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Abstract 34 

Aim 35 

Evaluating the relative roles of biological traits and environmental factors that predispose 36 

species to an elevated risk of extinction is of fundamental importance to macroecology. 37 

Identifying species that possess extinction promoting traits allows targeted conservation 38 

action before precipitous declines occur. Such analyses have been carried out for several 39 

vertebrate groups with the notable exception of reptiles. We identify traits correlating with 40 

high extinction risk in squamate reptiles, assess whether those differ with geography, 41 

taxonomy and threats, and make recommendations for future Red List assessments.  42 

 43 

Location 44 

Global. 45 

 46 

Methods 47 

We collected data on biological traits and environmental factors of a representative sample of 48 

1,139 species of squamate reptiles. We used phylogenetically controlled regression models to 49 

identify: general correlates of extinction risk; threat-specific correlates of risk; and realm-50 

specific correlates of risk. We also assessed the relative importance of range size versus other 51 

factors through multiplicative bivariate models, partial regressions and variance partitioning. 52 

 53 

Results 54 

Range size was the most important predictor of extinction risk, reflecting the high frequency 55 

of reptiles assessed under range-based IUCN criteria. Habitat specialists occupying accessible 56 

ranges were at a greater risk of extinction: although these factors never contributed more than 57 

10% to the variance in extinction risk, they showed significant interactions with range size. 58 

Predictive power of our global models ranged between 23 and 29%. The general overall 59 

pattern remained the same among geographic, taxonomic and threat-specific data subsets.  60 

 61 

Main conclusions 62 

Proactive conservation requires shortcuts to identify species at high risk of extinction. 63 

Regardless of location, squamate reptiles that are range-restricted habitat specialists living in 64 

areas highly accessible to humans are likely to become extinct first. Prioritising species that 65 

exhibit such traits could forestall extinction. Integration of data sources on human pressures, 66 
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such as accessibility of species ranges, may aid robust and time-efficient assessments of 67 

species’ extinction risk. 68 

 69 

INTRODUCTION 70 

To combat decline in biodiversity and prioritize conservation action, there is an urgent need 71 

to identify species at risk of extinction. Identifying key correlates of risk and evaluating how 72 

they vary across time, species and space is a central goal of conservation research, having 73 

focussed on all vertebrate groups (e.g. Olden et al., 2007; Sodhi et al., 2008; Davidson et al., 74 

2009; Lee & Jetz, 2011), with the exception of reptiles. 75 

What makes one species more prone to extinction than another is likely to vary 76 

depending on biological traits and environmental factors. Habitat specialization, large body 77 

size and small geographical range frequently correlate with increased extinction risk (Owens 78 

& Bennett, 2000; Cardillo et al., 2006). Higher annual precipitation, higher minimum 79 

elevation and increased human population density can predict the susceptibility of species to 80 

extinction (Cardillo et al., 2004; Davies et al., 2006; Luck, 2007; Tingley et al., 2013). Such 81 

analyses can help identify high-risk species and regions, thus establishing conservation 82 

priorities (Murray et al., 2014).  83 

Certain traits may render species vulnerable to some threat processes but not others 84 

(Murray et al., 2014). Ignoring the identity and severity of threats acting on a species may 85 

lead to relatively low explanatory power of models in correlative studies of extinction risk 86 

(Isaac & Cowlishaw, 2004; Murray et al., 2014). Bird species with high extinction risk 87 

caused by overexploitation and invasive species had long generation times and large body 88 

sizes, whilst extinction risk in species threatened by habitat loss was associated with habitat 89 

specialization and small body sizes (Owens & Bennett, 2000). 90 

Correlates of extinction risk may also vary across space. For example, the importance 91 

of traits can vary among geographical scales: human population density is a significant 92 

predictor of risk at a global scale, but is less consistent within geographical realms (Davies et 93 

al., 2006). It has been suggested that both regional and global analyses are required to 94 

contribute to a better understanding of extinction risk patterns and their drivers (Davies et al., 95 

2006; Fritz et al., 2009). 96 

Reptiles have been neglected in global conservation prioritization due to the relative 97 

paucity of data on their extinction risk. Some smaller-scale, regional studies have identified 98 

correlates of heightened extinction risk in squamate reptiles (lizards, snakes and 99 

amphisbaenids), such as small geographic range (Tingley et al., 2013), ambush foraging and 100 
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lack of male-male combat (Reed & Shine, 2002), and large body size, habitat specialization 101 

and high annual precipitation (Tingley et al., 2013). However, a global analysis of extinction 102 

risk correlates had so far not been possible due to a lack of consolidated data on reptile 103 

extinction risk, distribution and life history. Recently, a global assessment of extinction risk 104 

in a representative sample of 1,500 reptile species established that one-fifth of reptiles are 105 

threatened with extinction, with proportion of threat highest in freshwater environments, 106 

tropical regions and on oceanic islands (Böhm et al., 2013).  107 

Given the lack of population data for squamates, their extinction risk is primarily 108 

based on restricted geographical range; for example, 82% of squamates were assessed under 109 

IUCN Red List Criterion B (restricted geographic range) and 13% under Criterion D2 (very 110 

restricted population) (Böhm et al., 2013). This introduces circularity into correlative studies, 111 

since geographic range size is likely to have the strongest effect on extinction risk. Previous 112 

studies have dealt with this issue by producing an analysis of species not classified under the 113 

two range-based criteria (e.g. Purvis et al., 2000; Cardillo et al., 2004). However, given the 114 

lack of population and trend data for squamates, and thus the lack of extinction risk 115 

assessments under population decline criteria, assessments of extinction risk correlates 116 

greatly rely on establishing the significance of contributing factors in relation to range size. 117 

Here, we build on this sampled assessment of reptile extinction risk to conduct the 118 

first global phylogenetic comparative study of squamate extinction risk. We first identify 119 

biological traits and environmental factors that correlate with elevated extinction risk. We 120 

hypothesize that, in addition to a negative effect of range size: 1) biological traits such as 121 

large body size and increased habitat specialisation are positively correlated with high 122 

extinction risk; 2) environmental factors relating to increased human influence positively 123 

correlate with extinction risk (Table 1). We conduct further analyses on the effects of threat 124 

type, taxonomy and geography on extinction risk, and investigate the explanatory power of 125 

extinction risk correlates relative to range size. We find range-restricted habitat specialists in 126 

areas highly accessible to humans at a higher extinction risk, with practical implications for 127 

the Red List assessment process and reptile conservation. 128 

 129 

METHODS 130 

Data 131 

We obtained extinction risk data from a representative sample of 1,500 randomly selected 132 

reptile species (Böhm et al., 2013). We included all 1,139 non-Data Deficient squamate 133 

species in our analyses [i.e. excluding species too data poor to allow an estimate of extinction 134 
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risk, an approach followed by previous authors (e.g. Purvis et al., 2000; Cardillo et al., 135 

2004)]. Since Data Deficient (DD) species are likely to have traits which make their detection 136 

difficult (e.g. small body/ range size, habitat specialism; Bland, 2014; Vilela et al., 2014), 137 

excluding DD species may bias our parameters towards the opposite end of the spectrum, i.e. 138 

larger-bodied habitat generalists in more expansive ranges. However, because of existing data 139 

gaps, it is beyond the scope of this paper to address issues of data deficiency. 140 

IUCN Red List category (IUCN, 2001) provided our response variable of extinction 141 

risk, a five-point scale from lowest (Least Concern = 1) to highest extinction risk (Critically 142 

