
Correlated substitution analysis and
the prediction of amino acid
structural contacts
David S. Horner,Walter Pirovano and Graziano Pesole
Submitted: 31st July 2007; Received (in revised form): 8th October 2007

Abstract
It has long been suspected that analysis of correlated amino acid substitutions should uncover pairs or clusters of
sites that are spatially proximal in mature protein structures. Accordingly, methods based on different mathematical
principles such as information theory, correlation coefficients and maximum likelihood have been developed to
identify co-evolving amino acids from multiple sequence alignments. Sets of pairs of sites whose behaviour is
identified by these methods as correlated are often significantly enriched in pairs of spatially proximal residues.
However, relatively high levels of false-positive predictions typically render such methods, in isolation, of little use in
the ab initio prediction of protein structure. Misleading signal (or problems with the estimation of significance levels)
can be caused by phylogenetic correlations between homologous sequences and from correlation due to factors
other than spatial proximity (for example, correlation of sites which are not spatially close but which are involved in
common functional properties of the protein). In recent years, several workers have suggested that information
from correlated substitutions should be combined with other sources of information (secondary structure, solvent
accessibility, evolutionary rates) in an attempt to reduce the proportion of false-positive predictions. We review
methods for the detection of correlated amino acid substitutions, compare their relative performance in contact
prediction and predict future directions in the field.
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INTRODUCTION
Models of molecular evolution used in bioinformatics

and phylogenetic studies of both nucleotide and

protein sequences have become increasingly sophis-

ticated in recent years. Modern nucleotide substitu-

tion models allow different frequencies of bases and

substitution types (reviewed in [1]) and permit the

estimation and incorporation of site-specific substitu-

tion rates (reviewed in [2]). However, such stochastic

substitution models assume that each site in a molec-

ular sequence evolves independently of all other sites.

While this assumption greatly facilitates probabilistic

calculations such as the scoring of alignments or the

construction of phylogenetic trees, it is naı̈ve for a

number of reasons. For example, in coding sequences

where strong evolutionary pressures are likely to act

on the protein sequence encoded, the nature of the

genetic code ensures that multiple substitutions

within a given codon are unlikely to be accepted in

an independent manner. Furthermore, selective

constraints requiring the maintenance of secondary

structure elements in non-coding RNAs or elements

involved in post-transcriptional regulation of gene

expression (often found in untranslated regions of
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mRNAs) would be expected to violate the assump-

tion of independence between sites.

The evolutionary behaviour of codons has been

modelled with codon level substitution matrices [3].

Covariance models combined with sequence-based

heuristics can also be used to efficiently detect known

secondary structure elements in genome sequences

[4] and coordinated substitutions have been used in

comparative sequence analysis to predict secondary

structure [5].

In the case of amino acid sequences, empirically

derived probabilistic substitution models specific to

diverse taxonomic groups and sub-cellular localisa-

tions are commonly used for sequence alignment and

phylogenetic analyses (reviewed in [1]). Such models

typically allow the incorporation of dataset-specific

amino acid frequencies [6] and variability in site

substitution rates. Such models capture only the

average tendencies of amino acids to undergo inter-

conversions and do not necessarily describe perfectly

the context-specific evolutionary tendencies of indi-

vidual sites. Analogously to the situation in RNA

sequences, physical and functional interactions

between sites in protein sequences might lead to

non-independence of their evolutionary behaviour.

Such behaviour is an explicit prediction of the

COVARION hypothesis [7] and forms the basis of

heterotachy [8] and evolutionary trace [9] analyses.

Recently, Lin et al. [10] introduced contact-mutation

matrices derived from structural information. It has

been shown that substitution scores reflecting contact

information can also improve alignment accuracy

[11]. However, failure to accommodate non-inde-

pendence of substitutions is also likely to compro-

mise phylogenetic analyses, ancestral sequence

reconstruction and molecular dating strategies. The

detection of pairs or groups of sites undergoing

correlated evolution should also allow the prediction

of structurally or functionally interacting amino acids

[12–14].

