAs via their effect on mRNA

transcripts. Accordingly, individual miRNA correlation

to phenotypes was also considered. Recent studies have

revealed key roles for miRNAs in the regulation of ske-

letal muscle differentiation, and changes in miRNA

expression are associated with various skeletal muscle

disorders [46-48]. In this study, several miRNAs were

correlated with carcass and meat quality traits. This

includes miR-221, previously identified in studies of

myotube maturation and in the maintenance of the my-

ofibrillar organization [49] and found to contribute to

muscle pathogenetic mechanisms [50]. Interestingly,

miR-133, which showed highest correlation with pH24

MLD and pH24MSM, has been widely studied for roles

in the regulation of skeletal muscle development, in-

cluding in proliferation and myogenesis [10,51] as well

as muscle disorders [47]. Recently, a study reported

that mice with genetic deletions of miR-133a-1 and miR-

133a-2 developed adult-onset centronuclear myopathy in

type II (fast-twitch) myofibres, which was accompanied

by impaired mitochondrial function, fast-to-slow my-

ofibre conversion, and disarray of muscle triads [52].

These are changes of muscle structure and metabolism

that also impact meat quality. In addition to its well

established role in translation (Table 4), miR-23a was

also recently identified as a key regulator of skeletal

muscle differentiation and is predicted to target multiple

adult fast myosin heavy chain (Myh) genes, including

Myh1, 2, and 4 [53]. For fat traits, miR-103 and miR-107

Table 5 Genes belonging to the modules dark-turquoise, red, black, and tan and their negatively-correlated miRNAs

(Continued)

miR-503 MYOZ1

miR-676 WIBG

tan miR-132 COL6A1

miR-133 COL6A1

miR-145 POSTN

miR-148 DPYSL3

miR-154 COL6A1

miR-181 COL12A1, FKBP10, Aebp1, OGN

miR-204 COL6A1

miR-205 COL1A1, COL6A3, DPYSL3, MAGED1, DPYSL3, COPZ2, COL5A1

miR-320 COL6A1

miR-330 COL6A1

miR-342 COL6A1

miR-375 COL6A1

miR-423 COL6A1

miR-425 DCN, COL3A1, FBN1, COL6A3, LOC100129547, COL5A2, COL1A2, COL6A1, FSTL1, COL14A1

miR-455 COL6A1

miR-488 CRISPLD2

miR-9 NID2, COL6A1, YWHAQ, CNN3, NID1, TSPAN6

1genes predicted as potential targets of the corresponding miRNAs are shown in bold.
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were highly correlated (Table 3). This is consistent with

previous reports of miR-103 being involved in adipo

genesis, lipid metabolism, and adipocyte differentiation

[54,55] and of miR-103/107 being involved in glucose

homeostasis and insulin sensitivity [56].

In this study we showed for the first time more com-

plex correlations among miRNAs and between miRNAs

and post mortem organismal phenotypes in swine, while

also confirming previous studies in human and mouse

muscle as well as C2C12 myoblasts.

Links between miRNA and mRNA that relate to muscle

and meat properties

This study also sought to evaluate to what extent the co-

expression modules of trait-associated mRNAs are them-

selves regulated by miRNAs. A regulatory link between

miRNA and mRNA and a functional link to the organis-

mal phenotype was suspected if (1) the mRNA belonged

to either one of the co-expression modules associated with

the traits (i.e., MEdark-turquoise, MEorange, MEred, and MEtan),

(2) mRNA abundance was significantly negatively corre-

lated with its miRNA regulator, and (3) the mRNA was

predicted to be a target gene of the respective miRNA.

Therefore, RefSeqs of the genes with present calls from

the 3′-IVT-Affymetrix arrays were explored to predict the

targets of miRNAs by either seed sequence complemen-

tarity [57] or by thermodynamics-based modeling of RNA:

RNA duplex interactions [58]. Currently, no publicly-

accessible database covers porcine miRNAs and their pre-

dicted target genes. Moreover, annotation of porcine genes

is not yet finalized. Accordingly, the target predictions

should be interpreted with caution.