Endangered = 5) (e.g. Cardillo et al., 2004). No species were classified as Extinct or Extinct 143 

in the Wild. 144 

Geographic range size (km2) was calculated from freely available distribution maps 145 

produced as part of the IUCN Red List assessment process (Böhm et al., 2013). The 146 

following biological traits were chosen as additional predictor variables based on hypotheses 147 

derived from the literature (Table 1): degree of habitat specialisation (calculated as number of 148 

habitat types a species occupies), body size/mass [maximum snout-vent-length (SVL, in 149 

mm)], number of offspring per year, reproductive mode (viviparous, oviparous) and diet 150 

(omnivore, herbivore, carnivore). Data were collected via literature searches, museum 151 

specimens and input from species experts (Supplementary Materials). IUCN Red List 152 

assessments record the habitats occupied by each species using a classification scheme of 103 153 

habitat types, which we combined into 15 broader habitat categories (Supplementary 154 

Materials). From this, we calculated number of habitats occupied by each species. 155 

We tested the following environmental predictor variables, based on hypotheses 156 

derived from the literature (Table 1): annual precipitation (in mm), annual temperature (˚C), 157 

minimum elevation (Hijmans et al., 2005), and Net Primary Productivity (NPP; 158 

grams/m2/year; Imhoff et al., 2004). We also tested the following aggregate measures of the 159 

level of human influence within a species range: human appropriation of NPP (HANPP, 160 

measured as % of NPP; Imhoff et al., 2004), mean human population density (HPD, 161 

measured as people per km2; CIESIN, 2005a), accessibility (measured as travel time to city 162 

with more than 50,000 people; Nelson, 2008), and mean human footprint (Human Influence 163 

Index, normalised per region and biome; CIESIN, 2005b). All extrinsic predictor variables 164 

were extracted using ArcGIS 9.3, as the mean value across each species’ range. We also 165 

divided threat types recorded as part of the Red List assessments into five categories 166 

(Salafsky et al., 2008): habitat loss or disturbance, overexploitation, invasive species 167 

introductions, climate change and pollution (Supplementary Material). We included threat 168 
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type, biogeographic realm and taxonomy (lizards, snakes) as additional variables in our 169 

analyses.  170 

 171 

Reptile phylogeny 172 

We primarily relied on the dated phylogeny from Pyron et al. (2013), which contained 666 of 173 

the species in our dataset (hereafter referred to as ‘dated phylogeny’). From this, we built a 174 

composite non-dated phylogeny (hereafter referred to as ‘non-dated phylogeny’) including all 175 

1,139 species in our dataset, using Phylowidget (Jordan & Piel, 2008). We set all branch 176 

lengths in our non-dated phylogeny to unity. 177 

Most of the relationships between genera and families within our non-dated 178 

phylogeny were derived from the molecular phylogeny by Pyron et al. (2013) and revised 179 

using a more recent phylogeny on the origin of viviparity (Pyron & Burbrink, 2014). 180 

Literature searches on phylogenetic relationships were carried out for species not included in 181 

Pyron et al. (2013). Polytomies were assumed where relationships could not be resolved. 182 

Studies based on morphological evidence were used only if phylogenies based on molecular 183 

methods were unavailable. The final tree had 1,005 nodes and included a species of 184 

Sphenodon as an out-group. The higher-level relationships were: (1) Dibamidae and 185 

Gekkonidae near the base of the tree, (2) Scincoidea (Scincidae, Cordylidae, Gerrhosauridae, 186 

Xantusiidae) as a sister group to all other squamates (except Dibamidae and Gekkonidae), (3) 187 

Lacertoidea (Lacertidae, Amphisbaenidae, Teiidae, Gymnophthalmidae) as a sister group to 188 

Toxifera (Anguimorpha, Iguanidae, Serpents). Lower-level relationships are detailed in the 189 

Supplementary Materials. 190 

 191 

Statistical analysis 192 

Statistical analyses were carried out in R version 3.1.2 (R Core Team, 2014). Variables were 193 

log-transformed to achieve normality. Phylogenetic relationships between species may 194 

violate assumptions about independence of character traits, so that trait-based models of 195 

extinction risk need to control for shared ancestry (Freckleton et al., 2002). We followed 196 

Revell (2010) and simultaneously estimated phylogenetic signal (Pagel’s λ, using maximum 197 

likelihood) and regression model, an approach which has been shown to outperform 198 

equivalent non-phylogenetic approaches. We implemented this using phylogenetic 199 

generalized linear models (pGLS) in the R package ‘caper’ (Orme et al., 2012).  200 

To overcome circularity in our data introduced by range size, we ran a number of 201 

analyses, summarised in Figure 1A. We first ran a univariate pGLS of all predictors on 202 
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extinction risk, confirming that range size was the most significant predictor of risk (dated 203 

phylogeny: t = -16.2, d.f. = 664, r2 =0.28, p<0.001; non-dated phylogeny: t = -25.0, d.f. = 204 

1,136, r2 =0.35, p<0.001). Next, we conducted bivariate additive pGLS of each explanatory 205 

variable in turn on extinction risk, including range size as the second variable to control for 206 

its effect. Finally, we carried out stepwise multiple regressions, in which variables that caused 207 

the most significant increase in explanatory power of the model were added one at a time to 208 

produce minimum adequate models (MAMs). To test whether spatial effects remained within 209 

our model, possibly contributing to variation within the data, we checked our model residuals 210 

for spatial autocorrelation using Moran’s I in the package ‘spdep’ (Bivand et al., 2015) by 211 

defining spatial location of each residual as the range mid-point of the corresponding species.  212 

To disentangle the influence of range size on extinction risk in MAMs, we carried out 213 

three additional analyses (Figure 1B). First, we reconstructed MAMs of extinction risk 214 

excluding range size, to compare model performance and determine most significant 215 

predictors in the absence of our range size metric. Second, we performed partial regressions 216 

of extinction risk using two sets of explanatory variables: range size, and all other significant 217 

explanatory variables remaining in the MAMs. The resulting variance partitioning (Legendre 218 

& Legendre, 1998) for each MAM shows the shared variance between range size and other 219 

explanatory variables, as well as independent contributions of range size and  other 220 

explanatory variables to extinction risk. Variance partitioning was run in the R package 221 

‘vegan’ (Oksanen et al., 2015). Third, for each variable remaining in the MAM, we tested for 222 

interactions with range size using multiplicative bivariate pGLS to check whether the 223 

relationship between each significant variable changed with range size (i.e. whether once a 224 

species is range-restricted, additional factors increase in importance to decide whether a 225 

range-restricted species is threatened or not). 226 

Finally, to investigate the predictive ability of our global MAM, we re-ran our 227 

analysis on a calibration data set consisting of the world minus one biogeographical realm 228 

(e.g. creating a calibration data set containing all but Afrotropical species, a second 229 

calibration data set containing all but Australasian species, etc.). Using these calibration data 230 

sets, we then used the global MAM (minus the realm) to predict the outcome for the 231 

remaining biogeographical realm. We diagnosed predictive performance of the MAM versus 232 

observed values using four metrics: mean squared error of prediction (MSEp = Ʃ((O – 233 

P)2/N)), bias (mean of the difference between observed and predicted extinction risk 234 

squared), percentage bias (%bias = 100 x bias/MSEp) and percentage error of prediction 235 
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(%error = 100*sqrt(MSEp)/meanEX, where meanEX is the average extinction risk in the 236 

predicted dataset). 237 

We conducted further pGLS on subsets of data, based on biogeographical realm, 238 

taxonomy and threats, to assess the robustness of trends detected in the complete dataset 239 