Reliable prediction of pairs of amino acids that

are physically proximal in protein tertiary struc-

tures would be of immense value in the ab initio
prediction of protein structure through the provi-

sion of a priori structural constraints. A priori

knowledge of relatively few contacts can allow

discrimination between structure models or

between solutions suggested by threading [15].

However, correlations between sites that are

physically distant in protein structures might also

be attributable to networks of sites, which influence

protein domain architecture, substrate specificity or

folding [16].

Correlations between amino acid sites do not

follow simple rules analogous to those in RNA

sequences and different physico-chemical considera-

tions may tend to be more important in different

secondary structure contexts and at different evolu-

tionary distances [17]. Other considerations, such as

the phylogenetic trees describing relationships

between homologous sequences also complicate

the identification of meaningfully correlated pairs

or groups of sites [18].

Here, we provide an overview of different

approaches that have been considered for the detec-

tion of correlated mutations from multiple sequence

alignments and where possible, we try to compare

the relative performance of these approaches. We

briefly consider machine learning and other methods

that incorporate correlated substitutions and other

types of information in the prediction of amino

acid contacts. Finally, we speculate on future

directions in the analysis of correlated amino acid

substitutions.

SOURCESOFAPPARENT
CORRELATION BETWEEN
AMINOACID SITES
Atchley et al. [18] formalized a simple linear model

to explain correlation (C) between two sites in

a sequence alignment.

C ¼ Cstructure þ Cfunction þ Cphylogeny þ Cinteraction

þ Cstochastic ð1Þ

Where, Cphylogeny is correlation due to phylogenetic

relationships between homologous sequences that are

related by a tree-like evolutionary structure and

therefore cannot be considered to be statistically

independent observations. Thus, we expect that the

outcome of compensatory substitutions that occurred

in a sequence ancestral to a group of sequences under

consideration will be manifest in the descendent

sequences—and that simple pairwise comparisons

between sequences will not be sufficient to provide

an accurate account of evolutionary events.

Cstructure and Cfunction signify correlation due to

structural and functional constraints, effectively the

signal that correlated substitution analyses attempt

to uncover. However, these sources of correlation

may not be independent from one another or indeed

from phylogenetic correlation. Cinteraction describes
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interactions between the aforementioned sources of

correlation. Finally, random effects from uneven

or incomplete sequence sampling, casual co-variation

and other stochastic factors are represented by

Cstochastic.

In practice, most bioinformatics approaches to

correlated mutation analysis do not discriminate

between structural and functional correlations,

attempting to filter only stochastic and potentially

phylogenetic noise. This may be no simple task as an

elegantly designed recent study provides compelling

evidence that the strength of correlations due to

phylogenetic factors are, at least in many sequence

alignments, of at least the same order of magnitude as

those due to structure and function [19]. These

authors used a method known to find relatively

well-characterized correlations due to secondary

structure and showed that distributions of levels of

apparent correlation between pairs of sites within

proteins were similar to those between pairs of sites

from sequence matched non-interacting protein

alignments.

For convenience, the majority of published

correlated mutation analysis (CMA) algorithms can

be grouped into various categories: methods using the

Pearson correlation coefficient, methods employing

information theory, methods based on observed and

expected patterns of data distribution, methods

based on alignment perturbation, methods based on

maximum likelihood, methods using empirically

derived contact probabilities and machine learning

approaches. We will discuss each of these categories

of methods independently and will describe elements

common to different implementations. Representa-

tive software and server implementations of these

methods are described in Table 1.

Methods based on correlation coefficients
The simplest correlation coefficient-based methods

do not consider substitutions but correlations

between physiochemical properties of amino acids

found in pairs of sites in individual sequences.

In particular, the program CRASP [20–21] calculates

correlation coefficients based on an array of

amino acid physiochemical indices, weighting the

contribution of individual sequences according to

their degree of evolutionary relatedness with other

homologs under consideration.

