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Abstract

Background: Stress levels among college students have been on the rise for the last few decades. Currently, rates of reported
stress among college students are at an all-time high. Traditionally, the dominant way to assess stress levels has been through
pen-and-paper surveys.

Objective: The aim of this study is to use passive sensing data collected via mobile phones to obtain a rich and potentially
less-biased source of data that can be used to help better understand stressors in the college experience.

Methods: We used a mobile sensing app, StudentLife, in tandem with a pictorial mobile phone–based measure of stress, the
Mobile Photographic Stress Meter, to investigate the situations and contexts that are more likely to precipitate stress.

Results: Using recently developed methods for handling high-dimensional longitudinal data, penalized generalized estimating
equations, we identified a set of mobile sensing features (absolute values of beta >0.001 and robust z>1.96) across the domains
of social activity, movement, location, and ambient noise that were predictive of student stress levels.

Conclusions: By combining recent statistical methods and mobile phone sensing, we have been able to study stressors in the
college experience in a way that is more objective, detailed, and less intrusive than past research. Future work can leverage
information gained from passive sensing and use that to develop real-time, targeted interventions for students experiencing a
stressful time.

(JMIR Mhealth Uhealth 2019;7(3):e12084) doi: 10.2196/12084
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Introduction

Stress levels among college students have been on the rise for
years [1]. According to a recent large-scale nationwide survey,
rates of student stress continue to climb as more than half of
students (57%) reported experiencing “more than average stress”
[2]. In the workplace, it has been conservatively estimated that
stress costs the United States economy up to US$125 billion

annually [3]. Although not directly measured in dollars and
cents, evidence for the negative impact of stress on college
students can be observed through hampered academic
performance, as 30% of students noted that stress caused them
to receive a lower grade on an exam or course, fail or drop a
course, or it interfered with thesis or practicum work [2].

Broadly, stress can be defined as any sort of negative event
related to demand, threat, or harm. Following a stressful event
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is a biological and behavioral response geared toward altering
the present situation or otherwise adapting to the stressor [4].
Along with hindering academic performance, stress is thought
to be related to a host of negative emotional states and health
outcomes, including depression, obesity, and cardiovascular
disease [5-7]. Indeed, as levels of stress have risen among
college students, so have issues related to mental health [2].
Not surprisingly, a survey of college counseling center directors
indicated that a clear majority (90%) of centers reported an
increase in severe psychological problems among students [8].

A primary source of stress for students is academics. Stress
because of class attendance and homework were among leading
stressors in one study of college students [9]. Further, research
suggests that in addition to academic performance, students are
also stressed by a pressure to succeed and about concerns
regarding postgraduate planning [10]. Of course, in the college
environment, stressors other than those academic in nature also
exist. Interpersonal aspects of a student’s life, such as worrying
about forming friendships, fitting in socially, and getting along
with roommates, were reported as stressful elements by students
[11]. In addition, environmental sources of stress, such as
financial difficulties, and changes in eating and sleeping patterns
also contribute to levels of student stress [11,12].

Until recently, the dominant method for sampling information
about students’ lives came by way of daily and weekly diaries
where details about students’ thoughts, experiences, behaviors,
and activities could be recorded over a specified time range.
Indeed, approaches such as this have shed light on various
aspects of a college students’ life, including interpersonal student
relationships, drinking behavior, and coping with stressors
[13,14]. However, diary methods can be time intensive for
participants and typically rely entirely on retrospective
self-report of activities, a task that is known to be susceptible
to various forms of bias—chiefly a bias due to cognitive and
memory limitations [15]—resulting in inaccurate reports of the
frequency and severity of events.

With the widespread adoption of mobile phones in recent years,
new approaches have been developed to use mobile phones for
studying real-time or nearly real-time behaviors and attitudes
[16]. Mobile phones can be used to collect both ecological
momentary assessments (EMAs), such as a brief stress
inventory, and automatic passive sensing data (eg, audio and
location data collected via microphones and phone GPS).
Researchers have successfully related mobile phone sensing
features to mental health in a clinical setting [17,18]. Wang and
colleagues [19] were among the first to adapt this technology
to better understand student mental health with the creation of
the StudentLife continuous sensing app. With the StudentLife
app, researchers have been able to capture daily fluctuations in
students’ mental and emotional well-being by linking passive
sensing features (eg, sleep, location, social interaction) to aspects
of standard health-related questionnaires [19-21].

