
Correlated Topological Insulators with Mixed Valence

Feng Lu, JianZhou Zhao, Hongming Weng, Zhong Fang,* and Xi Dai†

Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,

Chinese Academy of Sciences, Beijing 100190, China
(Received 28 November 2012; published 25 February 2013)

We propose the local density approximationþ Gutzwiller method incorporating a Green’s function

scheme to study the topological physics of correlated materials from the first principles. Applying this

method to typical mixed valence materials SmB6, we find its nontrivial Z2 topology, indicating that SmB6

is a strongly correlated topological insulator. The unique feature of this compound is that its surface states

contain three Dirac cones in contrast to most known topological insulators.
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Most Z2 topological insulators (TIs) [1–5] discovered

up to now are semiconductors which are free of strong

correlation effects and their topological nature can thus be

predicted quite reliably by first principles calculations

based on density functional theory [6]. The Z2 classifica-

tion of band insulators has been generalized to interacting

systems by looking at its response to external electric

magnetic field, namely the topological magnetoelectric

effect (TME) [7]. A correlated insulator is a TI if the �
angle defined in the TME is �. Given the TME theory and

several simplifications [8], however, its application to real-

istic materials is still absent due to (1) the lack of suitable

compounds, and (2) the difficulty in compute reliably

correlated electronic structures from the first principles.

In this Letter, we study a special class of materials, the

mixed valence (MV) compounds, which contain rare-earth

elements with non-integer chemical valence. By combin-

ing the Gutzwiller variational approach from the first

principles and the Green’s function method for the TME,

we found SmB6, a typical MV compound, is a 3D corre-

lated TI. Interestingly, it has three Dirac cones on the

surface, in contrast to most of the known TIs.

Classic MV compounds, such as SmB6 and YbB12 [9],

share the following common features. (i) The x-ray photo-

electron spectroscopy and x-ray absorption spectra contain

peaks from both divalent and trivalent multiplets with

comparable spectral weight [10–12], indicating the valence

of Sm or Yb to be close to 2.5. (ii) A small semiconducting

gap opens at least in part of the Brillouin zone (BZ) at

low temperature [13]. Previous electronic structure studies

indicate that the electrons transfer from Sm (or Yb) 4f
orbitals to 5d orbitals, which leads to fractional occupation

in 4f orbitals [14,15]. From the band structure point of

view, the electron transfer between 4f and 5d orbitals

indicates possible band inversion between them, which is

a crucial ingredient to realize TI (if it happens an odd

number of times in the entire BZ). In the mean while,

SmB6 has been recently suggested to be among the

possible candidates of the interesting topological Kondo

insulators [16–19]. Although the analytical studies of MV

compounds have been conducted by several groups, the

reliable first principle calculation, which is crucial to iden-

tify the possible topological phases, is still lacking, due

to the strong correlation nature of these materials [20,21].

Here, we report that the local density approximation

ðLDAÞþGutzwiller method, a newly developed first-

principles tool for correlated electron systems, enables us

to search for the topological phases in correlated matters.

By taking the MV compound SmB6 as an example, we

will focus on two key issues: (i) how to compute the Z2

topological index with ðLDAÞþGutzwiller; (ii) what is the

topological nature of SmB6 with the strong correlation

effects among the f electrons?

The LDAþGutzwiller method combines the density

functional theory within LDA with the Gutzwiller type

trial wave function, which takes care of the strong atomic

features in the ground state. Here we just sketch the most

important aspects, and leave the details to Refs. [22–24].

We start from the common Hamiltonian (used for most of

the LDAþþ schemes),

HTotal ¼ HLDA þHint þHDC; (1)

where HLDA is the single particle Hamiltonian obtained

by LDA and Hint is the local interaction term for the 4f
electrons described by the Slater integrals F0, F2, F4, F6.