(Figure 1A). For biogeographical realms, we created six subsets, containing species solely 240 

present in one of six realms (following Olson et al., 2001): Afrotropical, Australasian, 241 

Indomalayan, Nearctic, Neotropical and Palearctic. We excluded the Oceanian realm from 242 

the analysis as only seven species in our sample were from that region. We analysed two 243 

taxonomic groups separately: lizards (702 species) and snakes (423 species). We split the 244 

data into three threat categories: species affected by habitat loss alone (405 species), species 245 

affected by habitat loss and overexploitation (56 species), and species affected by habitat loss 246 

and invasive species (49 species). Threats of invasive species and overexploitation were 247 

considered in conjunction with habitat loss, because too few species were affected by 248 

invasive species or overexploitation alone to allow for meaningful statistical analysis. We 249 

conducted bivariate pGLS accounting for range size and MAMs separately for each data 250 

subset, as well as variance partitioning as described above.  251 

 All analyses were run using both the dated and non-dated phylogeny to assess 252 

whether the results obtained from the two phylogenies were sufficiently similar. Where 253 

multiple hypotheses were tested simultaneously, i.e. in MAMs, we corrected for possible 254 

inflation of Type I errors using Bonferroni corrections of p values. 255 

 256 

Species trait mapping 257 

To investigate the spatial distribution of risk-promoting traits, we used an assemblage-based 258 

approach (Olalla-Tarraga et al., 2006) to produce global distribution maps for variables 259 

significantly correlated with extinction risk. For each trait, we overlaid a hexagonal grid onto 260 

the stacked species’ distributions and calculated for each grid cell the average trait value for 261 

species present in the cell. The grid used was defined on an icosahedral, projected to the 262 

sphere using the inverse Icosahedral Snyder Equal Area (ISEA) projection to account for the 263 

Earth’s spherical nature. Each grid cell was approximately 23,000 km2. We conducted the 264 

analysis using Hawth’s Tools for ArcGIS 9.3 (Beyer, 2004). 265 

 266 

RESULTS 267 

Because results are broadly similar between analyses, here we only report results using the 268 

non-dated phylogeny (to maximise sample size), primarily focussing on MAMs as these 269 
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models best account for shared content among variables. All other results are reported in the 270 

Supplementary Materials. 271 

 272 

Global correlates of squamate extinction risk  273 

The MAM accounted for 39% of the total variance (Table 2), suggesting that species were at 274 

a greater risk of extinction if they were habitat specialists (t = -4.5, d.f. = 951, p<0.001), had 275 

large maximum SVLs (t = 2.2, d.f. = 951, p<0.05) and occupied more accessible range areas 276 

(t = -3.8, d.f. = 951, p<0.001). Maximum SVL was no longer significant after Bonferroni 277 

correction, and model residuals remained significantly spatially autorcorrelated (Moran I = 278 

7.2, p < 0.001). 279 

 280 

Effect of range size 281 

When excluding range size from MAM construction, accessibility and number of habitats 282 

remained the most significant effects in addition to body size, with NPP also contributing 283 

(Table S13). The model only explained 14.6% of variation in the data compared to 39% 284 

explained by the full MAM. 285 

Range size was the largest contributing factor to extinction risk in reptiles (Figure 2). 286 

Range size (c in Figure 2) contributed between 24 and 47% of variation in extinction risk to 287 

our models. Additional variables within MAMs (a in Figure 2) never contributed more than 288 

10% independently to extinction risk, and had the greatest contribution of nearly 10% in the 289 

Nearctic model (accessibility is the sole explanatory variable). The combined contribution (b 290 

in Figure 2) of range size and other explanatory variables varied between models, and was 291 

particularly large for the Australasian MAM. Unexplained variance was largest in nearly all 292 

models, with the exception of the Australasian realm model, where range size (c), combined 293 

variables (b), and unexplained variation (d) contributed to nearly equal parts. 294 

Range size interacted significantly with all other factors, with the most significant 295 

interactions with accessibility, number of habitats, and number of threats (Table 4). 296 

Accessibility lost its negative effect slowly as range size increased (i.e. closer proximity to 297 

population centres causes higher extinction risk at smaller range sizes). Similarly, habitat 298 

specialism was negatively related with extinction risk when range size was very small 299 

(species occupying fewer habitats have higher extinction risk), though again this effect 300 

diminished as range area increased. Interestingly, at low NPP, range area had a positive effect 301 

on extinction risk though this effect diminished as NPP increased, suggesting a complex 302 

interplay between NPP and range area. 303 
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 304 

Predictive ability of global models 305 

Mean square error of prediction ranged from 0.11 to 0.18, bias from <0.001 to 0.003 and 306 

percentage bias from 0.02 to 1.55 for our MAM. Percentage error of prediction was broadly 307 

similar across realms, ranging between 23% and 29% (Figure 3). Prediction error was highest 308 

for the Indomalayan realm and lowest for the Australasian realm. 309 

  310 

Taxonomic, geographic and threat variation in correlates of extinction risk 311 

Geographical realm 312 

Habitat specialism significantly correlated with high extinction risk in the Afrotropics and 313 

Neotropics, while accessibility was an important factor in the Afrotropics, Australasia and the 314 

Nearctic (Table 3). Explanatory power of MAMs varied greatly between biogeographical 315 

realms, from 70% of variation explained in the Australasian realm to 29% in both Nearctic 316 

and Palearctic realms. Threat type was significant in the Indomalayan and Australasian 317 

MAMs, with overharvesting increasing extinction risk in both realms, and invasive species 318 

increasing extinction risk in the Australasian realm. In the Afrotropical realm, snakes had a 319 

higher extinction risk than lizards. The Palearctic MAM only contained range size as a 320 

predictor. Geographical subsetting of the data helped to remove spatial autocorrelation in 321 

some of the subsets (Australasia: Moran I = -0.6, p = 0.72; Indomalayan: Moran I = 1.3, p = 322 

0.10; Nearctic: Moran I = 0.01, p = 0.50; Palearctic: Moran I = 0.7, p = 0.23), but not all 323 

(Afrotropical: Moran I = 4.0, p<0.001; Neotropical: Moran I = 6.0, p<0.001). 324 

Habitat specialism and accessibility were overall the most significant predictors of 325 

extinction risk across analyses. Habitat specialism within our sample appears to be primarily 326 

confined to South America, as well as arid regions of Asia and the Middle East and Southeast 327 

Asian islands (Figure 4A). Species with easily accessible range areas were distributed more 328 

evenly across the globe, specifically in North America (where accessibility was a significant 329 

factor), though vast areas of the Amazon basin and deserts remain poorly accessible to 330 

humans (Figure 4B). 331 

 332 

Taxonomic subsets 333 

The MAM for lizards accounted for 41% of the total variance. Lizards were at a greater risk 334 

of extinction if they were habitat specialists (t = -5.4, d.f. = 653, p<0.001), had accessible 335 

range areas (t = -4.1, d.f. = 653, p<0.001) and large maximum SVLs (t = 2.4, d.f. = 653, 336 

p<0.05) (Table 3). There was no significant MAM for snakes.  337 
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 338 

Threat type 339 

Number of habitat types (t = -4.5, d.f. = 360, p<0.001), maximum SVL (t = 3.3, d.f. = 360, 340 

p<0.001) and accessibility (t = -3.5, d.f. = 360, p<0.001) were significant factors in the MAM 341 

for species affected by habitat loss, which accounted for 51% of the total variance (Table 3). 342 

For species threatened by habitat loss with additional threats of overexploitation or invasive 343 

species, none of the traits were significant. 344 

 345 

DISCUSSION 346 

Despite being one of the largest vertebrate species groups (10,038 species described to date; 347 