The Pearson coefficient [Equation (2)] has also

been widely used to quantify correlations between

inferred substitutions at pair of sites.

rij ¼
1

N

X
kl

ðsikl � siÞðsjkl � sjÞ
�i�j

ð2Þ

Where, referring to a multiple sequence alignment

(MSA), rij is the correlation coefficient between sites

i and j, N is the number of comparisons made

between sequences, sikl is a weight for a substitution
inferred between two sequences k and l at position
i, s is the mean weight for substitutions at site i and
�i is the standard deviation of values of sikl. Such
methods evaluate correlations between the weights

for substitutions that are inferred to have occurred

at each of two sites during the course of evolution.

Substitutions can be weighted equally (a binary

classification) or differently, using a metric of sub-

stitution probabilities or differences in biochemical

properties between pairs of amino acids (charge,

volume, etc). The best known implementation of

this method [12] used all pairwise comparisons

between sequences and a binary scheme for scoring

substitutions (perfectly conserved sequence positions

and positions with >10% gaps are excluded from the

analysis). The component of the correlation coeffi-

cient derived from each pairwise comparison was

also weighted according to the degree of overall

identity between the pair of sequences considered.

Workers from the same research group subsequently

proposed the use of the McLachlan amino acid

similarity matrix [22] to provide a general measure of

Table 1: Software andwebservers for correlated amino acid substitution analyses

Software/Reference Website Notes

CRASP [11] wwwmgs.bionet.nsc.ru/mgs/programs/crasp/pcrasp/index.html Webserver, physiochemical correlations
LnLCorr [30] www.evolutionarygenomics.com/LnLCorr.html Software, two state maximum likelihood
PDGcon [14] www.pdg.cnb.uam.es:8081/pdg_contact_pred.html Webserver, McLachlan correlation
Dependency [22] www.uhnres.utoronto.ca/tillier/depend2/dependency.html Software, Mutual Interdependency
P2P [36] ignmtest.ccbb.pitt.edu/cgi-bin/p2p/p2p0.cgi Webserver, P2P matrix methods
MI with z-score [23, 24] www.biochem.uwo.ca/cgi-bin/CDD/index.cgi Software for MI method with z-scores
Various [29, 39] www.afodor.net/ Java code for various methods
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the severity of amino acid substitutions [23]. Other

related implementations have been proposed by

Neher [13], Taylor and Hatrick [14] and Vicatos etal.
[24]. These differ from the method of Olmea and

Valencia [23], principally in the choice of sub-

stitution weight measures, the choice of which site

pairs are evaluated and the treatment of negative

correlations (for a comprehensive summary see [25]).

One limitation of the methods described above is

that they take no explicit account of the phylogenetic

tree linking the sequences under study. In tree-based

correlation coefficient methods, hypothetical ances-

tral sequences corresponding to nodes on a phyloge-

netic tree are reconstructed and only changes

observed along single branches are used in the cal-

culation of correlation coefficients. Fukami-

Kobayashi et al. [26] used maximum parsimony to

reconstruct ancestral sequences on a neighbour join-

ing tree and considered only charge reversing sub-

stitutions scored in a binary manner, while Fleishman

et al. [27] reconstructed trees and ancestral sequences

with probabilistic methods and considered all sub-

stitutions—using weights derived from the Miyata

amino acid replacement matrix. We have also

implemented a method similar to that of Fleishman,

but using the McLachlan matrix and a different

measure of significance (see Discussion section). Such

tree-based methods may better account for phyloge-

netic correlations, but inevitably use less comparisons

than pairwise methods as the number of internal

branches in a bifurcating tree is smaller than the

number of possible pairwise comparisons between

sequences.

Methods using information theory
Mutual information (MI) [Equation (3)] is a measure

of the mutual dependence of two variables, in the

case of two positions i and j in a sequence alignment

it can be considered a measure of how much

information about site j in a given sequence is given

by knowledge of site i.

MIði, jÞ ¼
Xn

x¼1

Xm

y¼1

Pxy log2
pxy
pxpy

ð3Þ

Where MI(i, j) is the mutual information between

sites i and j, the indices refer to the 20 possible amino

acid states and pxy reflects the probability of observing
amino acid x at site i and amino acid y at site j, px
and py are the respective independent probabilities

of these events.