In the present Letter, for the Sm atom we choose F0 ¼
5:8 eV and F2 ¼ 9:89 eV, F4 ¼ 7:08 eV, F6 ¼ 4:99 eV

to be their atomic values [25,26]. HDC is the double count-

ing term representing the interaction energy already con-

sidered at the LDA level. In the present Letter, we compute

the double counting energy using the scheme described in

Ref. [27]. We then use the following Gutzwiller trial wave

function, jGi ¼ PGj0i ¼
Q

iPij0i, where j0i is a noninter-
acting state (obtained from LDA), Pi ¼

P

�i
��i

j�iih�ij is

the Gutzwiller projector at the ith site with j�ii being the

atomic eigenstates and �� being the variational parameters

to be determined by minimizing the ground state total

energy (under the Gutzwiller approximation) [23,28,29],

EG ¼ h0jHeffj0i þ
P

���E�. Here Heff ¼ PGHLDAPG is

called the renormalized effective single particle
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Hamiltonian and E� is the eigenenergy of the �th atomic

eigenstate. The scheme preserves the nice aspect of

being variational; however, it is beyond LDA (and also

LDAþU) because the total energy EG now relies on the

balance between the renormalized kinetic energy of qua-

siparticle motion and the local interaction energy, which

is configuration dependent. We note that including the

complete form of all the Slater integrals (F0 to F6) in the

local interaction is essential to obtain the correct electronic

structure for these materials.

The linear response theory for the coefficient of the

TME has been developed and simplified by Z. Wang

et al. [8]. For interacting systems, when the self-energy

contains no singularity along the imaginary axis, the

formula for the TME coefficient only requires the single

particle Green’s function at zero frequency, ĝðk; 0Þ.
Because the singular point for the self-energy along the

imaginary axis only appears for a Mott insulator with

completely localized f orbitals, which is not the case for

SmB6, we can safely apply the above method here.

Therefore, the way to determine the Z2 invariance is just

by diagonalizing the Hermite matrix �ĝðk; 0Þ�1 ¼ Ĥ0 �

�f þ �̂ð0Þ and treating the eigenstates with the negative

eigenvalues as the ‘‘occupied states.’’ If the system also has

a spatial inversion center, the Z2 invariance can simply be

determined by counting the parities of these ‘‘occupied

states’’ on the time reversal invariant momenta (TRIM)

points, the same as that done for the noninteracting topo-

logical band insulators [1,2].

In the Gutzwiller approximation (or the equivalent slave

boson mean field approach), the low energy single particle

Green’s function of an interacting system can be expressed

by the quasiparticle effective Hamiltonian and the quasi-

particle weight ẑ (which in general is a matrix) as,

ĝðk; i!Þ ¼
ẑ

i!� Ĥeff þ�f

þ ĝicðk; i!Þ; (2)

where the second term describes the incoherent part of the

Green’s function, which is ignorable for low frequency.

Therefore, by applying the Green’s function method

described above, we reach the conclusion that the Z2

invariance in the LDAþGutzwiller method is determined

by the occupied eigenstates of the Gutzwiller effective

Hamiltonian Heff , which can be interpreted as the band

structure of the quasiparticles.

We now focus on SmB6, which is crystallized in the

CsCl-type structure with Sm ions and B6 clusters being

located at the corner and body center of the cubic lattice,

respectively (see Fig. 1). The LDA part of the calculations

has been done by full potential linearized augmented plane

wave method implemented in the WIEN2K package [30].

BZ integration was performed on a regular mesh of

12� 12� 12 k points. The muffin-tin radii (RMT) of

2.50 and 1.65 bohr were chosen for Sm and B atoms,

respectively. The largest plane-wave vector Kmax was

give by RMTKmax ¼ 8:5. The spin-orbit coupling is

included in all calculations.

The band structure obtained by LDA is shown in

Figs. 2(a) and 2(b), where we can find three major features.