Uetz & Hošek, 2015), knowledge of the factors predisposing certain reptile species to high 348 

extinction risk lags behind other species groups (Böhm et al., 2013). Understanding how 349 

biological traits and environmental factors interact with threats may help predict extinction 350 

risk of species and fill knowledge gaps. Our study suggests squamate reptiles with small 351 

range size, habitat specialism and ranges that are accessible to humans are at high risk of 352 

extinction.  353 

 354 

IUCN Red List assessments and the importance of range size 355 

A species’ range size is important in shaping its potential extinction risk: restricted-range 356 

species are generally at a higher risk of extinction, and this is reflected in two of the five 357 

IUCN Criteria to assess the extinction risk of species (criteria B and D2; IUCN, 2001). Since 358 

little is known about the population status of most of the world’s reptiles, range-based criteria 359 

are predominantly used to estimate reptile extinction risk (Böhm et al., 2013). Our finding 360 

that most of the variation in extinction risk is explained by range size is therefore a reflection 361 

of the Red List assessment process. However, relationships between a species’ abundance 362 

and distribution have been found to vary in strength across systems and at different spatial 363 

scales (Gaston et al., 2000).  364 

Small range size alone is insufficient to class a species as threatened, so that range-365 

based IUCN criteria incorporate additional symptoms of threat (criterion B: severe 366 

fragmentation, occurrence in only few locations, continuing decline in population 367 

size/habitat/range or extreme fluctuations; criterion D2: presence of a plausible future threat) 368 

(Mace et al., 2008). Factors influencing extinction risk in addition to range size may explain 369 

why one range-restricted species is at a higher risk of extinction than another. In this study, 370 

accessibility and habitat specialism specifically were found to have an increased effect on 371 
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extinction risk towards smaller range sizes, and may help inform extinction risk assessments 372 

and models in future. 373 

 374 

Biological traits: habitat specialization and body size 375 

Habitat specialists were consistently at a higher risk of extinction. This relationship between 376 

habitat specialism and extinction risk has previously been observed in birds (Owens & 377 

Bennett, 2000), mammals (Gonzalez-Suarez et al., 2013) and New Zealand lizards (Tingley 378 

et al., 2013). Habitat specialists are likely to be at higher risk of extinction as they are less 379 

able to adapt to habitat changes or persist outside of their preferred habitat type (Reed & 380 

Shine, 2002) and due to the synergistic effects of narrow niche and small range size (Slayter 381 

et al., 2013). 382 

Larger species also had a higher risk of extinction, corroborating similar findings in 383 

mammals (Cardillo et al., 2006), birds (Owens & Bennett, 2000), and New Zealand lizards 384 

(Tingley et al., 2013). Large body size correlates with traits related to slow life histories (e.g. 385 

low reproductive rates, late maturity in mammals; Bielby et al., 2007), and low population 386 

densities and large home ranges, all of which have been shown to increase the risk of 387 

extinction (e.g., Davidson et al., 2009). That few of the fecundity-related factors had any 388 

effects on extinction risk may relate to the fact that the vast majority of species were assessed 389 

under range-based criteria, rather than the more demography-related decline criteria of the 390 

IUCN.  391 

 392 

Environmental factors: accessibility of species ranges to humans 393 

Accessibility of species range to humans was the best and most consistent environmental 394 

predictor of extinction risk. Species with ranges that are more accessible to humans have a 395 

greater risk of extinction because these regions are more likely to be affected by 396 

anthropogenic threats, such as habitat loss and exploitation. Alternatively, measures of 397 

accessibility may be negatively correlated with extinction risk, because higher accessibility 398 

may have already caused species susceptible to anthropogenic threats to become extinct. 399 

Because IUCN Red List assessments are likely to lag behind species declines, due to 400 

difficulties documenting declines in a timely fashion, this latter relationship is unlikely to be 401 

observed in our dataset. Instead, information on range accessibility may aid the assessment 402 

process by providing information on a number of the subconditions contained within criteria 403 

B and D2, namely the presence of continuing declines through anthropogenic pressures. 404 
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It has been argued that inclusion of measures of human pressure would improve Red 405 

List assessments. Our results suggest that species experts may already incorporate some 406 

impression of human pressure into the assessment process, albeit in an unquantified manner. 407 

Accessibility, here estimated as travel time to cities of more than 50,000 people, appears to be 408 

a preferred measure to gauge human pressure on reptile species, while human population 409 

density performed overall worse. Accessibility also outperformed human population density 410 

to characterize human pressures on the distribution of terrestrial vertebrates (Torres-Romero 411 

& Olalla-Tárraga, 2015). Explicitly incorporating quantitative data on human pressure into 412 

the IUCN Red List assessments process is likely to improve our judgement of the exposure of 413 

species to threats and hence better categorise their extinction risk, specifically given that the 414 

effect of human pressure becomes more important at smaller range sizes. Such data could be 415 

based on variables that are likely to co-vary with threats (e.g., distance to roads), directly 416 

measure habitat change for species threatened by habitat loss (e.g., deforestation; Hansen et 417 

al., 2013), or measure changes in ecosystem condition (e.g., IUCN Red List of Ecosystems; 418 

Rodriguez et al., 2015). 419 

 420 

Threat-specific correlates and spatial pattern of extinction risk 421 

Recent studies have highlighted the impact of threat types on the relationship between species 422 

traits and extinction risk (Gonzalez-Suarez et al., 2013). Failing to take into account threat 423 

type may lead to relatively low explanatory power of models in correlative studies of 424 

extinction risk (Cardillo et al., 2008; Murray et al., 2014). 425 

In mammals, high extinction risk in species threatened by processes directly affecting 426 

survival (e.g., overexploitation) was associated with large body sizes and small litters, whilst 427 

high risk in species threatened by habitat-modifying processes was associated with habitat 428 

specialization (Gonzalez-Suarez et al., 2013). In our study, habitat specialization was 429 

significantly correlated with extinction risk in species threatened by habitat loss, although 430 

body size and accessibility of species range were also significant. The addition of other 431 

threats (overhunting, invasive species) did not yield any significant correlates of extinction 432 

risk. The high frequency of habitat loss compared to other threats within our sample 433 

overwhelmed the results, making it difficult to provide any insights into threat-specific 434 

extinction risk correlates.  435 

Because threats are not evenly distributed across space [e.g. habitat loss/exploitation 436 

in reptiles, Böhm et al. (2013); forest loss, Hansen et al. (2013)], where a species occurs 437 

geographically may be as relevant to determining extinction risk as its specific biological 438 
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traits. Although we found that extinction risk correlates for squamates varied among 439 

biogeographical realms, the same two traits were consistently correlated with extinction risk. 440 

Habitat specialists were at higher risk of extinction throughout the tropics, a pattern 441 

consistent with other studies (e.g., butterflies; Steffan-Dewenter & Tscharntke, 2000) and 442 

attributed to the prevalence of anthropogenic habitat loss in tropical regions (Devictor et al., 443 

2008). Most of our models retained significant spatial autocorrelation suggesting that 444 

unexplained variation in our data may stem from underlying spatial processes. 445 

 446 

Improving extinction risk assessments 447 

With Red Listing of species often using qualitative rather than quantitative data on threats, 448 

discerning the cause of species declines presents a complicated task, with assessors likely to 449 

list the most pervasive or obvious threats. Identifying causal factors of species declines is 450 

fraud with difficulties and requires greater research attention in order to elicit the most 451 

appropriate conservation response. With increased research attention on species-independent 452 

threat mapping, future assessments of extinction risk may rely on objective and readily 453 

available data sources on threats affecting our natural world [e.g., forest loss (Hansen et al., 454 

