Correlating $h \rightarrow \mu^{+} \boldsymbol{\mu}^{-}$to the Anomalous Magnetic Moment of the Muon via Leptoquarks

Andreas Crivellin©*
CERN Theory Division, CH-1211 Geneva 23, Switzerland; Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland and Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
Dario Müller ${ }^{\dagger}$
Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland and Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
Francesco Saturnino ${ }^{\ddagger}$
Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern, CH-3012 Bern, Switzerland

(Received 8 August 2020; revised 26 May 2021; accepted 27 May 2021; published 7 July 2021)

Abstract

Recently, both ATLAS and CMS measured the decay $h \rightarrow \mu^{+} \mu^{-}$, finding a signal strength with respect to the standard model expectation of 1.2 ± 0.6 and $1.19_{-0.39-0.16}^{+0.41+0.17}$, respectively. This provides, for the first time, evidence that the standard model Higgs couples to second generation fermions. This measurement is particularly interesting in the context of the intriguing hints for lepton flavor universality violation, accumulated within recent years, as new physics explanations could also be tested in the $h \rightarrow \mu^{+} \mu^{-}$decay mode. Leptoquarks are prime candidates to account for the flavor anomalies. In particular, they can provide the necessary chiral enhancement (by a factor m_{t} / m_{μ}) to address a_{μ} with tera-electron-volt scale new physics. In this Letter we point out that such explanations of a_{μ} also lead to enhanced effects in $h \rightarrow \mu^{+} \mu^{-}$ and we examine the correlations between $h \rightarrow \mu^{+} \mu^{-}$and a_{μ} within leptoquark models. We find that the effect in the branching ratio of $h \rightarrow \mu^{+} \mu^{-}$ranges from several percent up to a factor of 3 , if one aims at accounting for a_{μ} at the 2σ level. Hence, the new ATLAS and CMS Collaboration measurements already provide important constraints on the parameter space, rule out specific a_{μ} explanations, and will be very important to test the flavor anomalies in the future.

DOI: 10.1103/PhysRevLett.127.021801

Introduction.-The Large Hadron Collider (LHC) at CERN confirmed the predictions of the standard model (SM) of particle physics by discovering the Brout-EnglertHiggs boson [1,2] in 2012. However, until now, high energy searches did not discover any particles beyond the ones present in the SM. Therefore, great hopes of finding new physics (NP) rest on low energy precision physics where flavor experiments have accumulated intriguing hints for physics beyond the SM within the recent years, most prominently in $b \rightarrow s \ell^{+} \ell^{-}$data [3-5], $b \rightarrow c \tau \nu$ transitions [6-8], and the anomalous magnetic moment (AMM) of the muon [$a_{\mu}=(g-2)_{\mu} / 2$] [9-11]. Interestingly, these hints for NP fall into a common pattern: they can be considered as

[^0]signs of lepton flavor universality violation (LFUV) [12], which is respected by the SM gauge interactions and is only broken by the Higgs Yukawa couplings.

Among these anomalies, a_{μ}, which displays a 4.2σ deviation from the SM prediction [15], is most closely related to Higgs interactions as it is a chirality changing observable. I.e., it involves a chirality flip and therefore a violation of $\mathrm{SU}(2)_{L}$ is required to obtain a nonzero contribution. Furthermore, the required NP effect to explain a_{μ} is of the order of the electroweak (EW) SM contribution and tera-electron-volt scale solutions need an enhancement mechanism, called chiral enhancement, to be able to account for the deviation (see, e.g., Ref. [16] for a recent discussion). Obviously, also $h \rightarrow \mu^{+} \mu^{-}$is a chirality changing process and any enhanced effect in a_{μ} should also result in an enhanced effect [17]. Recently, both ATLAS and CMS Collaborations measured $h \rightarrow \mu^{+} \mu^{-}$, finding a signal strength with respect to the SM expectation of 1.2 ± 0.6 [23] and $1.19_{-0.39-0.16}^{+0.41+0.17}$ [24], respectively.

TABLE I. Scalar LQ representations together with their couplings to quarks and leptons, generating the desired $m_{t} / m_{\mu^{-}}$ enhanced effect in the AMM of the muon. Here, $\mathcal{G}_{\text {SM }}$ refers to the SM gauge group $\mathrm{SU}(3)_{c} \times \mathrm{SU}(2)_{L} \times \mathrm{U}(1)_{Y}, L(Q)$ is the lepton (quark) $\mathrm{SU}(2)_{L}$ doublet, $u(\ell)$ the up-type quark (lepton) singlet and c refers to charge conjugation. Furthermore, j and f are flavor indices and τ_{k} the Pauli matrices.

	$\mathcal{G}_{\mathrm{SM}}$	$\mathcal{L}_{q \ell}$
S_{1}	$\left(3,1,-\frac{2}{3}\right)$	$\left(\lambda_{f j}^{R} \bar{u}_{f}^{c} \ell_{j}+\lambda_{f j}^{L} \bar{Q}_{f}^{c} i \tau_{2} L_{j}\right) S_{1}^{\dagger}+$ H.c.
S_{2}	$\left(3,2, \frac{7}{3}\right)$	$\gamma_{f j}^{R L} \bar{u}_{f} S_{2}^{T} i \tau_{2} L_{j}+\gamma_{f j}^{L R} \bar{Q}_{f} \ell_{j} S_{2}+$ H.c.
S_{3}	$\left(3,3,-\frac{2}{3}\right)$	$\kappa_{f j} \bar{Q}_{f}^{c} i \tau_{2}\left(\tau \cdot S_{3}\right)^{\dagger} L_{j}+$ H.c.