Figure 4 Regulatory network of negatively-correlated miRNAs and mRNAs. miRNAs in modules blue and purple that were significantly

associated with meat quality and were negatively correlated with various mRNAs as indicated by the arrows. Colors of symbols of miRNAs

indicate the assignment to the respective module.
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Interestingly, no miRNA regulator was identified by

negative correlation or target prediction in the module

orange, which was enriched for genes related to “res

ponse to wounding”, “inflammatory response”, and “de

fense response”. Genes assigned to biofunctions related

to response to exogenes stimuli, change their transcrip-

tion rate immediately due to many factors. As suggested

by finding no correlated miRNAs – their regulation of

transcription may occur without major involvement of

miRNA. However, many genes in the module orange

were previously confirmed as transcriptional regulators

in myogenesis or were located in QTL regions for

muscle fiber traits like BTG2, EGR1, ANKRDS1 and

FOS [59,60]. Interestingly, the genes in module orange

like Egr1, FOS and JUN that are associated with oxidative

stress response were found upregulated in muscle in re-

sponse to mechanical ventilation and immobilization in a

porcine model for critical illness myopathy (CIM) [61,62].

Co-expressed genes in module dark-turquoise were

significantly associated with meat quality and based on

the current knowledge of gene functions some links

among them are suggested to be relevant For example,

one member of this module, CREM, is a transcription

factor binding to cAMP-responsive elements (CREs) in

the promoters of various genes. This transcription factor

plays important roles in various organismal functions

[63-67]. Crem inactivation or knockout has been shown

to increase the rate of apoptosis in testis tissue [68,69].

The main cellular change associated with apoptosis pro-

cesses also occur during post-mortem [70]. Post mortem

biochemical processes in muscle lead to pH decline. A

high expression of CREM being positively correlated

with pH at 24 hours, may indicate a slowdown of apop-

tosis related post mortem processes paralleling anaerobic

metabolic processes that led to a decrease of pH. This

indicates that the abundance of CREM transcripts in

muscle plays a significant role in meat quality. Further,

CREM and miR-153 were highly negatively correlated

(FDR < 0.01) which is known to induce apoptosis in a

glioblastoma cell line DBTRG-05MG [71]. Thus a con-

sistent link of effects on apoptosis and mRNA-miRNA

interaction is obvious. miR-153 also inhibits the protein

kinase B (PKB/Akt) pathway by reducing the protein

level of insulin receptor substrate-2 (IRS2) [72]. As re-

cently shown, miR-135a targets IRS2 levels by binding to

its 3′UTR and this interaction regulates skeletal muscle

insulin signaling [73]. Insulin signaling plays a pivotal

role in the regulation of glucose uptake by skeletal

muscle [74]. The glucose uptake in skeletal muscle has

large effects on meat characteristics [75,76]. In our

study, Irs-2 also belonged to module dark-turquoise and

was negatively correlated with waterholding capacity re-

lated traits like DL (p = 0.004) and positively with pH

(pH24MLD, p = 7.05E-07; pH24MSM, p = 1.30E-03; pH

45MLD, p = 3.39E-03). Thus another plausible functional

link of members of the module dark-turquoise and

miRNAs can be shown.

Mitochondria supply energy for physiological functions

and play a significant role in the regulation of other cellu-

lar events including apoptosis, calcium homeostasis, and

production of reactive oxygen species. Mitochondrial me-

tabolism is affected by miRNA regulation [77]. Here, we

found many miRNAs being negatively correlated to target

genes of modules red, black, which were enriched for

genes related to mitochondrial pathways. Indeed, miR-338

modulates energy metabolism, oxidative phosphorylation,

and mitochondrial functions [78,79], and miR-15b, -

16, -195, and −424 decrease cellular ATP levels in

Table 6 MicroRNAs belonging to modules blue and purple and their negatively-correlated genes