2013), climate change (IPCC, 2013), human encroachment via human footprint (CIESIN, 455 

2005a, b) etc.].  456 

While our results suggest a complex relationship between extinction-promoting 457 

factors, geographic location and threat processes, we have highlighted certain factors which 458 

act as correlates of extinction risk in addition to range size. Consolidating this information 459 

into extinction risk assessments and future modelling processes is paramount in order to 460 

make predictions of species status. Specifically, the additional factors highlighted in this 461 

study may help in the prediction of whether range-restricted species (and thus potential 462 

candidates for assessment under criteria B and D2) may ultimately be classed as threatened. 463 

 464 

Conclusions 465 

Comparative studies can contribute to conservation prioritization by identifying species that 466 

possess extinction-promoting traits. Areas of relatively intact habitat are likely to be degraded 467 

in the near future, through increased accessibility and demand for natural resources. It is in 468 

these areas that currently non-threatened species may become threatened with extinction. Our 469 

global analysis of extinction risk in squamates revealed that biological (habitat specialism) 470 

and environmental factors (accessibility of species range to humans) are key to predicting 471 

high extinction risk in species assessed under range-based extinction risk criteria.  472 
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While it has been suggested that small-scale analyses may be more useful than global 473 

analyses for conservation (Fritz et al., 2009), the general overall pattern remained the same 474 

among geographic, taxonomic and threat-specific data subsets. Predictive models of 475 

extinction risk have been proposed as a cost-effective solution for prioritising and steering 476 

conservation compared to the current, often lengthy, assessment process (Bland et al. 2015). 477 

There is a need for increased volume and accessibility of data on threats (particularly spatial 478 

data), which can inform extinction risk analyses and identify species at risk. This is 479 

particularly important for species groups such as reptiles for which adequate population 480 

information is traditionally lacking, and which greatly rely on knowledge of their distribution 481 

and the threats within their ranges. Additionally, we need to test quantitative approaches for 482 

predicting extinction risk on a wider number of squamate species, including Data Deficient 483 

species, in order to complement current efforts aimed at producing extinction risk 484 

assessments for the world’s reptiles.  485 

 486 

Acknowledgements 487 

MB receives a grant from the Rufford Foundation. ADD was partially supported by NSF 488 

grant DEB-1136586. BC acknowledges the support of a Leverhulme Trust Research Project 489 

Grant.   490 

 491 

References 492 

Beyer, H.L. (2004) Hawth’s Analysis Tools for ArcGIS. Available at:  493 

http://www.spatialecology.com/htools/tooldesc.php (accessed 30th July 2012).  494 

Bielby, J., Mace, G.M., Bininda-Emonds, O.R.P., Cardillo, M., Gittleman, J.L., Jones, K.E., Orme, 495 

C.D.L. & Purvis, A. (2007) The fast-slow continuum in mammalian life history: an empirical 496 

reevaluation. The American Naturalist, 169, 748-757. 497 

Bivand, R., Altman, M., Anselin, L., Assuncao, R., Berke, O., Bernat, A., Blanchet, G., Blankmeyer, 498 

E., Carvalho, M., Christensen, B., Chun, Y., Dormann, C., Dray, S., Gomez-Rubio, V., 499 

Halbersma, R., Krainski, E., Legendre, P., Lewin-Koh, N., Li, H., Ma, J., Millo, G., Mueller, 500 

W., Ono, H., Peres-Neto, P., Piras, G., Reder, M., Tiefelsdorf, M. & Yu, D. (2015) Spatial 501 

Dependence: weighting schemes, statistics and models. Available at:  https://cran.r-502 

project.org/web/packages/spdep/spdep.pdf (accessed 13th August 2015).  503 

Bland, L.M. (2014) Resolving the effects of Data Deficient species on the estimation of extinction 504 

risk. PhD Thesis, Imperial College, London, United Kingdom. 505 



16 
 

Bland, L.M., Orme, C.D.L., Bielby, J., Collen, B., Nicholson, E. & McCarthy, M.A. (2015) Cost-506 

effective assessment of extinction risk with limited information. Journal of Applied Ecology, 507 

52, 861-870. 508 

Böhm, M., Collen, B., Baillie, J.E.M., Bowles, P., Chanson, J., Cox, N., Hammerson, G., Hoffmann, 509 

M., Livingstone, S.R., Ram, M. et al. (2013) The conservation status of the world's reptiles. 510 

Biological Conservation, 157, 372-385. 511 

Cardillo, M., Mace, G.M., Gittleman, J.L. & Purvis, A. (2006) Latent extinction risk and the future 512 

battlegrounds of mammal conservation. Proceedings of the National Academy of Sciences of 513 

the United States of America, 103, 4157–4161. 514 

Cardillo, M., Purvis, A., Sechrest, W., Gittleman, J.L., Bielby, J. & Mace, G.M. (2004) Human 515 

population density and extinction risk in the world’s carnivores. PLoS Biology, 2, e197. 516 

Cardillo, M., Mace, G.M., Gittleman, J.L., Jones, K.E., Bielby, J. & Purvis, A. (2008) The 517 

predictability of extinction: biological and external correlates of decline in mammals. 518 

Proceedings of the Royal Society B, 275, 1441-1448. 519 

CIESIN (2005a) Gridded Population of the World (2000), Version 3 (GPWv3). Available at:  520 

http://sedac.ciesin.columbia.edu/data/set/gpw-v3-centroids (accessed 18th November 2011).  521 

CIESIN (2005b) Last of the Wild Data Version 2 (LWP-2): Global Human Footprint dataset (HF). 522 

Available at:  http://sedac.ciesin.columbia.edu/data/set/wildareas-v2-human-footprint-523 

geographic (accessed 18th November 2011).  524 

Crooks, K.R. & Soule, M.E. (1999) Mesopredator release and avifaunal extinctions in a fragmented 525 

system. Nature, 400, 563-566. 526 

Davidson, A.D., Hamilton, M.J., Boyer, A.G., Brown, J.H. & Ceballos, G. (2009) Multiple ecological 527 

pathways to extinction in mammals. Proceedings of the National Academy of Sciences of the 528 

United States of America, 106, 10702-10705. 529 

Davies, R.G., Orme, C.D.L., Olson, V., Thomas, G.H., Ross, S.G., Ding, T.-S., Rasmussen, P.C., 530 

Stattersfield, A.J., Bennett, P.M., Blackburn, T.M., Owens, I.P.F. & Gaston, K.J. (2006) 531 

Human impacts and the global distribution of extinction risk. Proceedings of the Royal 532 

Society B, 273, 2127–2133. 533 

Devictor, V., Julliard, R. & Jiguet, F. (2008) Distribution of specialist and generalist species along 534 

spatial gradients of habitat disturbance and fragmentation. Oikos, 117, 507-514. 535 

Durnham, A.E., Miles, D.B. & Reznick, D.N. (1988) Life history patterns in squamate reptiles. 536 

Biology of the reptilian (ed. by C. Gans and R.B. Huey). Liss, New York, USA. 537 

Freckleton, R.P., Harvey, P.H. & Pagel, M. (2002) Phylogenetic analysis and comparative data: a test 538 

and review of evidence. The American Naturalist, 160, 712-726. 539 

Fritz, S.A., Bininda-Emonds, O.R.P. & Purvis, A. (2009) Geographical variation in predictors of 540 

mammalian extinction risk: big is bad, but only in the tropics. Ecology Letters, 12, 538–549. 541 