(i) The Sm-4f orbitals, which split into the j ¼ 5=2 and

j ¼ 7=2 manifolds due to the spin-orbit coupling, form

narrow bands, respectively, with width around 0.5 eV near

the Fermi level. (ii) The low energy band structure is

semiconductorlike with a minimum gap of about 15 meV

along the �-X direction. (iii) There are clear band inversion

features at the X points, where one 5d band goes below the

(a) (b)

FIG. 1 (color online). (a) The CsCl-type structure of SmB6

with Pm3m space group. Sm ions and B6 octahedron are located

at the corner and center of the cubic lattice respectively. (b) The

bulk and surface BZ for SmB6.
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FIG. 2 (color online). The calculated band structure for

SmB6 in different energy scales by LDA [(a),(b)] and

LDAþGutzwiller [(c),(d)]. The (b) and (d) are just the zoom

in of (a) and (b) respectively, around the fermi level. Compared

to the LDA results, the 4f j ¼ 7=2 bands in LDAþGutzwiller

have been pushed up to be about 4.0 eV above the fermi level,

leaving the band structure near the fermi level being dominated

by 4f j ¼ 5=2 and 5d states. The blue, red and grey colors

represent the weight of the orbital character for 5d, 4f, and 2p,
respectively.
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f bands, which reduces the occupation number of the f
states to be around 5.5.

The first two features of the LDA band structures are not

consistent with the experimental observations. First, the

x-ray photoelectron spectroscopy measurements find quite

strong 4f multiplet peaks, indicating the strong atomic

nature of 4f electrons in SmB6 (in other words, most of

the 4f electrons are not involved in the formation of energy

bands) [10,11]. Second, both transport [31–33] and optical

[34–37] measurements reveal the formation of a small gap

only for temperatures below 50 K. The above two features

imply that the f electrons in SmB6 have both localized and

itinerant natures and the correct description of its elec-

tronic structure should include both of them. The qualita-

tive physical picture can be ascribed to Kondo physics,

which involves both itinerant and localized electronic

states [17]. At high temperatures, these localized orbitals

(4f states) are completely decoupled from the itinerant

energy bands, forming atomic multiplet states. While at

low temperatures, the coherent hybridization between

localized and itinerant states is gradually developed lead-

ing to the formation of ‘‘heavy quasiparticle’’ bands. The

insulating behavior appears when the chemical potential

falls into the ‘‘hybridization gap’’ between the heavy qua-

siparticle and the conduction bands, which is mainly of the

5d orbital character in SmB6.

Such a Kondo picture can be nicely captured by

our LDAþGutzwiller calculations, which provide

equal-footing descriptions of both the itinerant 5d bands

and those heavy quasiparticle states formed by 4f orbitals.

The quasiparticle band structures obtained by LDA

+Gutzwiller are shown in Figs. 2(c) and 2(d). Compared

with the LDA results, there are three major differences

induced by the strong correlation effects. (i) The 4f
j ¼ 7=2 bands are pushed up to around 4.0 eV above the

fermi level, leaving the band structure near the fermi level

being dominated by 4f j ¼ 5=2 and 5d bands. (ii) The

band width of those heavy quasiparticle bands formed by

4f orbitals are much reduced to be less than 0.1 eV. The

quasiparticle weight z of these heavy quasiparticle bands

is about 0.18, indicating that the quasiparticles are formed

by less than 20% of the 4f spectral weight and the remain-

ing weight is attributed to the atomic multiplets (or the

Hubbard bands). (iii) A hybridization gap between 4f
quasiparticle bands and the itinerant 5d bands appears

along the � to X direction. The detailed hybridization

process is illustrated in Fig. 3. Along the � to X direction,

the point group symmetry is lowered to be C4v, whose

double group contains two irreducible two-dimensional

representations, �6 and �7. Along � to X, the original

4f j ¼ 5=2 orbitals split into two �7 and one �6

bands, which cross with another �7 band formed by

5d orbitals. The hybridization terms among the three �7

bands are allowed and generate the hybridization gap,

which is around 10 meV now. We note that in contrast to

the LDA results, the semiconductor gap obtained by

LDAþGutzwiller is indirect, which is quite consistent

with the transport measurements [37].