Based on prior research using primarily self-report measures,
aspects of the college experience are clearly stressful for students
ranging from interpersonal relationships to academic
achievements. However, one issue with this work is that these
measures are often obtained once per term and are thus subject

to the limitations and biases of retrospective self-report
measures, which makes it difficult to paint an accurate picture
of how stress manifests itself in the daily lives of students.
Recently, a proof-of-concept study using passive mobile phone
sensing investigated the relationship between passive sensing
measures and various mental health outcomes (eg, depression,
loneliness, stress) [20]. This proof-of-concept study
demonstrated the utility of mobile phone sensing apps despite
having focused on a relatively small number of sensing-derived
features. Here, we expand on this work by focusing on a
considerably larger number of passive sensing features to
comprehensively categorize a day in the life of a college student
and also make use of recently developed advances in modeling,
such complex, longitudinal data. As examples of the mobile
sensing features become available, inferences can be made about
the quality and quantity of an individual’s interpersonal
relationships by conversation features or phone usage, about
academic-related activity by time spent in study locations, about
sleep through a combination of sensing features (eg, periods of
movement, presence of light, phone usage), about exercise by
the time spent in gymnasiums, and so on. Moreover, these
features can be examined not only daily, but also at a finer grain
within a day. Looking at the data more minutely could help
fingerprint meaningful behavioral patterns in relation to stress.
For example, it could be the case that phone usage decreases
dramatically during evening hours when stressed, but not
globally across the day. Thus, the purpose of this study is to
further the understanding of stress dynamics on college
campuses by leveraging a dataset rich in passive sensing features
to accurately, and naturally, capture possible stressors in the
lives of students. Whereas prior work has largely focused on a
small number of features, we are able to use an array of mobile
sensing features and then subsequently analyze these data with
recently developed methods that both account for statistical
dependencies inherent in longitudinal data and perform feature
estimation and selection on high-dimensional data [22]. By
doing so, we are able to identify a collection of mobile sensing
features across the domains of social activity, location, and
ambient noise that are related to stress levels across the academic
term.

Methods

Participants
Data were collected from 95 participants who agreed to provide
mobile sensing data across the winter or spring terms.
Demographic information was missing for one participant. Of
the 94 participants with complete demographic information,
56% percent were female (53/94). The mean age of participants
was 21 (range 18-28) years. This study was approved by the
Dartmouth Committee for the Protection of Human Subjects.

Mobile Sensing
The StudentLife app was used to collect sensing data and to
administer EMAs; a version of the app exists for both Android
and iOS operating systems. The app continuously collects and
records students’ sleep, physical activity, phone usage, location,
and sociability data in addition to randomly administering EMAs
probing stress once a day. Data from StudentLife is uploaded
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to a secure server (encrypted and transmitted through HTTPS)
whenever a participant is both using WiFi and charging their
phone, which they were encouraged to do daily.

Conversations and Ambient Sound
Social interaction was measured by the number of independent
conversations and their respective durations. Critically, to protect
participants’ privacy, raw conversation data was never recorded
or analyzed. Instead, relevant features were extracted from the
audio stream and used to identify the presence of a human voice
and infer a human voice and conversation patterns. In this way,
the number of conversations along with their respective
durations were calculated. These conversation-related features,
along with features related to ambient sound, were subsequently
uploaded to a secure server [19,23].

Sleep
Sleep features were inferred through a combination of passive
sensing features (ambient light, audio amplitude, movement
activity, screen on/off). In this way, three features were
computed: sleep onset, wake time, and sleep duration. This
measure of sleep has been shown to be accurate within +/–30
minutes for total sleep duration [19].