Modules miRNA family Genes within modules negatively correlated with miRNA1

Blue Let-7 CARS

miR-124 STRA13, IER3IP1, HSBP1, CCNL2, LOC100133632, SYTL4

miR-130 STRA13, LOC727762

miR-154 PCM1

miR-202 SCARB2, STRA13, TFAM

miR-204 STRA13

miR-467 STRA13, MRPS7, STRA13, NUCKS1, PSMC3, FDPS, DNAJC12, WBSCR22

Purple miR-17 BEND5, PTP4A2, BEND5

miR-185 SEMA6C, Nfia, RSU1, USP11, SEMA6C, ZNF704

miR-221 RNF220, CHD8, PI4KA, FLJ25076, DVL2, FZD8, Sh2b1, LOC100157073

miR-324 CIC, UBE2E1, UBE2V1, MYLPF, UBAP1

miR-362 IGFBP5, HERC1, PSMB3

miR-500 IGFBP5, UBE2E1, HERC1

miR-542 RSU1

1genes predicted as potential targets of the corresponding miRNAs are shown in bold.
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cardiomyocytes [80]. Additionally, miR-181c can enter

and target the mitochondrial genome, ultimately causing

electron transport chain complex IV remodeling and

mitochondrial dysfunction [81]. Here we found miR-181

was correlated with DL and pH24MLD as well as S100

calcium binding protein A6 (S100A6). Further, mitochon-

drial genes like Kif1b, Atp6v1g1, Atp5c1, Park7, Chchd2,

Ruvbl1, Mrps7, and Mrpl48 were highly negatively corre-

lated with, and some of them were predicted as targets of,

miR-15, -154, -17, -503, -214, -330, -342, and −375.

Many genes of modul tan were assigned in the GO

category “extracellular matrix” including Col1a1, Col1a2,

Col3a1, Col5a1, Col5a2, Col6a1, Col6a3, Col12a1, Col

14a1, Crispld2, Ddn, Fbn1, Nid1, Nid2, Ogn, and Postn.

These genes were negatively correlated with, and some of

them were predicted as targets of, miRNA. Interestingly,

Col6a1 was found as a target for many miRNAs includ-

ing miR-132, miR-205, miR-320, miR-330, miR-375,

miR-423, and miR-425. Moreover, miR-205 was identi-

fied as a regulator of Col1a1, Maged1, and Dpysl3.

Gandellini et al. (2012) [82] reported that miR-205 con-

trols the deposition of laminin-332 and its receptor

integrin-β4 as well as participates in a network involving

ΔNp63α, which is essential for maintenance of the base-

ment membrane in prostate epithelium. Similarly, other

miRNAs, including miR-29, miR-133, and miR-30, are

involved in the regulation of development and mainten-

ance of extracellular matrix of bone and muscle [83,84].

Much evidence suggests that a group of miRNAs (clus-

ter and family) may contribute to the regulation of a set of

common targets [46,85,86], and are, therefore, associated

with phenotypes. WGCNA was used here to group

miRNA products and revealed 2 modules associated with

meat quality (purple and blue). The miRNA from these

modules were negatively correlated to mRNAs, and some

of these were predicted as targets. Most miRNAs in mod-

ule purple were related to genes in the categories “ubiqui-

tin” or “protein catabolic process” (Ube2e1, Ube2b1,

Ubap1, Igfbp5, Herc1, Psmb3, Flj25076). Differential ex-

pression of genes of the ubiquitin system depending on

muscle and meat quality was previously shown; only re-

cently also association of genes of the ubiquitin system

with meat quality was reported [1,87]. In particular, miR-

324 was highly negatively correlated and predicted to tar-

get Ube2e1, Ube2v1, Bap1, Lpf and Cic.

Most previous muscle mRNA and miRNA expression

studies focused on cardiac muscle or skeletal muscle in-

jury [50,88]. In these injuries, the degree of damage re-

sults from an imbalance of energy, nutrients, and oxygen

supply-and-demand in muscle cells. Similarly, nutrient,

energy, and oxygen depletion occurs post mortem. Many

changes in expression associated with muscle injury

would therefore overlap with post mortem processes in

conversion of muscle to meat, and vice versa. In this

regard, functional annotation of mRNA co-expression

and trait-correlated expression identified key post mor

tem pathways and functions, including glucose meta-

bolic process, mitochondrial metabolic pathways, and

muscle structural components, involved in muscle-to-

meat conversion that will be relevant to muscle injury

as well.