Unlike the correlation coefficient-based methods

described earlier, mutual information-based

approaches do not consider substitutions, but rather

the relative frequencies of different amino acids

and combinations of amino acids observed at two

positions in the MSA. As for basic correlation

coefficient methods, mutual information used in

isolation might be expected to be sensitive to

correlation derived from phylogeny and various

methods have been proposed to account for this

signal.

Wollenberg and Atchley [18, 28] suggested a

parametric bootstrap approach, whereby a phyloge-

netic tree was used to repeatedly generate simulated

sequences under a standard amino acid substitution

matrix. Datasets generated in this way would be

expected to show correlation only due to phylogeny

and stochastic considerations—and allow the estima-

tion of levels of phylogenetic correlation that would

be expected to result from the tree linking the

sequences.

Tillier and Lui [29] reasoned that the majority of

sites in an alignment would follow the general

phylogenetic trend, while pairs of sites which were

undergoing correlated evolution for structural

or functional reasons would share high mutual

information between each other, but low mutual

information with other sites in the alignment.

They used the measure of multiple inter-

dependency, effectively, the ratio of the mutual

information between a pair of sites and the sum of

the mutual information of each of these sites with all

other sites.

Others have found that normalizing the mutual

information score by pair entropy reduces the impact

of phylogenetic correlations [30–31]. Pair entropy

is a measure of the relative frequency with which

a given combination of character states is observed

at a pair of sites. Reasoning that all sites in the

distribution follow the same phylogenetic history

and related correlation trends, these authors use the

distribution of pair normalized mutual information

scores to convert individual pair scores into z-scores.

Methods based on observed and
expected patterns of data distribution
Several groups have considered the observed patterns

of amino acid occurrence at two positions and

compared them to the frequencies of data expected

under an independent sites model, generating a
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chi-squared observed minus expected squared

(OMES) statistic according to Equation (4):

�2ði, jÞ ¼
X

n

ðNn,OBS �Nn,EXÞ
2

Nn,EX
ð4Þ

Where, n runs over all possible combinations of

amino acid pairs at positions i and j, Nn,EX is the

expected number of occurrences of n if positions

i and j are independent and Nn,OBS is the observed

number of pairs of n. Initial work following this

approach assumed that the test statistic indeed

followed the chi-squared distribution [32–33],

while a later modification introduced reshuffling

of data columns to estimate the distribution of the

test statistic. One proposed implementation of

the reshuffling uses evolutionary distances to alter

the probabilities that sites from particular sequences

will be reshuffled to simulate tree-like evolution

during the estimation of significance intervals [19].

Methods based on alignment
perturbation
Alignment perturbation methods compare the

relative composition of columns of the entire

alignment with that of a sub-alignment, whose

sequence content is defined by the occurrence of

a pre-specified amino acid at a given site. In statistical

coupling analysis (SCA) [16, 34] a sub-alignment

containing all sequences with a pre-defined amino

acid at a given site is created. For the second site, the

sum of the squares of the ratio of probabilities of

observing each amino acid in the perturbed and

complete alignments is calculated.

A second perturbation-based method, explicit

likelihood of subset co-variation (ELSC) [35], selects

sub-alignments in the same way as SCA, but cal-

culates the probability of the observed partition of

character states at a given site by chance given the

entire alignment. This value is normalized to give

a probability of the observed data relative to the most

probable random partition of the data.

Probabilistic methods
A true tree-based maximum likelihood method to

uncover pairs of coevolving sites was proposed by

Pollock et al. [36]. In this method, the probability

of the observed data given a pre-calculated phylo-

genetic tree is calculated under independent and

non-independent models, and a likelihood ratio

test performed to evaluate the significance of the

difference of likelihoods. However, in order both to

remain computationally tractable and to allow

adequate parameterisation of the substitution

models from individual datasets, the method uses a

simple two-state evolutionary model allowing,

for example, discrimination only between positively

and negatively charged amino acids or large and

small amino acids. The method performed extremely

well with simulated data, but has received limited

testing with real data.