We would emphasize that by LDAþGutzwiller, we can

only obtain the quasiparticle part in the spectral function,

but not the Hubbard bands containing the atomic multiplet

structure [15,21]. While the Gutzwiller type wave function

can well capture the multiplet features in the ground state

[23,28,38]. The Gutzwiller variational parameter �� deter-

mines nothing but the probability of each atomic confi-

guration � in the ground state (which is defined as

hGj�ih�jGi). In Fig. 4, we plot the corresponding proba-

bilities for SmB6 obtained by LDAþGutzwiller together

with that obtained by the LDAwave function (h0j�ih�j0i).
The LDA ground state is dominated by the atomic
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another �d
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FIG. 4 (color online). The probability of atomic eigenstates

in the ground state obtained by (a) LDA alone and

(b) LDAþGutzwiller. Nf is the total number of f electrons

for the corresponding atomic eigenstates. The horizontal axis

denotes the corresponding atomic eigenenergy.
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configurations with the number of f electrons Nf ¼ 6; on

the other hand, however, the distribution of the probability

of atomic states obtained by LDAþGutzwiller is almost

equally concentrated on two atomic multiplet states with

five and six f electrons, respectively, leading to approxi-

mately þ2:5 valence of Sm.

Moreover, the Gutzwiller wave function provides cor-

rect description of the intermixing between j ¼ 7=2 and

j ¼ 5=2 orbitals, which can not be captured by the LDA

only calculation and manifests itself in the average occu-

pancy of the f orbitals. The occupancy of j ¼ 5=2 and

j ¼ 7=2 orbitals are 5.31 and 0.22, respectively, using

the LDA type wave function (j0i), while the f orbital

occupancy is modified to be 3.64 for j ¼ 5=2 and 1.89 for

j ¼ 7=2 orbitals using the Gutzwiller type wave function

(jGi). The dramatic increment of the occupancy for

j ¼ 7=2 orbitals is the important consequence of the

F2-F6 terms in the atomic interactions, which can not be

expressed by a pure ‘‘density-density’’ form in any single

particle basis and generates a strong multiconfiguration

nature for the ground state wave function.

The band inversion feature around theX points persists in

the LDAþGutzwiller quasiparticle bands. As discussed in

previous paragraphs, the topological nature of this interact-

ing system is fully determined by the Gutzwiller effective

Hamiltonian Heff . Since the spatial inversion symmetry is

present for SmB6, we are now able to determine its topo-

logical nature by simply counting the parities of those

occupied quasiparticle states at 8 TRIM points. As listed

in Table I, the parities are all positive except the X points.

Because there are totally three equivalent X points in the

whole BZ, the Z2 topological index for SmB6 has to be odd,

resulting in strongly correlated topological insulators with

topological indices (1; 111).

To see the topological surface states, we construct a tight

binding model using the projected Wannier functions

[39–41], which can reproduce the LDA band dispersion

quite precisely. The surface states of the (001) surface are

then obtained by combining the above tight binding

Hamiltonian and the same rotational invariant Gutzwiller

approach on a 40-layer slab. The obtained quasiparticle

bands of the slab are plotted in Fig. 5. It is clearly seen that

the surface states contain three Dirac cones: one cone is

located at �� and the other two are at two �X points of

the surface BZ. The interesting multi-Dirac-cones behavior

is quite unique among the existing TIs and is a natural

consequence of the band inversion at the bulk X points,

which are projected onto �� and two �X points of the (001)

surface BZ. The multiple Dirac cones on the surface of

SmB6 may generate interesting physical phenomena, such

as the unique quasiparticle interference pattern in the

scanning tunneling microscope, which will be studied in

our further publications.

In summary, we have developed the LDAþGutzwiller

method incorporating the Green’s function scheme to study

the topological phases of strongly correlated materials

from the first-principles (beyond LDA and LDAþU).

This method is systematically applicable to all correlated

compounds as long as the quasiparticle weight is not reach-

ing zero. Both quasiparticle bands and atomic multiplet

structures can be captured well in the present technique.

Applying this method onto the typical mixed valence

compound SmB6, we demonstrate that it is a strongly

correlated 3D TI with unique surface states containing

three Dirac cones on the (001) surface. The strong inter-

action among the f electrons reduces both the band width

and the quasiparticle weight for almost one order, but the

topological feature remains.
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