The mechanism of chiral enhancement, necessary to explain a_{μ}, has been well studied (see Ref. [16] for a recent account). Here, leptoquarks (LQs) are particularly interesting since they can give rise to an enhancement factor of $m_{t} / m_{\mu} \approx 1700$ [16,25-48], allowing for a tera-electron-volt scale explanation with perturbative couplings that are not in conflict with direct LHC searches. In fact, there are only two LQs, out of the ten possible representations [49], that can yield this enhancement: the scalar LQ $\mathrm{SU}(2)_{L}$ singlet $\left(S_{1}\right)$ and the scalar LQ $\mathrm{SU}(2)_{L}$ doublet (S_{2}) with hypercharge $-2 / 3$ and $-7 / 3$, respectively. In addition, there is the possibility that S_{1} mixes with the $\mathrm{SU}(2)_{L}$ triplet LQ S_{3}, where S_{1} only couples to right-handed fermions [43].

Furthermore, LQs are also well motivated by the hints for LFUV in semileptonic B decays, both in $b \rightarrow s \mu^{+} \mu^{-}$[3-5] and $b \rightarrow c \tau \nu$ data [6-8], which deviate from the SM with up to $\approx 6 \sigma$ [50-53] and $\approx 3 \sigma$ [54-58], respectively. Here, possible solutions include again S_{1} [28,29,40,59-75], S_{2} [30,61,76-83], and S_{3} [67,84-90], where S_{1} and S_{3} together can provide a common explanation of the B anomalies and the AMM of the muon [39,44,67,91,92]. We take this as a motivation to study these correlations for the LQs which can generate m_{t} / m_{μ}-enhanced effects by considering three scenarios: (1) S_{1} only, (2) S_{2} only, (3) $S_{1}+S_{3}$, where S_{1} only couples to right-handed fermions. Note that these are the only scenarios which can give rise to the desired m_{t} / m_{μ}-enhanced effect.

Setup and Observables.-The most precise measurements of the anomalous magnetic moment (AMM) of the muon $\left[a_{\mu}=(g-2)_{\mu} / 2\right.$] has been achieved by the E821 experiment at Brookhaven $[9,10$] and recently by the $g-2$ experiment at Fermilab [11], which differs from the SM prediction by

$$
\begin{equation*}
\delta a_{\mu}=a_{\mu}^{\exp }-a_{\mu}^{\mathrm{SM}}=(251 \pm 59) \times 10^{-11} \tag{1}
\end{equation*}
$$

corresponding to a 4.2σ deviation [15,93]. Therefore, it is very interesting to investigate if and how this discrepancy can be explained by physics beyond the SM.

As we motivated in the introduction, we will focus on the three scalar LQs S_{1}, S_{2}, and S_{3} for explaining a_{μ}. These representations couple to fermions as given in Table I [94]. Since we are in the following only interested in muon couplings to third generation quarks, we define $\lambda_{R} \equiv \lambda_{32}^{R}$, $\lambda_{L} \equiv \lambda_{32}^{L}, \gamma_{L R} \equiv \gamma_{32}^{L R}, \gamma_{R L} \equiv \gamma_{32}^{R L}, \kappa=\kappa_{32}$.

In addition to the gauge interactions, which are determined by the representation under the SM gauge group, LQ can couple to the SM Higgs [121]

$$
\begin{align*}
\mathcal{L}_{H}= & Y_{13} S_{1}^{\dagger}\left[H^{\dagger}\left(\tau S_{3}\right) H\right]+\text { H.c. } \\
& -Y_{22}\left(H i \tau_{2} S_{2}\right)^{\dagger}\left(H i \tau_{2} S_{2}\right)-\sum_{k=1}^{3}\left(m_{k}^{2}+Y_{k} H^{\dagger} H\right) S_{k}^{\dagger} S_{k} . \tag{2}
\end{align*}
$$

Here, m_{k}^{2} are the $\mathrm{SU}(2)_{L}$ invariant bilinear masses of the LQs. After $\mathrm{SU}(2)_{L}$ breaking, the term Y_{13} generates offdiagonal elements in the LQ mass matrices and one has to diagonalize them through unitary transformations in order to arrive at the physical basis. Therefore, nonzero values of Y_{13} are necessary to generate m_{t} / m_{μ}-enhanced effects in scenario 3. Y_{1} and $Y_{2,22}$ are phenomenologically relevant for $h \rightarrow \mu^{+} \mu^{-}$in scenarios 1 and 2, respectively, but not necessary for an m_{t} / m_{μ} enhancement.

Now we can calculate the effects in a_{μ} and $h \rightarrow \mu^{+} \mu^{-}$ [122] for which sample diagrams are shown in Fig. 1. In both cases we have on-shell kinematics. For a_{μ} the selfenergies can simply be taken into account via the Lehmann-Symanzik-Zimmermann formalism and no renormalization is necessary. This is, however, required for $h \rightarrow \mu^{+} \mu^{-}$in order to express the result in terms of the physical muon mass. Here, the effective Yukawa coupling, which enters $h \rightarrow \mu^{+} \mu^{-}$, is given by

$$
\begin{equation*}
Y_{\mu}^{\mathrm{eff}}=\frac{m_{\mu}-\Sigma_{\mu \mu}^{L R}}{v}+\Lambda_{\mu \mu}^{L R}, \tag{3}
\end{equation*}
$$