Bayesian mutational mapping to analyse distribu-

tions of substitutions over phylogenetic trees has

been used with coding sequence data under codon

substitution models [37]. Dimmic et al. implemented

a variety of tests to identify correlations between

codons. However, analogously to the maximum

likelihood method, parametric tests implemented in

this study were based on simple models of favourable

or non-favourable interaction states between pairs

of amino acids. With simulated data this method

detected between 60 and 99% of pairs evolving in a

correlated manner (depending on the strength of

correlation imposed in the simulation) and only

around 3% of other pairs of sites were recovered as

significantly correlated. In limited testing on real

data, 13% of contact pairs and 3% of non-contact

pairs were recovered as significantly correlated

(meaning that 40% of predictions made were true

contacts—given the numbers of contact and non-

contact pairs considered). However, these numbers

are difficult to compare with other methodologies

given the restricted size of the dataset (one protein)

and the fact that the authors did not consider pairs

of sites with inter-amino acid distances between

8 and 16 Å.

Empirical matrix-based methods
Singer et al. [38] developed a log-odds matrix

describing the relative probability that a given pair

of amino acids should be involved in inter-residue

contacts or not taking a normalized sum of log-odds

scores for pairs of sites observed to change simulta-

neously through pairwise comparisons of sequences.

Significance levels were established through a data

randomization test.

Lin et al. [10] developed a series of contact-based

substitution matrices. The Markov model underlying

the contact accepted mutations takes into account

the ‘interchanging of structurally defined side-chain

contacts’ and was build from 6912 pairs of domains

of the CATH database [39]. While this matrix was

not aimed at the detection of contacts, Eyal et al. [40]
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used pairwise comparisons of sequences from Blocks

protein alignments [41] that were associated with

protein crystal structures to infer the frequencies of

all possible pair substitutions for contacting and non-

contacting pairs. They then created a log-odds

matrix of 400� 400 entries depicting the relative

probabilities of all pair substitutions in contact and

non-contact pairs. Analogously to the approach of

Singer et al., the probability that a pair of sites

constitute a structural contact can then be estimated

simply by summing the matrix entries for pair

substitutions inferred from pairwise comparisons in

a sequence alignment [42].

Machine learning approaches
Machine learning approaches incorporate many

different sources of information—often including

but not restricted to correlated substitution data—to

generate predictions of amino acid contacts. Such

methods use large training sets to identify patterns

of observations that tend to be associated with

contacts.

Fariselli et al. used multiple sequence alignments

associated with known protein structures to train

a neural network which used, for each pair of sites,

the McLachlan correlation score, information con-

cerning site conservation, secondary structure con-

text of each of the sites in question, the separation of

the sites in the primary sequence and the frequencies

of different amino acid pairs observed in the

alignment (as well as frequencies of neighbouring

amino acids in the primary sequence) [43]. More

recently, Cheng and Baldi [44] implemented a

support vector machine called SVMcon that used

several measures of correlated substitutions between

sites among other features including secondary

structure data, site composition probabilities for a

nine residue windows centred around the sites of

interest and other measures of contact potential to

predict amino acid contacts.

Another neural network approach that is perhaps

more explicitly dependent of correlated substitutions

reasons that correlations should not be restricted to

sites making contacts, but should also be manifest

between nearby sites in the primary sequence [45].

Pairwise correlations are thus calculated between all

pairs of sites in two windows of length five amino

acids, centred on the two positions of interest in the

alignment. Other information used as input to the

neural network includes the biophysical character of

the amino acids on which the window was centred

(non-polar, polar, acidic or basic), the secondary

structure types in which the sites of interest were

predicted to participate, the mean empirical fre-

quency with which amino acids observed at the

tested sites in the alignment were seen to constitute

contacts in a training set, the length of the sequence

alignment and the separation between tested sites in

the alignment. The neural network of Hamilton etal.
[45] outperformed that of Fariselli et al. [43] in direct

comparisons [45].