Conclusion
In this study, for the first time, expression and co-

expression of miRNAs—functioning as a fine-tuning of

mRNA transcription and translation—was integrated with

mRNA transcript abundance measures and phenotypic

data on meat quality. By this an additional hierarchical

level, i.e. miRNA affecting mRNA, was considered in the

molecular regulation of muscle-to-meat conversion. mi

RNAs are necessary for proper skeletal and cardiac muscle

development and function, and have a profound influence

on multiple myopathies, such as hypertrophy, dystrophy,

and conduction defects. Consequently, an expression bio-

marker panel (whether from mRNA or miRNA) derived

from this study may not only be predictive for quality of

meat post mortem, but also for many muscle pathologic

processes including muscle atrophy, dystrophy, and hyp-

oxia [89,90]. The abundance of mRNAs and their fine-

tuning by corresponding miRNAs in molecular pathways

related to mitochondrial metabolic balance and oxidative

stress, cell proliferation and differentiation, as well as

muscle structural protein composition play an important

role in these myopathies and meat maturation. Functional

studies of the interactions among and between mRNAs

and μRNAs will provide additional experimental data for

validation of the relationships on the level of mRNAs,

miRNAs and organismal phenotype that were stressed in

this study.

Methods
Animals, tissue collection, and phenotyping

Animal care and tissue collection procedures followed the

guidelines of the German Law of Animal Protection, and

the experimental protocol was approved by the Animal

Care Committee of the FBN. This study was based on trait

measurement and expression profile association analyses

done with 207 performance-tested pigs from commercial

herds of the crossbreed Pietrain × (German Large White ×

German Landrace). Animals were raised and slaughtered

under standardized conditions in the experimental faci-

lities of the Leibniz Institute for Farm Animal Biology

(FBN). Sample collection was performed thoroughly after

exsanguination, tissue samples were rapidly dissected,

snap-frozen in liquid nitrogen and stored at −80°C. The

average age of the pigs at sampling was ~180 days.

Technological parameters of meat quality, i.e., pH-value,

conductivity, and colour, were measured by using Star-
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series equipment (Rudolf Matthaeus Company, Germany).

Measures of pH and conductivity were at 45 min post

mortem (pH45) and 24 h post mortem (pH24), in both M.

longissimus dorsi between 13th/14th rib (pH45MLD,

pH24MLD, LF45MLD, LF24MLD) and the ham (M.

semimembranosus) (symbol: pH24MSM, LF24MSM). Mus

cle colour was measured at 24 h post mortem by Opto-

Star (Matthaeus, Klausa, Germany). Drip loss was scored

based on a bag method with a size-standardized sample

from the M. longissimus dorsi collected at 24 h post

mortem and weighed, suspended in a plastic bag, held at

4°C for 48 h, and re-weighed [91]. To determine cooking

loss, a loin cube was taken from the M. longissimus dorsi,

weighed, placed in a polyethylene bag, and incubated in

water at 75°C for 50 minutes. The bag was then immersed

in flowing water at room temperature for 30 minutes, and

the solid portion was re-weighed. Thawing loss was deter-

mined similarly after at least 24 h freezing at −20°C. Drip

loss, cooking loss, and thawing loss were calculated as a

percentage of weight loss based on the start weight of a

sample. Shear force was measured using Instron-4310

equipment, and average values of four replicates were used

for analyses.

Customized miRNA microarrays design

Our custom porcine miRNA array was designed from 284

pig miRNAs obtained from the miRBASE (miRBase 14.0).

Because miRNAs are highly conserved between closely-

related species [10], we could predict novel porcine

miRNA candidates by inter-species alignments requiring

100% mature miRNA similarity. Accordingly, we used pre-

viously known miRNA sequences from humans and mice,

as well as other species, to perform BLAST searches

against the porcine genome database porcine; 391 miRNA

candidates were identified. In total, 675 miRNAs probe

sets, corresponding to 513 unique sequences belonging to

159 miRNA families, were used for hybridisation with the

target samples described above. Microarray data related to

all samples were deposited in the Gene Expression Omni-

bus public repository (GEO accession number: GSE41294:

GSM1013731-GSM1013920).