where $\Lambda_{\mu \mu}^{L R}$ is the genuine vertex correction shown in Fig. 1 and $\Sigma_{\mu \mu}^{L R}$ is the chirality changing part of the muon self-energy. In these conventions $-i \Sigma_{\mu \mu}^{L R} P_{R}$ equals the expression of the Feynman diagram for the self-energy. Note that $Y_{\mu}^{\text {eff }}$ is finite without introducing a counterterm. For a_{μ} we expand in the muon mass and external momenta up to the first nonvanishing order, while in $h \rightarrow \mu^{+} \mu^{-}$ external momenta can be set to zero from the outset but we expand in $m_{h}^{2} / m_{1,2,3}^{2}$. The resulting amplitudes can be further simplified by expanding the LQ mixing matrices and mass eigenvalues in $v^{2} / m_{1,2,3}^{2}$ and the loop functions in m_{h}^{2} / m_{t}^{2}, which gives a very precise numerical approximation, resulting in

$$
\begin{align*}
& \left.\frac{\operatorname{Br}\left[h \rightarrow \mu^{+} \mu^{-}\right]}{\operatorname{Br}\left[h \rightarrow \mu^{+} \mu^{-}\right]_{\mathrm{SM}}} \approx \right\rvert\, 1+\frac{m_{t}}{m_{\mu}} \frac{N_{c}}{8 \pi^{2}}\left\{\frac{\lambda_{R}^{*} \lambda_{L}}{m_{1}^{2}}\left[\frac{m_{t}^{2}}{8} \mathcal{J}\left(\frac{m_{h}^{2}}{m_{t}^{2}}, \frac{m_{t}^{2}}{m_{1}^{2}}\right)+v^{2} Y_{1}\right]+v^{2} \lambda_{R}^{*} \kappa Y_{13} \frac{\log \left(m_{3}^{2} / m_{1}^{2}\right)}{m_{3}^{2}-m_{1}^{2}}\right. \\
&\left.+\frac{\gamma_{L R}^{*} \gamma_{R L}}{m_{2}^{2}}\left[\frac{m_{t}^{2}}{8} \mathcal{J}\left(\frac{m_{h}^{2}}{m_{t}^{2}}, \frac{m_{t}^{2}}{m_{2}^{2}}\right)+v^{2}\left(Y_{2}+Y_{22}\right)\right]\right\}\left.\right|^{2}, \tag{4}\\
& \delta a_{\mu} \approx \frac{m_{\mu}}{4 \pi^{2}} \frac{N_{c} m_{t}}{12} \operatorname{Re}\left\{\frac{\gamma_{L R} \gamma_{R L}^{*}}{m_{2}^{2}} \mathcal{E}_{1}\left(\frac{m_{t}^{2}}{m_{2}^{2}}\right)-\frac{\lambda_{R}}{m_{1}^{2}}\left[\lambda_{L}^{*} \mathcal{E}_{2}\left(\frac{m_{t}^{2}}{m_{1}^{2}}\right)+\kappa Y_{13} \frac{v^{2}}{m_{3}^{2}} \mathcal{E}_{3}\left(\frac{m_{1}^{2}}{m_{3}^{2}}, \frac{m_{t}^{2}}{m_{3}^{2}}\right)\right]\right\} \tag{5}
\end{align*}
$$

with the loop functions given by

$$
\begin{gather*}
\mathcal{J}(x, y)=2(x-4) \log (y)-8+\frac{13}{3} x \tag{6}\\
\mathcal{E}_{1}(x)=1+4 \log (x), \quad \mathcal{E}_{2}(x)=7+4 \log (x) \\
\mathcal{E}_{3}(x, y)=\mathcal{E}_{2}(y)+\frac{4 \log (x)}{x-1} \tag{7}
\end{gather*}
$$

We only considered the m_{t}-enhanced effects and neglected small CKM rotations, which in principle appear after EW symmetry breaking. As anticipated, in Eq. (5) one can see that scenario 3 only contributes if Y_{13} is nonzero. Furthermore, since in this scenario a_{μ} has a relative suppression of $v^{2} / m_{1,3}^{2}$ with respect to $h \rightarrow \mu^{+} \mu^{-}$, one expects here the largest effects in Higgs decays. In principle also Y_{1}, Y_{2}, and Y_{22} enter in Eq. (5). However, their effect is subleading as it is suppressed by $v^{2} / m_{1,2}^{2}$.

Effective field theory: In the SM effective field theory (SMEFT), which is realized above the EW breaking scale

FIG. 1. Sample Feynman diagrams which contribute to $h \rightarrow \mu^{+} \mu^{-}$(top) and the AMM of the muon (bottom). In addition, we have to include the diagrams where the Higgs and photon couple to the LQ, as well as self-energy diagrams.
and therefore explicitly $\mathrm{SU}(2)_{L}$ invariant, there are only two chirality flipping four-fermion operators [126] which can give rise to m_{t}-enhanced effects in a_{μ} and $h \rightarrow \mu^{+} \mu^{-}$ via renormalization group evolution (RGE) effects:

$$
\begin{align*}
& Q_{\ell \text { equ }}^{(1)}=\left(\bar{\ell}_{2}^{a} e_{2}\right) \varepsilon_{a b}\left(\bar{q}_{3}^{b} u_{3}\right), \\
& Q_{\ell \text { equ }}^{(3)}=\left(\bar{\ell}_{2}^{a} \sigma_{\mu \nu} e_{2}\right) \varepsilon_{a b}\left(\bar{q}_{3}^{b} \sigma^{\mu \nu} u_{3}\right) . \tag{8}
\end{align*}
$$

Importantly, while both operators mix at order $\alpha_{(s)}$ with each other, only the second operators mixes (directly) into the magnetic operator [127-129]

$$
\begin{align*}
Q_{e B} & =\bar{\ell}_{2} \sigma^{\mu \nu} e_{2} H B_{\mu \nu}, \\
Q_{e W} & =\bar{\ell}_{2} \sigma^{\mu \nu} e_{2} \tau^{I} H W_{\mu \nu}^{I} \tag{9}
\end{align*}
$$

giving rise to the AMM of the muon after EW symmetry breaking [130]. Furthermore, as $Q_{\ell \text { equ }}^{(1)}$ mixes into $Q_{e \varphi}=$ $H^{\dagger} H \bar{\ell}_{2} e_{2} H$ (generating modified Higgs couplings to muons) it is clear that a UV complete (or at least simplified) model is necessary to correlate a_{μ} to $h \rightarrow \mu^{+} \mu^{-}$.