RELATIVE PERFORMANCE
OF DIFFERENTMETHODS
Evaluation of the performance of different correlated

substitution algorithms is complicated by a series

of factors. Using real data, it is almost impossible to

know which pairs indeed undergo non-independent

substitutions. Nevertheless, it is possible, given a

crystal structure, to identify true positive contact

predictions, and on occasion functional correlations

not depending on spatial proximity can be confirmed

through reference to the literature. However, false-

positive prediction rates are hard to ascertain as it is

difficult to be sure that an inferred correlation

between two sites is functionally spurious.

Several authors [31, 36] have used simulated data

to evaluate the behaviour of various CMA algo-

rithms. The usual approach here is to allow the

majority of sites to evolve in the usual, mutually

independent, manner and to specify a subset of sites

as ‘drivers’ which, when they undergo substitutions

increase the probability of substitution at defined

‘acceptor’ sites. Such experiments can be informa-

tive, although it is important to recognize that the

mechanism of correlation imposed is unlikely to be

representative of biological evolution and indeed

may more closely reflect the expectations of the

methods used to identify correlated evolution.

Accordingly, most algorithms have been evaluated

by their capacity to predict known contacts (analysing

alignments of proteins for which at least one sequence

has a known 3D structure). By informal convention,

structural contacts are almost always defined as pairs

of amino acids with b-carbon to b-carbon distances

of <8 Å (�-carbon distances in the case of glycine

residues). Constant sites and site with multiple gaps in

sequence alignments are routinely excluded from

all calculations as are potential interactions between

sites closer than around 10 positions in the primary

sequence (interactions due to secondary structure or
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primary sequence proximity being of little interest).

The sensitivity (percentage of true contacts that

are detected) of CMA algorithms is not typically

considered, while accuracy (the percentage of pre-

dictions that are correct) is considered as a key

performance indicator. Even when powerful meth-

ods of estimating significance of results have been

implemented, it is not uncommon for the most

significant (or highest scoring) L, L/2, L/5 or L/10
predictions (where L is the length of a given protein)

to be used and many researchers express their results

in terms of improvement over random prediction

as the accuracy of methods can be greatly dependent

on the length of proteins considered. This is easy to

appreciate as the number of contacts in a protein

structure tends to increase approximately linearly

with the length of the protein, while the number

of possible interactions between sites increases

quadratically with the length of the protein.

Relatively few studies have evaluated different

correlated substitution methods on identical datasets

and considering similar numbers of predictions.

Fodor and Aldrich [46] performed a thorough

analysis of the influence of site conservation on the

behaviour of the McLachlan pairwise correlation,

OMES, SCA and MI algorithms using 224 datasets

derived from PFAM [47] entries with corresponding

crystal structures. They concluded that the

McLachlan correlation and OMES methods signifi-

cantly outperformed SCA and MI and that the

performance of these methods is not entirely due to

their tendency to ascribe high scores to highly

conserved pairs of sites, which also tend to be

clustered in protein structures. It has also been shown

that ELSC outperforms SCA in the prediction of

contacts in the analysis of alignments corresponding

to 143 PFAM entries [35].

Eyal et al. [40] compared the performance of

their pair-to-pair substitution matrix with the

contact propensity matrix method of Singer [38]

and the pairwise correlation method [12]. They

concluded that in the prediction of contacts in

protein cores (where both residues have low solvent

accessibility) their matrix outperforms other methods

in terms of accuracy (up to 24% when few pre-

dictions are made), while the correlation method

tends to outperform the pair-to-pair matrix method

when solvent accessible regions were considered.

Halperin and coworkers [48] recently compared

the performance of several algorithms to predict pairs

of residues that participate in intermolecular

interactions between domains of Cohesin and

Dockerin proteins and in interactions between

domains of fusion proteins. While this problem is

distinct from the prediction of intramolecular

contacts, it is of interest to note that these authors

also concluded that Pearson correlation methods

(such as the correlated McLachlan substitution

weights) and OMES methods outperformed MI,

SCA and ELSC.