Location
Density-based spatial clustering of applications with noise
(DBSCAN) [24] was used to cluster GPS coordinates to uncover
where students were spending a significant amount of time.
Every building on campus was mapped with respect to its
primary function; thus, the amount of time a participant spent
at locations such as dining centers, the gym, and study locations
could be measured along with their total distance traveled and
the number of different places visited. The institution where
this study was conducted was an ideal environment for
extracting location-based data because more than 90% of
students live on campus and first first-year students are required
to reside on campus during their first year of school. Further,
all students are required to have a campus meal plan for the
entirety of their education.

Mobile Phone Usage
The total number of phone lock and unlock instances was
computed along with the total duration a phone was unlocked
during the day.

Epochs
There is a large amount of daily variability in a student’s
schedule; thus, we also looked at data not only over the course
of a day but within the following three epochs: 9 am to 6 pm
(day), 6 pm to 12 am (evening), and 12 am to 9 am (night).
Accordingly, we could estimate and add the relative occurrences
of behaviors within each epoch compared to their daily totals
as features.

In total, across the different sensing-based features
(conversation, sleep, location, and phone usage) and within the
previously mentioned time epochs (9 am-6 pm, 6 pm-12 am,
12 am-9 am), 60 passive sensing variables were computed.

Measures
The Mobile Photographic Stress Meter (MPSM) was used to
measure stress (Figure 1) [25]. The MPSM is a series of 16
images depicting varying levels of stress (1 depicts a relaxing
beach, and 16 displays someone on the verge of breaking down).
The user simply taps the image that best describes their current
stress level. Critically, usability is an important aspect of any
mobile phone app. In a pilot study, along with demonstrating
item validity, the majority of MPSM users enjoyed using the
mobile stress meter, reporting comfort, ease of use, and an
overall positive impression of the app [25]. In addition,
participants were asked to indicate their level of stress on a scale
from one (not at all) to five (very much); this stress scale was
not used in the main analyses but was used to validate the
relationship between stress and the MPSM.

Analyses
Datasets across a variety of disciplines are quickly increasing
in complexity and dimensionality with the onset of new data
collection technologies. In typical studies, the number of
observations is much larger than the number of features or
covariates. When referring to high-dimensional data in this
context, the number of features nears or even reaches the number
of observations. In addition, these datasets become even more
complex when collected over time. Recently, researchers have
proposed a technique to estimate models for longitudinal data
with high-dimensional covariates [26]. More specifically, Wang
and colleagues [26] combined techniques used for analyzing
clustered and longitudinal data (ie, generalized estimating
equations [GEE]), an extension of the generalized linear model
to accommodate clustered and longitudinal data, with penalized
regression methods. This resulted in a technique known as
penalized generalized estimating equations (PGEE). An
advantage of these recently developed techniques is that, in
contrast to previous work that focused on a few features out of
many possible mobile sensing features, this technique enables
us to use a greater number of mobile sensing features and feature
elimination to prune uninformative ones. In this study, PGEE
were used to simultaneously estimate and select features from
the 61 (all the sensing features plus a time variable) variables
contributing to stress with the package PGEE in the R
environment [22,26,27]. Like GEE, PGEE fit a marginal
regression model to the data and require the selection of a
working correlation matrix; further, it can yield consistent
estimates even if the working correlation structure is incorrectly
specified [22,26]. Here, the independence correlation matrix
was used as the working correlation matrix, and the smoothly
clipped absolute deviation (SCAD) penalty was used as the
penalization function due to its efficiency and lack of bias
compared to other penalization techniques (eg, least absolute
shrinkage and selection operator [LASSO]) [22,28]. To select
the optimal tuning parameter, five-fold cross-validation was
implemented. Additionally, robust variance was calculated for
effective inference.
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Figure 1. The Mobile Photographic Stress Meter (MPSM) is a pictorial, user-friendly way to measure stress.