The EFT approach is beneficial in our LQ setup since it allows for the inclusion of RGE effects, as recently done in Ref. [132]. In a first step, the LQ model is matched on the SMEFT (at the LQ scale), giving tree-level effects in $C_{\ell \text { equ }}^{(1,3)}$ [133] and a loop effect in $Q_{e B}$ and $Q_{e W}$ [134]. Then the SMEFT is used to evolve the Wilson coefficients of these operators to the weak scale where the EW gauge bosons, the Higgs and the top quark are integrated out [135-137]. Next, the magnetic operator of the muon is evolved to the muon scale $[138,139]$ where the AMM is measured. Reference [132] finds a reduction of a_{μ} by $\approx 20 \%-30 \%$ compared to the leading order estimate of LQ masses between $1-10 \mathrm{TeV}$. Furthermore, as $C_{\text {lequ }}^{(1)}$ is enhanced by $\approx 5 \%-10 \%$ by the running from the LQ scale to the EW scale [140], this leads to an important enhancement of $50 \%-70 \%$ of the prediction for $\operatorname{Br}\left[h \rightarrow \mu^{+} \mu^{-}\right]$with respect to the leading order calculation. To be conservative, we will use 50% in our following phenomenological analysis.

Phenomenology.-Let us now study the correlations between a_{μ} and $h \rightarrow \mu^{+} \mu^{-}$in our three scenarios with m_{t}-enhanced contributions. First, we consider scenarios 1 and 2 where S_{1} and S_{2} give separately rise to m_{t}-enhanced effects in a_{μ} and $h \rightarrow \mu^{+} \mu^{-}$. Since both processes involve the same product of couplings to SM fermions, the correlation depends only weakly via a logarithm on $m_{t}^{2} / m_{1,2}^{2}$. However, there is a dependence on Y_{1} and $Y_{22}+Y_{2}$ which breaks the direct correlation but cannot change the sign of the effect for order one couplings. This can be seen in Fig. 2, where the correlations are depicted for $m_{1,2}=1.5 \mathrm{TeV}$, respecting LHC bounds [141-143]. The predicted effect is not large enough such that the current ATLAS and CMS Collaboration measurements are sensitive to it. However, note that it is still sizable due to the m_{t} enhancement and therefore detectable at future colliders where the ILC [144], the HL-LHC [145], the FCC-ee [146], CEPC [147] or the FCC-hh [148] aim at a precision of approximately $10 \%, 8 \%, 6 \%$, and below 1%, respectively. Furthermore, the effect in $\operatorname{Br}\left[h \rightarrow \mu^{+} \mu^{-}\right]$in scenario 1 is necessarily constructive while in scenario 2 it is destructive, such that in the future a LQ explanation of a_{μ} by S_{1} could be clearly distinguished from the one involving S_{2}.

In scenario 3, where S_{1} only couples to right-handed fermions, the effect in $\operatorname{Br}\left[h \rightarrow \mu^{+} \mu^{-}\right]$is even more pronounced due to the relative suppression of the contribution to a_{μ} by $v^{2} / m_{1,3}^{2}$, see Eq. (5). Furthermore, in this case the correlation between a_{μ} and $h \rightarrow \mu^{+} \mu^{-}$depends to a good approximation only on the ratio m_{1} / m_{3}. As the effect is symmetric in m_{1} and m_{3} we fix one mass to 1.5 TeV and
obtain the band shown in Fig. 3 by varying the other mass between 1.5 and 3 TeV . The effect in $h \rightarrow \mu^{+} \mu^{-}$within the preferred region for a_{μ} is necessarily constructive and large enough that an explanation of the central value of a_{μ} is already disfavored by the ATLAS and CMS Collaboration measurements of $h \rightarrow \mu^{+} \mu^{-}$. Clearly, with more data the LHC will be able to support (disprove) this scenario if it finds a (no) significant enhancement of the $h \rightarrow \mu^{+} \mu^{-}$decay, assuming δa_{μ} is confirmed. This scenario also leads to sizable effects in $Z \mu \mu$ [43] which are compatible with LEP Electroweak Working Group data [149], but could be observed at the ILC [144], CLIC [150] or the FCC-ee [146].

Conclusions.-LQs are prime candidates for an explanation of the intriguing hints of LFUV. As LFUV within the SM only originates from the Higgs, chirality changing observables as the AMM of the muon and, of course, $h \rightarrow$ $\mu^{+} \mu^{-}$are especially interesting. In particular, there are three possible LQ scenarios which can address the discrepancy in the AMM of the muon by an m_{t} / m_{μ} enhancement. This also leads to enhanced corrections in $h \rightarrow \mu^{+} \mu^{-}$, which involve the same coupling structure as the a_{μ} contribution. This leads to interesting correlations between a_{μ} and $h \rightarrow \mu^{+} \mu^{-}$, which we study in light of the recent ALTAS and CMS Collaboration measurements.