17 
 

Gaston, K.J., Blackburn, T.M., Greenwood, J.J.D., Gregory, R.D., Quinn, R.M. & Lawton, J.H. 542 

(2000) Abundance-occupancy relationships. Journal of Applied Ecology, 37 (Suppl. 1), 39-543 

59. 544 

Gonzalez-Suarez, M., Gomez, A. & Revilla, E. (2013) Which intrinsic traits predict vulnerability to 545 

extinction depends on the actual threatening processes. Ecosphere, 4, 1-16. 546 

Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A., Thau, D., 547 

Stehman, S.V., Goetz, S.J., Loveland, T.R., Kommareddy, A., Egorov, A., Chini, L., Justice, 548 

C.O. & Townshend, J.R.G. (2013) High-resolution global maps of 21st-century forest cover 549 

change. Science, 342, 850-853. 550 

Hijmans, S.E., Cameron, J.L., Parra, P.G., Jones, A. & Jarvis, R.J. (2005) Very high resolution 551 

interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 552 

1965–1978. 553 

Imhoff, M.L., Bounoua, L., Ricketts, T., Loucks, C., Harriss, R. & Lawrence, W.T. (2004) Global 554 

patterns in human consumption of net primary production. Nature, 429, 870–873. 555 

IPCC (2013) Climate change 2013: the physical science basis. Working Group I contribution to the 556 

Fifth Assessment Report of the Intergovernmental Panel on Climate Change eds. T.F. 557 

Stocker, D. Qin, G.-K. Plattner, M.M.B. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, 558 

V. Bex and P.M. Midgley), p. 203. Cambridge University Press, Cambridge, United 559 

Kingdom. 560 

Isaac, N.J.B. & Cowlishaw, G. (2004) How species respond to multiple extinction threats. 561 

Proceedings of the Royal Society B, 271, 1135-1141. 562 

IUCN (2001) IUCN Red List Categories and Criteria: Version 3.1. IUCN, Gland, Switzerland. 563 

Jordan, G.E. & Piel, W.H. (2008) PhyloWidget: web-based visualizations for the tree of life. 564 

Bioinformatics, 24, 1641–1642. 565 

Lee, T.M. & Jetz, W. (2011) Unravelling the structure of species extinction risk for predictive 566 

conservation science. Proceedings of the Royal Society B, 278, 1329–1338. 567 

Legendre, P. & Legendre, L. (1998) Numerical Ecology, 2nd English edn. Elsevier, Amsterdam, 568 

Netherlands. 569 

Luck, G.W. (2007) The relationships between net primary productivity, human population density and 570 

species conservation. Journal of Biogeography, 34, 201-212. 571 

Mace, G.M., Collar, N.J., Gaston, K.J., Hilton-Taylor, C., Akcakaya, H.R., Leader-Williams, N., 572 

Milner-Gulland, E.J. & Stuart, S.N. (2008) Quantification of extinction risk: IUCN’s system 573 

for classifying threatened species. Conservation Biology, 22, 1424-1442. 574 

Murray, K.A., Verde Arregoitia, L.D., Davidson, A., Di Marco, M. & Di Fonzo, M.M.I. (2014) 575 

Threat to the point: improving the value of comparative extinction risk analysis for 576 

conservation action. Global Change Biology, 20, 483-494. 577 



18 
 

Nelson, A. (2008) Estimated travel time to the nearest city of 50,000 or more people in year 2000. 578 

Available at: forobs.jrc.ec.europa.eu/products/gam/ (accessed 20th August 2013).  579 

Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O'Hara, R.B., Simpson, G.L., 580 

Solymos, P., Stevens, M.H.H. & Wagner, H. (2015) vegan: Community Ecology Package. 581 

Available at: http://cran.r-project.org/web/packages/vegan/index.html (accessed 25th June 582 

2015). 583 

Olalla-Tarraga, M.A., Rodriguez, M.A. & Hawkins, B.A. (2006) Broad-scale patterns of body size in 584 

squamate reptiles of Europe and North America. Journal of Biogeography, 33, 781-793. 585 

Olden, J.D., Hogan, Z.S. & Zanden, M.J.V. (2007) Small fish, big fish, red fish, blue fish: Size-based 586 

extinction risk of the world’s freshwater and marine fishes. Global Ecology & Biogeography, 587 

16, 694–701. 588 

Olson, D.M., Dinerstein, E., Wikramanayake, E.D., Burgess, N.D., Powell, G.V.N., Underwood, E.C., 589 

D'Amico, J.A., Itoua, I., Strand, H.E., Morrison, J.C., Loucks, C.J., Allnutt, T.F., Ricketts, 590 

T.H., Kura, Y., Lamoreux, J.F., Wettengel, W.W., Hedao, P. & Kassem, K.R. (2001) 591 

Terrestrial ecoregions of the worlds: A new map of life on Earth. BioScience, 51, 933-938. 592 

Orme, D., Freckleton, R., Thomas, G., Petzoldt, T., Fritz, S., Isaac, N. & Pearce, W. (2012) 593 

Comparative analyses of phylogenetics and evolution in R. Available at: http://cran.r-594 

project.org/web/packages/caper/index.html (accessed 5th May 2014). 595 

Owens, I.P. & Bennett, P.M. (2000) Ecological basis of extinction risk in birds: habitat loss versus 596 

human persecution and introduced predators. Proceedings of the National Academy of 597 

Sciences of the United States of America, 97, 12144–12148. 598 

Purvis, A., Gittleman, J.L., Cowlishaw, G. & Mace, G.M. (2000) Predicting extinction risk in 599 

declining species. Proceedings of the Royal Society B, 267, 1947-1952. 600 

Pyron, R.A. & Burbrink, F.T. (2014) Early origin of viviparity and multiple reversions to oviparity in 601 

squamate reptiles. Ecology Letters, 17, 13-21. 602 

Pyron, R.A., Burbrink, F.T. & Wiens, J.J. (2013) A phylogeny and revised classification of Squamata, 603 

including 4161 species of lizards and snakes. BMC Evolutionary Biology, 13, 93. 604 

R Core Team (2014) R: A language and environment for statistical computing. R Foundation for 605 

Statistical Computing, Vienna, Austria. Available at: https://www.R-project.org. 606 

Reed, R.N. & Shine, R. (2002) Lying in wait for extinction: ecological correlates of conservation 607 

status among Australian elapid snakes. Conservation Biology, 16, 451-461. 608 

Revell, L.J. (2010) Phylogenetic signal and linear regression on species data. Methods in Ecology and 609 

Evolution, 1, 319-329. 610 

Rodriguez, J.P., Keith, D.A., Rodriguez-Clark, K.M., Murray, N.J., Nicholson, E., Regan, T.J., Miller, 611 

R.M., Barrow, E.G., Bland, L.M., Boe, K., Brooks, T.M., Oliveira-Miranda, M.A., Spalding, 612 

M. & Wit, P. (2015) A practical guide to the application of the IUCN Red List of Ecosystems 613 

criteria. Philosophical Transactions of the Royal Society B, 370, 20140003. 614 



19 
 

Scharf, I., Feldman, A., Novosolov, M., Pincheira-Donoso, D., Das, I. Böhm, M., Uetz, P., Torres-615 

Carvajal, O., Bauer, A., Roll, U. & Meiri, S. (2015) Late bloomers and baby boomers: an 616 

analysis of ecological drivers of squamate longevity. Global Ecology & Biogeography, 24, 617 

396-405. 618 

Salafsky, N., Salzer, D., Stattersfield, A.J., Hilton-Taylor, C., Neugarten, R., Butchart, S.H.M., 619 