Results

Before any analyses, the data were cleaned to remove
participants who encountered technological complications with
their mobile phone or who failed to respond to more than 50%
of the MPSM survey used to measure stress. Additional days
were discarded when extreme outliers were observed in the
location data (distance >0.975 quantile). The aim here was to
remove days when students may have taken a day trip during
the term; spending the majority of the day traveling severely
skewed location-based data. After this step, the remaining 72
participants had 43.1 days of data on average (SD 11.8). Across
these participants, the overall rate of failure to respond to the
MPSM survey prompts was 18.57% (576/3101). Next, with the
cleaned dataset the relationship between stress (self-reported,
range 1-5) and the MPSM was assessed using a mixed-effect
model with random subject intercepts. Supporting the MPSM
pilot data, MPSM and self-reported stress were strongly related
(beta=2.037, SE 0.076, P<.001) providing further validity for
the MPSM as a measure of stress. Of general interest was
understanding how reported stress unfolded across the term.
Thus, the relationship between stress and time was also assessed.
A mixed-effect analysis incorporating fixed linear and quadratic

time effects, random subject intercepts, and random slopes for
both the linear and quadratic effects of time revealed a
significant linear effect (beta=1.282, SE 0.509, P=.02) and a
significant quadratic effect (beta=–1.203, SE 0.491, P=.02) of
time on the MPSM measure of stress, indicating that stress
increased across the term but also experienced a bump near the
middle of term presumably reflecting stress brought on by
midterm exams (Figure 2). This quadratic effect is similar to
the patterns observed in past research [20].

Correlation matrices are used to visually assess relationship
patterns between variables in high-dimensional data. However,
in this dataset, looking at correlations between sensing features
may be misleading due to the clustered and unbalanced nature
of the data. Thus, Figure 3 was created to aid in visualizing the
relationship between stress and the set of sensing features. The
estimates in the figure represent the t values from a series of
pairwise mixed-effect analyses regressing stress with each of
the variables in the dataset. From Figure 3, one can see a few
themes emerging. For example, it appears that the majority of
sensing features seem to be inversely related to stress. Generally,
it also appears that a variety of sensing features see a decrease
in usage/occurrence during the evening epoch when stress is
high.
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Figure 2. Average daily stress over the course of the term. The shading represents the 95% confidence interval around the fitted values.

Unlike mixed-effect models, GEE (and, as a result, PGEE) are
not “full-likelihood” models [29]. Thus missing data must be
accommodated differently, here imputed before model fitting.
Missing MPSM data points were imputed using Kalman
smoothing. Each subject’s trajectory of MPSM scores was
treated as a structural time series model and Kalman smoothing
was then used to impute the missing values in the time series
[30]. In the resulting completed dataset, 10 skewed covariates
were transformed using log or log(x+1) transformations (eg,
distance traveled, unlock duration). Finally, the outcome variable
and covariates were standardized [31] and analyzed using PGEE.
Of the 61 features used in the analysis, six were found to be

significantly related to levels of stress by the PGEE analysis.
Time spent in dining centers (beta=–0.024, robust z=–2.968),
distance traveled between 6 pm and 12 am (beta=–0.021, robust
z=–2.670), and mean audio amplitude between 6 pm and 12 am
(beta=–0.031, robust z=–2.074) were found to be inversely
related to stress, whereas time spent in study locations
(beta=0.071, robust z=3.569), proportion of time spent
conversing between 9 am and 6 pm (beta=0.030, robust
z=2.706), and the proportion of conversations occurring between
9 am and 6 pm (beta=0.021, robust z=2.616) were found to be
positively associated with stress (Table 1).
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Figure 3. Relationship between stress and sensing features using t values to depict the relationship in a pairwise fashion. Amp: amplitude; convo:
conversation; day: sensing data across an entire day; dist: distance; dur: duration; loc: location; num: number; prop: proportion of sensing data occurring
within a time period; std: standard deviation.

Table 1. Features related to stress as selected by the penalized generalized estimating equations (PGEE) analysis.

Robust zRobust standard errorEstimateFeature

3.5690.0200.071Time in study locations

2.7060.0110.030Proportion of conversation duration from 9 am-6 pm

2.6160.0080.021Proportion of conversation number from 9 am-6 pm

–2.6700.008–0.021Distance traveled from 6 pm-12 am

–2.9680.008–0.024Time in food locations

–2.0740.015–0.031Mean audio amplitude 6 pm-12 am

Discussion

Principal Findings
Using the MPSM and continuous passive sensing, we were able
to measure stress and richly sample the daily life of a college
student. From the resulting dozens of features, we were able to
select the features best predictive of stress while accounting for
the clustered nature of the data. The finding that time spent in
study locations was the strongest predictor of stress provides a
novel and unobtrusive index to assess school-related strain and
meshes well with past research indicating that academics were
a serious stressor for students [9,10]. We were also able to