We find that scenario 3 , in which S_{1} only couples to right-handed fermions and mixes after EW symmetry breaking with S_{3}, predicts large constructive effects in $h \rightarrow$ $\mu^{+} \mu^{-}$such that the current ATLAS and CMS Collaboration measurements are already excluding part of the parameter space. In case δa_{μ} is solely explained by S_{1} or S_{2} the effect in $\operatorname{Br}\left[h \rightarrow \mu^{+} \mu^{-}\right]$is of the order of several percent and

FIG. 2. Correlations between the $\operatorname{Br}\left[h \rightarrow \mu^{+} \mu^{-}\right]$, normalized to its SM value, and the NP contribution in the AMM of the muon δa_{μ} for scenario 1 (left) and scenario 2 (right) with $m_{1,2}=1.5 \mathrm{TeV}$. The predictions for different values of the LQ couplings to the Higgs are shown, where for scenario $1, Y=Y_{1}$ while in scenario $2, Y=Y_{2}+Y_{22}$. Even though the current ATLAS and CMS Collaboration results are not yet constraining for these models, sizable effects are predicted, which can be tested at future colliders. Furthermore, scenario 1 yields a constructive effect in $h \rightarrow \mu^{+} \mu^{-}$while the one in scenario 2 is destructive such that they can be clearly distinguished with increasing experimental precision.