Collen, B., Cox, N., Master, L.L., O’Connor, S. & Wilkie, D. (2008) A standard lexicon for 620 

biodiversity conservation: unified classifications of threats and actions. Conservation Biology, 621 

22, 897–911. 622 

Slayter, R.A., Hirst, M. & Sexton, J.P. (2013) Niche breadth predicts geographical range size: a 623 

general ecological pattern. Ecology Letters, 16, 1104–1114. 624 

Sodhi, N.S., Bickford, D., Diesmos, A.C., Lee, T.M., Koh, L.P., Brook, B.W., Sekercioglu, C.H. & 625 

Bradshaw, C.J.A. (2008) Measuring the meltdown: drivers of global amphibian extinction and 626 

decline. PLoS One, 3, e1636. 627 

Steffan-Dewenter, I. & Tscharntke, T. (2000) Butterfly community structure in fragmented habitats. 628 

Ecology Letters, 3, 449–456. 629 

Tingley, R., Hitchmough, R.A. & Chapple, D.G. (2013) Life-history traits and extrinsic threats 630 

determine extinction risk in New Zealand lizards. Biological Conservation, 165, 62-68. 631 

Torres-Romero, E.J. & Olalla-Tárraga, M.Á. (2015) Untangling human and environmental effects on 632 

geographical gradients of mammal species richness: a global and regional evaluation. Journal 633 

of Animal Ecology, 84, 851–860. 634 

Uetz, P. & Hošek, J. (2015) The Reptile Database. Available at:  http://www.reptile-database.org 635 

(accessed 11th August 2015).  636 

Vilela, B., Villalobos, F., Rodriguez, M.A. & Terribile, L.C. (2014) Body size, extinction risk and 637 

knowledge bias in New World snakes. PLoS One, 9, e113429.  638 



20 
 

Supporting Information 639 

Additional supporting information may be found in the online version of this article at the 640 

publisher’s web-site. The data and composite phylogeny used in these analyses will be 641 

archived in the Dryad digital repository. 642 

Appendix S1. Species data 643 

Appendix S2. Building the composite reptile phylogeny 644 

Appendix S3. Additional results and discussion of extinction risk correlates 645 

Appendix S4. Additional references in Supplementary Materials 646 

Table S1. Species trait data included in the models of extinction risk 647 

Table S2. Habitat and threat classification used by the IUCN 648 

Table S3. Results from univariate phylogenetic generalized linear models of the effect of trait 649 

variables on extinction risk 650 

Table S4. Significant correlations from bivariate phylogenetic generalized linear model of 651 

extinction risk, taking range size into account 652 

Table S5. Results from bivariate phylogenetic generalized linear model of extinction risk for 653 

lizards and snakes 654 

Table S6. Results from bivariate phylogenetic generalized linear model of extinction risk for 655 

species affected by habitat loss only 656 

Table S7. Results from bivariate phylogenetic generalized linear model of extinction risk in 657 

six different geographical realms 658 

Table S8. Minimum adequate models explaining extinction risk in squamates using the dated 659 

phylogeny 660 

Table S9. Diagnostics of predictive performance of global minimum adequate model 661 

predicted versus observed values (dated phylogeny) 662 

Table S10. Diagnostics of predictive performance of global minimum adequate model 663 

predicted versus observed values (dated phylogeny) 664 

Table S11.  Full model output for all six holdout models to test minimum adequate model of 665 

extinction risk using the non-dated phylogeny 666 

Table S12. Full model output for all six holdout models to test minimum adequate model of 667 

extinction risk using the dated phylogeny 668 

Table S13. Bivariate phylogenetic generalized linear model of extinction risk, including 669 

interactions with range size 670 

Table S14. Minimum adequate models of extinction risk in squamates excluding range size 671 

 672 



21 
 

Biosketch 673 

The researchers involved in this analysis (the Indicators and Assessments Unit at the 674 

Zoological Society of London (http://www.zsl.org/indicators) and their collaborators at 675 

University College London, Stony Brook University, Universidad Nacional Autónoma de 676 

México and The University of Melbourne) share their interest in understanding global change 677 

in biodiversity using extinction risk analyses, monitoring of global population trends and 678 

ecosystem-level studies. 679 



22 
 

Tables. 1 

Table 1. Hypotheses on the relationship between intrinsic and extrinsic factors, and 2 

extinction risk. Intrinsic factors are likely to interact with specific threats. 3 

Factor Variables in 

analysis 

Prediction Justification Interaction with 

threats 

References 

Intrinsic factors 

Geographical 

range size 

Range size 

(km2) 

- Small ranges contain 

smaller populations/are 

more easily affected by 

a single threat process 

across the entire range 

Habitat loss (Purvis et al., 

2000; Cardillo et 

al., 2008) 

Island 

endemism 

Categorical: 

Island- or 

mainland- 

dwelling 

+ Island endemics have 

smaller ranges & 

populations 

Invasive species (Purvis et al., 

2000) 

Habitat 

specialism 

Number of 

habitats 

occupied 

- Habitat specialists are 

at higher risk of 

extinction 

Habitat loss (Owens & 

Bennett, 2000; 

Gonzalez-Suarez 

et al., 2013) 

Body size Maximum 

snout-vent 

length (SVL) 

+ Large bodied species 

have small population 

densities, slow life 

histories and large 

home ranges 

Overexploitation, 

invasive species 

(Owens & 

Bennett, 2000; 

Cardillo et al., 

2008; Gonzalez-

Suarez et al., 

2013; Tingley et 

al., 2013) 

Reproductive 

rate 

Number of 

offspring/year 

- Species with slow 

reproductive rates are 

less able to compensate 

for high mortality rates 

Overexploitation, 

invasive species 

(Gonzalez-Suarez 

et al., 2013) 

 

Reproductive 

mode 

(viviparity) 

Categorical: 

Viviparous vs 

oviparous 

+ Viviparous species 

tend to be larger than 

oviparous species 

Overexploitation, 

invasive species 

(Durnham et al., 

1988) 

Diet (trophic 

level) 

Categorical: 

Omnivore, 

herbivore, 

carnivore 

+ Higher trophic levels 

(carnivores) more 

vulnerable to 

disturbance 

 (Crooks & Soule, 

1999) 

 4 

  5 
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Table 1. continued. 1 

Factor Variables in 

analysis 

Prediction Justification Interaction 

with threats 

References 

Extrinsic factors 

Precipitation Annual average 

precipitation 

+ Areas experiencing high levels of 

precipitation have higher 

productivity & potentially higher 

human disturbance 

 

 (Tingley et 

al., 2013) 

Temperature Annual average 

temperature 

- Reptiles are solar ectotherms, with 

slower life histories (hence 

reproduction) in areas of lower 

temperatures 

 

 (Scharf et 

al., 2015) 

Elevation Minimum 

elevation (in m) 

+ High minimum elevations suggest 

smaller, more restricted ranges 

 

 (Davies et 

al., 2006) 

Productivity Net primary 

productivity 

(NPP) 

+ Higher productivity suggests 

potentially higher human 

disturbance and impact 

 

 (Luck, 2007) 

Human 

impact 

1. Human 

appropriation of 

net primary 

productivity 

(HANPP) 

2. Human 

population 

density (HPD) 

3. Human 

footprint 

4. Accessibility 

(distance from 

road) 

+ Higher human disturbance and 

impact, higher levels of resource 

use and increased pressure on 

productive habitats, opening up of 

habitats to exploitation of natural 

resources 

 