We have compared the 8 Å contact prediction

accuracy of four methods using a set 25 manually

curated alignments of randomly selected, non-

redundant, protein families whose high resolution

crystal structures are available (with a mean length

of 182 amino acids and an average of 93 sequences

per alignment). Where possible, as in many other

studies, the best L/2 predictions are considered.

The first method considered was that of [12],

using the Mclachlan amino acid similarity matrix

and with other details as described in [23]. We have

also implemented a mutual information parametric

bootstrap analysis, similar to the one described in

[28], where site substitution rate variability and root

sequence reconstruction were incorporated in the

parametric bootstrap. We also used the program

Dependency [29], which implements the multiple

interdependency algorithm of Tillier and Lui, and

generated on average less than half the number of

predictions of methods using the L/2 predictions per

dataset rule.

Finally, we implemented a tree-based correlation

(TreeCorr) measure similar to that of Fleishman et al.
[27]. TreeCorr calculates Pearson correlation coeffi-

cients from McLachlan matrix scores from branch-

specific comparisons between extant and recon-

structed ancestral sequences. A z-score measure of

significance is derived from reshuffling of substitutions

on branches of the phylogenetic tree 1000 times.

Maximum likelihood trees were estimated using

Phyml [49] with the JTT substitution matrix [50]

and allowing for site rate variation. Ancestral

sequences were inferred using the maximum

likelihood method [51] and the L/2 scores with the

highest z-scores were selected.
Our data are consistent with other studies in

suggesting that pairwise correlation methods outper-

form MI (Table 2). Although Dependency has an

accuracy comparable to the correlation methods,

considerably fewer predictions were considered. The

tree-based correlation measure marginally outper-

formed the pairwise correlation measure suggesting
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that explicit consideration of the phylogenetic

structure inherent in the data might help to increase

accuracy. In agreement with other authors [46], we

find that accuracy is strongly linked to the number of

predictions made by both the pairwise and tree-based

correlation methods. Considering L/10 predictions,

both the tree-based and pairwise methods yielded

accuracies close to 0.18.

Many methods for contact prediction have also

been assessed in the CASP (critical assessment of

structure prediction) experiments [52–53]. Some of

these—such as SVMcon [44]—explicitly use corre-

lated substitution data while others, for example

PROFcon [54], benefit implicitly from information

contained in correlated substitutions through the way

that input data are encoded. A common thread

linking the best performing methods is the use of

many different types of data in the generation of

predictions (see section on Machine learning) and it is

difficult to estimate the relative contribution of

correlated substitution information to their perfor-

mance. The criteria used to evaluate prediction

accuracy in the recent CASP7 experiment are

somewhat different to those that have classically

been employed in correlated substitution analyses

(predictions between sites at least 24 amino acids apart

in the primary sequence) [53]. However, as suggested

by the relative performance of machine learning

approaches that incorporate correlated substitutions

and other sources of information (Table 2), the best

performing contact prediction pipelines appear to

consistently outperform methods based exclusively

on correlated substitutions. However, it is encoura-

ging that methods such PROFcon [54] and SVMcon

[44] that use correlated substitution information—

either implicitly or explicitly—have produced highly

competitive contact predictions [52–53].

CONCLUSIONSANDDISCUSSION
To date, no single method has proved itself vastly

superior to others in the prediction of intramolecular

contacts from correlated substitution analysis. While

Pearson correlation measures and OMES seem to

outperform MI, SCA and ELSC, it must be

recognized that even their performance is incon-

sistent, particularly when more than L/2 predictions

are made. For all methods it is difficult to know a

priori whether conclusions are likely to be reliable.

Additional estimates of significance that take

phylogenetic correlation into account and more

widespread testing of probabilistic methods are also

needed.