FIG. 3. Correlations between the NP contribution to the AMM of the muon $\left(\delta a_{\mu}\right)$ and $\operatorname{Br}\left[h \rightarrow \mu^{+} \mu^{-}\right]$, normalized to its SM value in scenario 3. This correlation depends to a good approximation only on the ratio m_{1} / m_{3}. As the effect is symmetric in m_{1} and m_{3}, we fix one mass to 1.5 TeV and obtain the dark-blue band by varying the other mass between 1.5 TeV and 3 TeV . The effect in $h \rightarrow \mu^{+} \mu^{-}$within the preferred region for a_{μ} is necessarily constructive and so large that an explanation is already constrained by the ATLAS and CMS Collaboration measurements of $h \rightarrow \mu^{+} \mu^{-}$.
therefore detectable at future colliders, in particular at the FCC- $h h$. Furthermore, while the S_{1} scenario predicts constructive interference in $h \rightarrow \mu^{+} \mu^{-}$for the currently preferred range of a_{μ}, the S_{2} scenario predicts destructive interference such that they can be clearly distinguished in the future.
A. C. thanks Martin Hoferichter for useful discussions. The work of A. C. and D. M. supported by a Professorship Grant (PP00P2_176884) of the Swiss National Science Foundation and the one of F. S. by the Swiss National Science Foundation Grant No. 200020_175449/1.
*andreas.crivellin@cern.ch
"dario.mueller@psi.ch
${ }^{\ddagger}$ saturnino@itp.unibe.ch
[1] G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 716, 1 (2012).
[2] S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 716, 30 (2012).
[3] R. Aaij et al. (LHCb Collaboration), J. High Energy Phys. 08 (2017) 055.
[4] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 122, 191801 (2019).
[5] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 125, 011802 (2020).
[6] J. P. Lees et al. (BABAR Collaboration), Phys. Rev. Lett. 109, 101802 (2012).
[7] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 120, 171802 (2018).
[8] A. Abdesselam et al. (Belle Collaboration), arXiv:1904.08794.
[9] G. W. Bennett et al. (Muon g-2 Collaboration), Phys. Rev. D 73, 072003 (2006).
[10] P. J. Mohr, D. B. Newell, and B. N. Taylor, Rev. Mod. Phys. 88, 035009 (2016).
[11] B. Abi et al. (Muon g-2 Collaboration), Phys. Rev. Lett. 126, 141801 (2021).
[12] Recently, it has been pointed out that also the Cabibbo Angle Anomaly can be interpreted as a sign of LFUV [13,14].
[13] A. M. Coutinho, A. Crivellin, and C. A. Manzari, Phys. Rev. Lett. 125, 071802 (2020).
[14] A. Crivellin and M. Hoferichter, Phys. Rev. Lett. 125, 111801 (2020).
[15] T. Aoyama et al., Phys. Rep. 887, 1 (2020).
[16] A. Crivellin, M. Hoferichter, and P. Schmidt-Wellenburg, Phys. Rev. D 98, 113002 (2018).
[17] Correlations between a_{μ} and $h \rightarrow \mu^{+} \mu^{-}$were considered in the EFT in Ref. [18] and in the context of vectorlike leptons (see Ref. [19] for a recent global analysis) in Refs. [16,20-22].
[18] F. Feruglio, P. Paradisi, and O. Sumensari, J. High Energy Phys. 11 (2018) 191.
[19] A. Crivellin, F. Kirk, C. A. Manzari, and M. Montull, J. High Energy Phys. 12 (2020) 166.
[20] K. Kannike, M. Raidal, D. M. Straub, and A. Strumia, J. High Energy Phys. 02 (2012) 106; 10 (2012) 136(E).
[21] R. Dermisek and A. Raval, Phys. Rev. D 88, 013017 (2013).
[22] R. Dermisek, A. Raval, and S. Shin, Phys. Rev. D 90, 034023 (2014).
[23] G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 812, 135980 (2021).
[24] A. M. Sirunyan (The CMS Collaboration), J. High Energy Phys. 01 (2021) 148.
[25] A. Djouadi, T. Kohler, M. Spira, and J. Tutas, Z. Phys. C 46, 679 (1990).
[26] D. Chakraverty, D. Choudhury, and A. Datta, Phys. Lett. B 506, 103 (2001).
[27] K.-m. Cheung, Phys. Rev. D 64, 033001 (2001).
[28] M. Bauer and M. Neubert, Phys. Rev. Lett. 116, 141802 (2016).
[29] O. Popov and G. A. White, Nucl. Phys. B923, 324 (2017).
[30] C.-H. Chen, T. Nomura, and H. Okada, Phys. Rev. D 94, 115005 (2016).
[31] C. Biggio, M. Bordone, L. Di Luzio, and G. Ridolfi, J. High Energy Phys. 10 (2016) 002.
[32] S. Davidson, D. C. Bailey, and B. A. Campbell, Z. Phys. C 61, 613 (1994).
[33] G. Couture and H. Konig, Phys. Rev. D 53, 555 (1996).
[34] U. Mahanta, Eur. Phys. J. C 21, 171 (2001).
[35] F. S. Queiroz, K. Sinha, and A. Strumia, Phys. Rev. D 91, 035006 (2015).
[36] E. C. Leskow, G. D'Ambrosio, A. Crivellin, and D. Müller, Phys. Rev. D 95, 055018 (2017).
[37] C.-H. Chen, T. Nomura, and H. Okada, Phys. Lett. B 774, 456 (2017).
[38] D. Das, C. Hati, G. Kumar, and N. Mahajan, Phys. Rev. D 94, 055034 (2016).
[39] A. Crivellin, D. Müller, and T. Ota, J. High Energy Phys. 09 (2017) 040.
[40] Y. Cai, J. Gargalionis, M. A. Schmidt, and R. R. Volkas, J. High Energy Phys. 10 (2017) 047.
[41] K. Kowalska, E. M. Sessolo, and Y. Yamamoto, Phys. Rev. D 99, 055007 (2019).
[42] R. Mandal and A. Pich, J. High Energy Phys. 12 (2019) 089.
[43] I. Doršner, S. Fajfer, and O. Sumensari, J. High Energy Phys. 06 (2020) 089.
[44] A. Crivellin, D. Müller, and F. Saturnino, J. High Energy Phys. 06 (2020) 020.
[45] L. D. Rose, C. Marzo, and L. Marzola, Phys. Rev. D 102, 115020 (2020).
[46] S. Saad, Phys. Rev. D 102, 015019 (2020).
[47] I. Bigaran and R. R. Volkas, Phys. Rev. D 102, 075037 (2020).
[48] I. Doršner, S. Fajfer, and S. Saad, Phys. Rev. D 102, 075007 (2020).