Customized microarrays, pre-processing, and

normalization of miRNA

Total miRNA was isolated with Qiagen miReasy Mini

kit and RNeasy MinElute Clean up kit (Qiagen, Hilden,

Germany) according to manufacturer’s protocol for

small RNA. Quality and quantity of isolated total RNA

and miRNA were determined using an Agilent 2100

Bioanalyzer for RNA (Agilent Technologies, Santa Clara,

CA). Affymetrix customized microarrays from our por-

cine miRNA candidate dataset were used. Targets for

hybridisation were prepared from miRNA with the

FlashTag™ Biotin RNA Labeling Kit for Affymetrix Gene

Chip miRNA arrays (Genisphere, Hatfield, PA, USA)

according to manufacturer’s recommendations. Briefly,

250 ng of miRNA of each individual were poly(A)-tailed

using ATP–poly-A-Polymerase, then FlashTag Biotin

end-labelled. After hybridisation of biotin-labelled com-

plementary RNA, chips were washed and processed to

detect biotin-containing transcripts by Streptavidin-

PE (Phycoerythrin) conjugate, then were scanned on

GeneChip scanner 3000 7G (Affymetrix, Santa Clara,

US). Data were extracted from the images, and spots

were quantified and processed by quality filtering. Hy-

bridisation quality was assessed in all samples by using

JMP Genomics 5 utilising Robust Multi-array Average

(RMA) background correction and log2 transformations.

To acquire the expression value, data were normalized

between chips using the quantile normalization method.

Whole-genome expression profiling (mRNA)

Gene expression profiling of M. longissimus dorsi sam-

ples of pigs was conducted with the same animals (207)

as for miRNA. In brief, total RNA was isolated using

TRI Reagent (Sigma, Taufkirchen, Germany) and used

for target preparation for microarray hybridisation.

According to Affymetrix protocols, 500 ng of total RNA

were reverse-transcribed into cDNA, transcribed into

cRNA, and labelled using Affymetrix One cycle synthesis

and labelling kit (Affymetrix, UK) to prepare antisense

biotinylated RNA targets. Quality of hybridisation was

assessed in all samples following manufacturer’s recom-

mendations. Data were analysed with the Affymetrix

GCOS 1.1.1 software, using global scaling to a target sig-

nal of 500. Data were processed with MAS5.0 to gener-

ate cell intensity files (present or absent). Quantitative

expression levels of present transcripts were estimated

using the PLIER algorithm (Probe Logarithmic Intensity

Error) for normalization that was implemented in Expres-

sion Console (Affymetrix). Based on BLAST comparison

of the Affymetrix porcine target sequences with the por-

cine genome sequence (Ensembl_Sscrofa_10), 20,689 of

the 24,123 probe sets on the Affymetrix Porcine GeneChip

were localized and annotated [92,93]. Microarray data re-

lated to all samples were deposited in the Gene Expression

Omnibus public repository [GEO accession number:

GSE32112: GSM796045-GSM796251].

Pre-processing of phenotype and expression data

Phenotypes and expression levels were adjusted for sys-

tematic effects by analysis of variance performed with

the procedure “Mixed” of the SAS software package

(SAS version 9.1 SAS Institute, Cary, NC) before analysing

their correlation and by using co-expression network. Sex

and RYR genotype was used as a fixed effect, “sire” and

“slaughter day” as random effects, and “carcass weight”

as a covariate. Subsequently, the residuals of log2-trans
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formed expression intensities (miRNA and mRNA) and

muscle phenotype were used for further analysis.

Pearson correlation of miRNA expression level and

gene expression level was calculated using 190 individ-

uals; correction for multiple testing was done by control-

ling the FDR level (q-value according to Storey and

Tibshirani, 2003, [94]) at 10%.

Weighted gene Co-expression network analysis (WGCNA)

A weighted gene co-expression network was constructed

for 207 muscle biopsies using the blockwise Modules

function from the WGCNA package in R [23]. Residuals

of gene expression, after correcting the effect, were used

for WGCNA. The blockwise Modules function allows

the entire dataset of 11,191 probe sets by mRNA and

675 miRNA to be utilised in the construction of the

weighted gene co-expression network.