 (Cardillo et 

al., 2008) 
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Table 2. Minimally adequate models explaining extinction risk in squamates using the non-1 

dated phylogeny. No.: number of; SVL: snout-vent length; λ: Pagel’s lambda. Uncorrected 2 

(p) and Bonferroni adjusted (p corr) p values are shown. 3 

Non-dated phylogeny    

 Coefficient S.E. t p p corr Model r2  λ 

Intercept 1.618 0.109 14.9 <0.001  0.391  0.000 

Range size -0.098 0.005 -19.5 <0.001 <0.001    

Accessibility -0.060 0.016 -3.8 <0.001 <0.001    

No. habitats -0.110 0.025 -4.4 <0.001 <0.001    

Maximum SVL 0.028 0.013 2.2 0.026 0.105    

 4 

 5 

  6 
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Table 3. Minimally adequate models explaining extinction risk in squamates using subsets of 1 

the data based on A) biogeographic realm, B) taxonomy, C) threat type. Note that predictors 2 

of extinction risk vary among biogeographic realms, and between lizards and snakes. No.: 3 

number of; SVL: snout-vent length; λ: Pagel’s lambda. Non-dated phylogeny only. 4 

A) Biogeographic realm  

Afrotropical Coefficient S.E. t p Model r2 λ 

Intercept 2.699 0.273 9.9 <0.001 0.533 0.040 

Range size -0.125 0.011 -11.5 <0.001   

Accessibility -0.386 0.103 -3.7 <0.001   

No. habitats -0.130 0.055 -2.4 0.020   

Taxonomy: snake 0.145 0.064 2.3 0.025   

Australasian Coefficient S.E. t p Model r2 λ 

Intercept 2.572 0.328 7.8 <0.001 0.703 0.000 

Range size -0.117 0.014 -8.3 <0.001   

Accessibility -0.288 0.132 -2.2 0.032   

Threat type: overharvest 0.083 0.155 0.5 0.596   

                     Invasives 0.231 0.099 2.3 0.023   

Indomalayan Coefficient S.E. t p Model r2 λ 

Intercept 1.894 0.193 9.8 <0.001 0.432 0.000 

Range size -0.140 0.017 -8.5 <0.001   

Threat type: overharvest 0.202 0.113 1.8 0.077   

                     Invasives -0.328 0.176 -1.9 0.065   

Nearctic Coefficient S.E. t p Model r2 λ 

Intercept 3.186 0.880 3.6 <0.001 0.292 0.000 

Range size -0.099 0.026 -3.9 <0.001   

Accessibility -0.764 0.321 -2.4 0.023   

Neotropical Coefficient S.E. t p Model r2 λ 

Intercept 1.378 0.077 17.9 <0.001 0.386 0.000 

Range size -0.099 0.007 -14.1 <0.001   
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No. habitats -0.106 0.045 -2.3 0.020   

Palearctic Coefficient S.E. t p Model r2 λ 

Intercept 1.107 0.169 6.6 <0.001 0.288 0.000 

Range size -0.081 0.014 -5.9 <0.001   

       

B) Taxonomy       

Lizards Coefficient S.E. t p Model r2 λ 

Intercept 1.652 0.167 9.9 <0.001 0.411 0.000 

Range size -0.103 0.006 -16.5 <0.001   

Accessibility -0.082 0.020 -4.1 <0.001   

No. habitats -0.168 0.031 -5.4 <0.001   

Maximum SVL 0.071 0.030 2.3 0.019   

Snakes Coefficient S.E. t p Model r2 λ 

Intercept 0.904 0.196 4.6 <0.001 0.372 0.012 

Range size -0.091 0.007 -13.7 <0.001   

Maximum SVL 0.059 0.032 1.8 0.066   

       

C) Threat type       

Habitat loss Coefficient S.E. t p Model r2 λ 

Intercept 2.031 0.180 11.3 <0.001 0.506 0.000 

Range size -0.128 0.009 -14.7 <0.001   

No. habitats -0.196 0.043 -4.5 <0.001   

Maximum SVL 0.074 0.022 3.3 <0.001   

Accessibility -0.096 0.027 -3.5 <0.001   

 1 

  2 
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Table 4. Bivariate phylogenetic generalized linear model of extinction risk, including 1 

interactions of predictors with geographical range size. Here we show results of the three 2 

most significant variables: accessibility, number of habitat types and net primary productivity 3 

(NPP) (for all results, see Supplementary Materials). λ: Pagel’s lambda. Non-dated 4 

phylogeny only. 5 

Accessibility  

 Coefficient S.E. t p Model r2 λ 

Intercept 3.430 0.290 11.8 <0.001 0.396 0.059 

Range size -0.269 0.026 -10.2 <0.001   

Accessibility -0.344 0.048 -7.2 <0.001   

Range size * accessibility 0.028 0.004 6.4 <0.001   

       

Number of habitats  

 Coefficient S.E. t p Model r2 λ 

Intercept 1.730 0.062 27.9 <0.001 0.412 0.000 

Range size -0.130 0.006 -22.5 <0.001   

No. habitats -0.835 0.085 -9.9 <0.001   

Range size * no. habitats 0.065 0.007 9.1 <0.001   

       

NPP  

 Coefficient S.E. t p Model r2 λ 

Intercept -6.410 1.419 -4.5 <0.001 0.316 0.012 

Range size 0.464 0.121 3.8 <0.001   

NPP 0.291 0.053 5.4 <0.001   

Range size * NPP -0.021 0.005 -4.6 <0.001   

 6 

  7 
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Figure legends 1 

Figure 1. Explanation of analyses carried out to (A) build predictive models of extinction 2 

risk in reptiles and (B) evaluate the importance of range size versus other explanatory 3 

variables (biological traits and environmental factors). We followed this schematic to carry 4 

out our analyses using both the non-dated and dated phylogeny.  5 

 6 

Figure 2. Variance partitioning for all minimum adequate models (MAM) of extinction risk 7 

(global, and by geographical, taxonomic and threat type subsets), showing the different 8 

contributions of variables retained as significant within the respective MAM, as well as their 9 

shared contribution, to extinction risk: a) combined independent contribution of all variables 10 

retained in MAM excluding range size (solid line); b) shared contribution of all MAM 11 

variables including range size (thick dashed line); c) independent contribution of range size 12 

only (thin dashed line); d) unexplained (residual) variance in the model (dotted line). The 13 

variables for each figure were selected based on the outcomes of the MAMs using the non-14 

dated phylogeny only (see Tables 2 and 3). Biogeographical subsets: AFR – Afrotropical; 15 

AUS – Australasian; IND – Indomalayan; NE – Nearctic; NEO – Neotropical. 16 

 17 

Figure 3. Observed versus predicted log Red List status derived from holdout models (the 18 

global model containing all species minus those from the stated biogeographical realm) 19 

predicting Red List status for the remaining (held out) biogeographical realm: A – 20 

Afrotopical (%error of prediction = 23.6); B – Australasian (%error = 23.6); C – 21 

Indomalayan (%error = 29.0); D – Nearctic (%error = 27.6); E – Neotropical (%error = 25.7); 22 

F – Palearctic (%error = 27.1). Full diagnostics for each model are given in the 23 

Supplementary Materials (Table S9). 24 

 25 

Figure 4. Global distribution maps for significant species traits in our analyses: (A) The 26 

number of habitats occupied (as a measure of habitat specialism); (B) accessibility of species’ 27 

geographical ranges (travel time in minutes of land-based travel to cities of more than 50,000 28 

people). Grid cell values are the average weighted mean for trait values, for species’ ranges 29 

intersecting the grid cell. 30 
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Figure 2. 1 

 2 

  3 



32 
 

Figure 3. 1 
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