[49] W. Buchmuller, R. Ruckl, and D. Wyler, Phys. Lett. B 191, 442 (1987); 448, 320(E) (1999).
[50] M. Algueró, B. Capdevila, A. Crivellin, S. DescotesGenon, P. Masjuan, J. Matias, M. Novoa Brunet, and J. Virto, Eur. Phys. J. C 79, 714 (2019); 80, A511 (2020).
[51] J. Aebischer, W. Altmannshofer, D. Guadagnoli, M. Reboud, P. Stangl, and D. M. Straub, Eur. Phys. J. C 80, 252 (2020).
[52] M. Ciuchini, A. M. Coutinho, M. Fedele, E. Franco, A. Paul, L. Silvestrini, and M. Valli, Eur. Phys. J. C 79, 719 (2019).
[53] A. Arbey, T. Hurth, F. Mahmoudi, D. M. Santos, and S. Neshatpour, Phys. Rev. D 100, 015045 (2019).
[54] Y. S. Amhis et al. (HFLAV Collaboration), Eur. Phys. J. C 81, 226 (2021).
[55] C. Murgui, A. Peñuelas, M. Jung, and A. Pich, J. High Energy Phys. 09 (2019) 103.
[56] R.-X. Shi, L.-S. Geng, B. Grinstein, S. Jäger, and J. Martin Camalich, J. High Energy Phys. 12 (2019) 065.
[57] M. Blanke, A. Crivellin, T. Kitahara, M. Moscati, U. Nierste, and I. Nišandžić, Phys. Rev. D 100, A035035 (2019).
[58] S. Kumbhakar, A. K. Alok, D. Kumar, and S. U. Sankar, Proc. Sci. EPS-HEP2019 (2020) 272 [arXiv:1909.02840].
[59] S. Fajfer, J. F. Kamenik, I. Nisandzic, and J. Zupan, Phys. Rev. Lett. 109, 161801 (2012).
[60] N. G. Deshpande and A. Menon, J. High Energy Phys. 01 (2013) 025.
[61] Y. Sakaki, M. Tanaka, A. Tayduganov, and R. Watanabe, Phys. Rev. D 88, 094012 (2013).
[62] M. Freytsis, Z. Ligeti, and J. T. Ruderman, Phys. Rev. D 92, 054018 (2015).
[63] X.-Q. Li, Y.-D. Yang, and X. Zhang, J. High Energy Phys. 08 (2016) 054.
[64] R. M. Wang, J. Zhu, H. M. Gan, Y. Y. Fan, Q. Chang, and Y. G. Xu, Phys. Rev. D 93, 094023 (2016).
[65] N. G. Deshpande and X.-G. He, Eur. Phys. J. C 77, 134 (2017).
[66] D. Bečirević, N. Košnik, O. Sumensari, and R. Zukanovich Funchal, J. High Energy Phys. 11 (2016) 035.
[67] D. Buttazzo, A. Greljo, G. Isidori, and D. Marzocca, J. High Energy Phys. 11 (2017) 044.
[68] W. Altmannshofer, P. S. Bhupal Dev, and A. Soni, Phys. Rev. D 96, 095010 (2017).
[69] S. Kamali, A. Rashed, and A. Datta, Phys. Rev. D 97, 095034 (2018).
[70] A. Azatov, D. Bardhan, D. Ghosh, F. Sgarlata, and E. Venturini, J. High Energy Phys. 11 (2018) 187.
[71] J. Zhu, B. Wei, J.-H. Sheng, R.-M. Wang, Y. Gao, and G.R. Lu, Nucl. Phys. B934, 380 (2018).
[72] A. Angelescu, D. Bečirević, D. A. Faroughy, and O. Sumensari, J. High Energy Phys. 10 (2018) 183.
[73] T. J. Kim, P. Ko, J. Li, J. Park, and P. Wu, J. High Energy Phys. 07 (2019) 025.
[74] A. Crivellin and F. Saturnino, Phys. Rev. D 100, 115014 (2019).
[75] H. Yan, Y.-D. Yang, and X.-B. Yuan, Chin. Phys. C 43, 083105 (2019).
[76] M. Tanaka and R. Watanabe, Phys. Rev. D 87, 034028 (2013).
[77] I. Doršner, S. Fajfer, N. Košnik, and I. Nišandžić, J. High Energy Phys. 11 (2013) 084.
[78] S. Sahoo and R. Mohanta, Phys. Rev. D 91, 094019 (2015).
[79] U. K. Dey, D. Kar, M. Mitra, M. Spannowsky, and A. C. Vincent, Phys. Rev. D 98, 035014 (2018).
[80] D. Bečirević and O. Sumensari, J. High Energy Phys. 08 (2017) 104.
[81] B. Chauhan, B. Kindra, and A. Narang, Phys. Rev. D 97, 095007 (2018).
[82] D. Bečirević, I. Doršner, S. Fajfer, D. A. Faroughy, N. Košnik, and O. Sumensari, Phys. Rev. D 98, 055003 (2018).
[83] O. Popov, M. A. Schmidt, and G. White, Phys. Rev. D 100, 035028 (2019).
[84] S. Fajfer and N. Košnik, Phys. Lett. B 755, 270 (2016).
[85] I. de Medeiros Varzielas and G. Hiller, J. High Energy Phys. 06 (2015) 072.
[86] B. Bhattacharya, A. Datta, J.-P. Guévin, D. London, and R. Watanabe, J. High Energy Phys. 01 (2017) 015.
[87] R. Barbieri, G. Isidori, A. Pattori, and F. Senia, Eur. Phys. J. C 76, 67 (2016).
[88] J. Kumar, D. London, and R. Watanabe, Phys. Rev. D 99, 015007 (2019).
[89] I. de Medeiros Varzielas and J. Talbert, Eur. Phys. J. C 79, 536 (2019).
[90] J. Bernigaud, I. de Medeiros Varzielas, and J. Talbert, J. High Energy Phys. 01 (2020) 194.
[91] D. Marzocca, J. High Energy Phys. 07 (2018) 121.
[92] I. Bigaran, J. Gargalionis, and R. R. Volkas, J. High Energy Phys. 10 (2019) 106.
[93] This result is based on Refs. [95-114]. The recent lattice result of the Budapest-Marseilles-Wuppertal collaboration (BMWC) for the hadronic vacuum polarization (HVP) [115] on the other hand is not included. This result would render the SM prediction of a_{μ} compatible with experiment. However, the BMWC results are in tension with the HVP determined from $e^{+} e^{-} \rightarrow$ hadrons data [99-104].] Furthermore, the HVP also enters the global EW fit [116], whose (indirect) determination is below the BMWC result [117]. Therefore, the BMWC determination of the HVP would increase tension in the EW fit $[118,119]$ and we opted for using the community consensus of Ref. [15].
[94] Note that "pure" LQs with couplings only to one quark and one lepton do not give rise to proton decays at any
perturbative order. The reason for this is that diquark couplings are necessary in order to break baryon and/or lepton number which is otherwise an unbroken symmetry forbidding proton decay (see Ref. [120] for a recent detailed discussion).
[95] T. Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio, Phys. Rev. Lett. 109, 111808 (2012).
[96] T. Aoyama, T. Kinoshita, and M. Nio, Atoms 7, 28 (2019).
[97] A. Czarnecki, W. J. Marciano, and A. Vainshtein, Phys. Rev. D 67, 073006 (2003); 73, 119901(E) (2006).