identify an environmental factor identified by past research
related to stress [11,12] as students were spending less time in
food locations when reporting greater amounts of stress. Further,
we were able to uncover novel aspects of movement and speech
patterns that were associated with stress. In the evening, stressed
students were around less noise and showed reduced patterns
of movement between 6 pm and 12 am. During the day, stressed
students spent a greater proportion of time conversing between
9 am and 6 pm, and they exhibited a greater proportion of
conversation between 9 am and 6 pm.

Of note was that four of the six variables selected related to
specific time epochs, which underscores the importance of
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looking at these data not only aggregated across a day but at
finer scales within a day. For example, past work did not observe
a significant relationship between daily stress levels and speech
duration across the day, although there was a modest relationship
between the two measures [20]. It may have been the case that
a relationship similar to the association we observed between
stress and relative conversation between 9 am and 6 pm was
present but masked by aggregating the data across the day.

From these data, we can more accurately begin to conceptualize
what a “stressful” day looks like for a college student. Over the
course of the day, students are eating less and spending more
time in study locations. They are around more conversation
during the day while they move to and from class, but are not
socializing with others during the evening, a time that many
would consider more leisurely. In lieu of socializing during
evening hours, students are spending time in a quiet place,
possibly engaged in studying or other sedentary pursuits. Put
differently, it could be the case that being around others during
the evening shields students from stress, a finding that fits well
with the notion that social support moderates life stress levels
[32].

Finally, by using PGEE, we were able to take advantage of a
complex dataset. This technique has many applications beyond
examining passive sensing data and may be of use to any
researcher who has a large dataset collected over time. As the
authors of the R package PGEE mention, large longitudinal
datasets are becoming commonplace in fields such as health,
economics, genomics, and the behavioral sciences. To illustrate
PGEE, the authors apply their method to a yeast cell cycle gene
expression dataset to identify factors that play an important role
in the transcription of genetic information from DNA to mRNA
[22,26]. Further use cases for PGEE could be realized in
longitudinal genomic studies where genetic data are collected
and single nucleotide polymorphisms are related to some sort
of phenotype outcome at the person level (eg, breast cancer or
asthma). At a level higher than the genome, PGEE could also
be of use to those in the realm of health economics. For example,
determining the most important predictors of life expectancy
in a country over time from a large number of demographic,
socioeconomic, and cultural variables. Finally, PGEE could be

applied to future passive sensing projects in the mobile health
domain. For instance, mobile sensing could be paired with
wearable technology (eg, a smart band) to uncover what
physiological and environmental variables precipitate cigarette
craving.

Limitations and Future Directions
Although the purpose of this study was to examine stress in a
particular population (college students), future studies may want
to include individuals from a variety of institutions and age
groups (eg, high school or workplace), which could provide
valuable insights into boosting education quality and workplace
productivity. A strength of this study was that it was conducted
at a relatively small, self-contained college campus that has an
extremely high number of students living on campus; however,
it could be challenging to take this project to scale at a larger,
more urban university where the number of students living off
campus is much higher. An additional limitation of this study
is that the granularity of location data does not permit strong
inferences concerning student activities while in locations such
as libraries. Although we know students in a library are most
likely studying, college libraries are large buildings; they could
be socializing or working more casually. Another interesting
avenue to explore would be the placement of Bluetooth beacons
within buildings to expand the spatial resolution of the location
data. Bluetooth beacons would allow one to detect whether a
student is working in an open, causal section, a quiet-only zone,
or to discover whether a student may have rented out a private
cubicle.

Conclusion
In sum, we used a picture-based measure of stress (MPSM)
alongside modern mobile phone sensing technology to gain a
better understanding of stressors affecting college students. By
taking this approach, we have been able to study stressors in
the college experience in a way that is more objective, detailed,
and less obtrusive than past research. With this knowledge,
future work can leverage information gained from passive
mobile sensing and use that to develop real-time, targeted
interventions for students experiencing increased stress.
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