The strong performance of the P2P matrix in

direct comparison to correlation methods is striking

and suggests that with additional consideration

of phylogenetic issues inherent in the pairwise

Table 2: Accuracies of intramolecular contact predictions by variousmethods.The table reports accuracies of pre-
dictions (number of true positives/number of predictions made) suggested where variousmethods have been directly
compared or where it is straight forward to extract comparable data.Note, experimentalmethodologies and charac-
teristics of alignments vary greatly between publications. In some cases the accuracy scores have been inferred from
graphs in the primary publication

Method
Ref Hamilton Pearson-pairwise Tree-correlation OMES SCA ELSC Dependency MI P2P Singer Fariselli

This articlea 0.13 0.14 0.1 0.02
[39]b �0.12 �0.11 �0.05 �0.05
[29]c �0.07 �0.09
[34]d �0.14 �0.18 �0.15
[17]e 0.14^0.27
[32]f �0.30
[37]g 0.21
[38]h 0.14 0.205

aFor experimental conditions see discussion.
b224 PFAM alignments, eachmethod considers best 75 predictions.
c138 PFAM alignments, eachmethod considers best 75 predictions.
d59 PFAM alignments, best L/2 predictions.
e127 PFAM alignments, cutoff chosen formaximum accuracy in each case, range ofmean accuracies for different SCOP fold categories is shown.
f118 hssp alignments, best L/10 predictions.
g173 alignments of at least15 sequences, best L/2 predictions.
h29 alignments of at least15 sequences, best L/2 predictions.

Correlated substitution analysis 53
D

ow
nloaded from

 https://academ
ic.oup.com

/bib/article/9/1/46/291751 by guest on 20 August 2022



comparison method used in matrix construction,

such approaches could provide powerful alternatives.

This is perhaps not surprising as the P2P matrix con-

siders patterns of co-substitution that actually occur at

amino acid contacts. Such methods would however

not be expected to perform well in the detection of

functional rather than structural correlations.

One surprising aspect is the virtual neglect of

DNA data as a source of information [37]. We feel

that new methods based on codon comparisons

are also warranted, given the capacity of DNA

sequences to provide insight into site-specific selec-

tive pressures [55].

It is arguably unfair to directly compare the

performance of algorithmic and machine-learning

approaches—the latter make use of more data than

that available to pure correlated mutation

algorithms. However, at this time, the greatest

potential for improvement probably comes from

machine learning-based approaches such as those of

Hamilton [45] and Fariselli [43] as well as the further

development of empirical matrix-based approaches.

It would be of interest to incorporate diverse types of

correlation measures in single machine learning

systems or in other types of contact prediction

pipelines that at present appear to outperform pure

correlated substitution methods [53].

The value of correlated substitution analysis does

not lie solely with its capacity to predict intramole-

cular contacts. The objective of using contact maps

in the ab initio prediction of protein structure or the

selection of correct threading solutions is commend-

able, but with the advent of ‘structural genomics’ and

(relatively) high-throughput crystal structure resolu-

tion [56–58], the practical need for ab initio structure
prediction is arguably lessening. On the other hand,

prediction of protein–protein interactions or the

nature of interactions between proteins known to

interact (docking) presents a related problem to that

of intra-protein contact prediction, while protein

design and customization of protein properties

require a profound understanding of the functional

interactions occurring within proteins. There is

evidence that a significant proportion of non-contact

predictions are likely to be biologically relevant. For

example, it has been noted that pairs of sites

recovered as correlated tend to be relatively close

in protein tertiary structures (within the same

functional domain at least) and thus are more likely

to be functionally related even if not constituting

contacts [35] and many authors have provided

compelling evidence for functional long distance

correlations in individual proteins [27, 30, 32, 36,

59]. Therefore, it is likely that many ‘false positive’

contact predictions are likely to constitute real

functional correlations.

Finally, from an evolutionary and bioinformatics

perspective, continuing study of correlated substitu-

tions is of great importance. Many bioinformatics

and molecular phylogenetic approaches rely on

parametric bootstraps and data simulations. Failure

to adequately account for significant evolutionary

processes in simulations and phylogenetic analyses

will inevitably lead to reconstruction of erroneous

phylogenies, divergence time estimates and ancestral

sequence estimations.
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