[98] C. Gnendiger, D. Stöckinger, and H. Stöckinger-Kim, Phys. Rev. D 88, 053005 (2013).
[99] M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang, Eur. Phys. J. C 77, 827 (2017).
[100] A. Keshavarzi, D. Nomura, and T. Teubner, Phys. Rev. D 97, 114025 (2018).
[101] G. Colangelo, M. Hoferichter, and P. Stoffer, J. High Energy Phys. 02 (2019) 006.
[102] M. Hoferichter, B.-L. Hoid, and B. Kubis, J. High Energy Phys. 08 (2019) 137.
[103] M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang, Eur. Phys. J. C 80, 241 (2020); 80, 410(E) (2020).
[104] A. Keshavarzi, D. Nomura, and T. Teubner, Phys. Rev. D 101, 014029 (2020).
[105] A. Kurz, T. Liu, P. Marquard, and M. Steinhauser, Phys. Lett. B 734, 144 (2014).
[106] K. Melnikov and A. Vainshtein, Phys. Rev. D 70, 113006 (2004).
[107] P. Masjuan and P. Sanchez-Puertas, Phys. Rev. D 95, 054026 (2017).
[108] G. Colangelo, M. Hoferichter, M. Procura, and P. Stoffer, J. High Energy Phys. 04 (2017) 161.
[109] M. Hoferichter, B.-L. Hoid, B. Kubis, S. Leupold, and S. P. Schneider, J. High Energy Phys. 10 (2018) 141.
[110] A. Gérardin, H. B. Meyer, and A. Nyffeler, Phys. Rev. D 100, 034520 (2019).
[111] J. Bijnens, N. Hermansson-Truedsson, and A. RodríguezSánchez, Phys. Lett. B 798, 134994 (2019).
[112] G. Colangelo, F. Hagelstein, M. Hoferichter, L. Laub, and P. Stoffer, J. High Energy Phys. 03 (2020) 101.
[113] T. Blum, N. Christ, M. Hayakawa, T. Izubuchi, L. Jin, C. Jung, and C. Lehner, Phys. Rev. Lett. 124, 132002 (2020).
[114] G. Colangelo, M. Hoferichter, A. Nyffeler, M. Passera, and P. Stoffer, Phys. Lett. B 735, 90 (2014).
[115] S. Borsanyi et al., Nature (London) 593, 51 (2021).
[116] M. Passera, W. J. Marciano, and A. Sirlin, Phys. Rev. D 78, 013009 (2008).
[117] J. Haller, A. Hoecker, R. Kogler, K. Mönig, T. Peiffer, and J. Stelzer, Eur. Phys. J. C 78, 675 (2018).
[118] A. Crivellin, M. Hoferichter, C. A. Manzari, and M. Montull, Phys. Rev. Lett. 125, 091801 (2020).
[119] A. Keshavarzi, W. J. Marciano, M. Passera, and A. Sirlin, Phys. Rev. D 102, 033002 (2020).
[120] I. Dorsner, S. Fajfer, and N. Kosnik, Phys. Rev. D 86, 015013 (2012).
[121] M. Hirsch, H. V. Klapdor-Kleingrothaus, and S. G. Kovalenko, Phys. Lett. B 378, 17 (1996).
[122] Correlations between the related modes $\tau \rightarrow \mu \gamma$ and $h \rightarrow \tau \mu$ were studied in Refs. [123-125] in the context of LQs.
[123] I. Doršner, S. Fajfer, A. Greljo, J. F. Kamenik, N. Košnik, and I. Nišandžic, J. High Energy Phys. 06 (2015) 108.
[124] K. Cheung, W.-Y. Keung, and P.-Y. Tseng, Phys. Rev. D 93, 015010 (2016).
[125] S. Baek and K. Nishiwaki, Phys. Rev. D 93, 015002 (2016).
[126] B. Grzadkowski, M. Iskrzynski, M. Misiak, and J. Rosiek, J. High Energy Phys. 10 (2010) 085.
[127] E. E. Jenkins, A. V. Manohar, and M. Trott, J. High Energy Phys. 10 (2013) 087.
[128] E. E. Jenkins, A. V. Manohar, and M. Trott, J. High Energy Phys. 01 (2014) 035.
[129] R. Alonso, E. E. Jenkins, A. V. Manohar, and M. Trott, J. High Energy Phys. 04 (2014) 159.
[130] Note that LQs are the only renormalizable extensions of the SM that can generate these operator at tree level [131].
[131] J. de Blas, J. C. Criado, M. Perez-Victoria, and J. Santiago, J. High Energy Phys. 03 (2018) 109.
[132] J. Aebischer, W. Dekens, E. E. Jenkins, A. V. Manohar, D. Sengupta, and P. Stoffer, arXiv:2102.08954.
[133] R. Alonso, B. Grinstein, and J. Martin Camalich, J. High Energy Phys. 10 (2015) 184.
[134] V. Gherardi, D. Marzocca, and E. Venturini, J. High Energy Phys. 07 (2020) 225; 01 (2021) 006(E).
[135] A. Crivellin, S. Najjari, and J. Rosiek, J. High Energy Phys. 04 (2014) 167.
[136] W. Dekens and P. Stoffer, J. High Energy Phys. 10 (2019) 197.
[137] T. Hurth, S. Renner, and W. Shepherd, J. High Energy Phys. 06 (2019) 029.
[138] A. Crivellin, S. Davidson, G. M. Pruna, and A. Signer, J. High Energy Phys. 05 (2017) 117.
[139] J. Aebischer, M. Fael, C. Greub, and J. Virto, J. High Energy Phys. 09 (2017) 158.
[140] J. Aebischer, J. Kumar, and D. M. Straub, Eur. Phys. J. C 78, 1026 (2018).
[141] A. M. Sirunyan et al. (CMS Collaboration), Phys. Rev. D 99, 032014 (2019).
[142] B. Diaz, M. Schmaltz, and Y.-M. Zhong, J. High Energy Phys. 10 (2017) 097.
[143] M. Aaboud et al. (ATLAS Collaboration), New J. Phys. 18, 093016 (2016).
[144] H. Abramowicz et al., arXiv:1306.6329.
[145] High-Luminosity Large Hadron Collider (HL-LHC): Technical Design Report V. 0.1, edited by G. Apollinari, I. Béjar Alonso, O. Brüning, P. Fessia, M. Lamont, L. Rossi, and L. Tavian (2017), Vol. 4.
[146] A. Abada et al. (FCC Collaboration), Eur. Phys. J. Special Topics 228, 261 (2019).
[147] F. An et al., Chin. Phys. C 43, 043002 (2019).
[148] A. Abada et al. (FCC Collaboration), Eur. Phys. J. Special Topics 228, 755 (2019).
[149] S. Schael et al. (ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group, and SLD Heavy Flavour Group Collaborations), Phys. Rep. 427, 257 (2006).
[150] A Multi-TeV Linear Collider Based on CLIC Technology: CLIC Conceptual Design Report (2012), edited by M. Aicheler, P. Burrows, M. Draper, T. Garvey, P. Lebrun, K. Peach, N. Phinney, H. Schmickler, D. Schulte, and N. Toge.

[^0]: Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by SCOAP ${ }^{3}$.