Extremely outlying individuals were removed from the

following analysis based on hierarchically clustered using

the average linkage function, and common Euclidean

distance. Pearson correlation matrix of all gene-gene

comparisons were calculated across all microarrays. Ad-

jacency matrix was then calculated using the correlation

matrix of the expression sets. Finally, the Topological

Overlap Matrix (TOM) was converted from the ad-

jacency matrix and used to derive a TOM-based distance

matrix for the hierarchical clustering of expressions. In

the next step, modules of expression profiles, (i.e. sets of

genes with high topological overlap) were formed based

on hierarchical clustering, with empirically specified

minimal module size (30 for gene expression, 10 for

miRNA).

According to the WGCNA methodology, rather than

traditional distance or correlation based similarity mea-

sures, it utilizes the topological overlap matrix Ω = [ωij]

(TOM),

ωij ¼

aij þ
X

u

aiuauj

min
X

u

aiu;

X

u

aju

� �

þ 1−aij

; a
ij
¼ cor xi; xj

� �
�

�

�

�

β

where xi and xj are the gene expression profiles of the i-

th and j-th gene and αij is the adjacency. TOM based

distance matrix is a robust and powerful measurement

in building co-expression network. Selection of appro-

priate value for the power β were derived according to

the pickSoftThresholding function of the WGCNA pack-

age [23,95]. Accordingly, by manually inspecting the fit

of the scale free topology model with the candidate β-

values for each set of expression profile, minimal β-

values giving a coefficient of determination R2 higher

than 90% were adopted.

Modules were further merged based on the dissimi-

larity between their “eigengenes”, which were defined

as the first principal component of each module. Genes

that were not assigned to another module were as-

signed to the grey module. A threshold of 0.2 for the

dissimilarity as recommended by the WGCNA author

was used. Module–trait associations were estimated

using the correlation between the module eigengene

and the phenotype, which allows easy identification of

expression set (module) highly correlated to the phe-

notype. For each expression profile, Gene Significance

(GS) was calculated as the absolute value of the correl-

ation between expression profile and each trait; module

membership (MM) was defined as the correlation of

expression profile and each module eigengene, enab-

ling further identification of key players in the regula-

tion network.

Gene ontology and pathway enrichment analysis

We performed a gene ontology (GO) enrichment ana-

lysis for network modules using the Database for Anno-

tation, Visualization and Integrated Discovery (DAVID,

http://david.abcc.ncifcrf.gov/ [96,97]. Each analysis was

performed using the functional annotation clustering

option. Functional annotation clustering combines sin-

gle categories with a significant overlap in gene content

and assigns an enrichment score (ES, defined as the -

log10 of the geometric mean of unadjusted p-values

for each single term in the cluster) to each cluster,

making interpretation of the results more straightfor-

ward. To assess the significance of functional clusters,

we created 22 sets of 11,191 probe sets corresponding

to 8,036 genes (size of the average module identified in

this study).

Predicting porcine targets of miRNAs by RNA hybrid and

TargetScan

We used two methods to predict the targets of porcine

miRNA. First, we predicted targets using the compu

tational software RNAhybrid (http://bibiserv.techfak.

uni-bielefeld.de/rnahybrid), which detects the most en-

ergetically favourable hybridisation sites of a small RNA

within a large RNA [98]. Here, we tested the miRNA

probe sets with the following parameters: number of hits

per target = 1, energy cutoff = −25 kcal/mol, and maximal

internal or bulge loop size per side = 4. Most targets found

were located on the 3′-UTR of genes. Second, TargetScan

(http://www.targetscan.org) was used to detect target gene

candidates based on seed complementarity on UTR data-

base 6.0 and our porcine RefSeq transcript with our

miRNA seed sequence [99]. TargetScan was applied con-

sidering both conserved and non-conserved targets. The

porcine RefSeq transcripts, which derived from 11,191

probe sets that showed consistent expression in porcine

muscle, were used as input targets for RNAhybrid and

TargetScan.
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