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Abstract—This paper proposes a correlation-and-bit-aware con-
cept for data hiding by exploiting the side information at the en-

coder side, and we present two improved data hiding approaches

based on the popular additive spread spectrum embedding idea.
We first propose the correlation-aware spread spectrum (CASS)

embedding scheme, which is shown to provide better watermark

decoding performance than the traditional additive spread spec-
trum (SS) scheme. Further, we propose the correlation-aware im-

proved spread spectrum (CAISS) embedding scheme by incorpo-

rating SS, improved spread spectrum (ISS), and the proposed cor-
relation-and-bit-aware concept. Comparedwith the traditional ad-

ditive SS, the proposedCASS andCAISSmaintain the simplicity of

the decoder. Our analysis shows that, by efficiently incorporating

the side information, CASS and CAISS could significantly reduce

the host effect in data hiding and improve the watermark decoding

performance remarkably. To demonstrate the improved decoding

performance and the robustness by employing the correlation-and-

bit-aware concept, the theoretical bit-error performances of the

proposed data hiding schemes in the absence and presence of addi-

tional noise are analyzed. Simulation results show the superiority

of the proposed data hiding schemes over traditional SS schemes.

Index Terms—Correlator, data hiding, decoding performance,

side information, spread spectrum.

I. INTRODUCTION

T HE growing use of the Internet allows users to access,

share, manipulate, and distribute digital media data easily

and it has affected our daily life profoundly. However, it also

makes unauthorized proliferation of digital media much easier,

which poses key challenges to the copyright industry and raises

critical issues for intellectual protection of digital media.

To address the above concern, watermarking and data hiding

have been applied as promising ways for postdelivery protec-

tion of digital media data. The basic idea of watermarking and

data hiding is to embed some invisible information into the host

media signal and the hidden data can later be extracted for de-

sired purposes. The hidden information could be used for digital

media authentication, copyright protection, information embed-

ding, database annotation, traitor tracing, and so on.
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Depending on the applications, watermarking schemes could

generally be categorized into two groups: watermark detection

and watermark decoding. In the first group, the embedded infor-

mation mainly serves for the verification purpose [1]–[3] where

the main goal is to verify whether a specific embedded water-

mark signal (e.g., representing copyright information) is pre-

sented or not. Copyright protection and copy control are two

typical applications. In the second group, the embedded infor-

mation is considered as a hidden message which should be ex-

tracted (decoded) correctly at the decoder side [4]–[7]. Water-

mark detection and watermark decoding problems are formu-

lated differently and different detection/decoding approaches

are desired to serve different performance criteria. References

[8], [9], [1], and [7] explicitly have pointed out this distinction

in their works. This paper is categorized into the second group.

The primary issue in data hiding is the embedding scheme for

hiding the information bits. Amongst the proposed embedding

schemes for watermarking and data hiding, spread spectrum

(SS) and quantization-based methods are two main approaches.

Chen and Wornell [10] proposed quantization index modula-

tion (QIM) which watermarks the host signal by quantizing it

to the nearest lattice point. The scalar version of the QIM could

also be used for fast coding and decoding [11]. One main disad-

vantage of this approach is its vulnerability against gain attack,

even though some efforts have been taken to address this con-

cern [12], [13]. Another main approach for data hiding is spread

spectrum (SS)-based, which is probably the most popular wa-

termarking approach. The SS scheme was originally proposed

by Cox et al. [6] which basically spreads the information over

the host signal. There are two types of SS at the encoder side:

the additive SS and the multiplicative spread spectrum (MSS)

schemes. In additive SS [14], [15], the embedded information is

spread over the host signal uniformly while in MSS [16], [17],

the embedded information spreads according to the content of

the host signal. At the receiver side, since the original media

signal is generally not available, a blind decoding scheme is nor-

mally employed (e.g., the correlator for the assumed Gaussian

host signal). The capability of the SS scheme to embed the wa-

termark corresponding to the content (e.g., in MSS), the simple

structure of the decoder, and its robustness to additional noise

make SS attractive for data hiding. Despite all these advantages

of SS, one main drawback of SS embedding is the interference

effect of the host signal which causes a degradation in decoding

performance. To reduce the interference effect of the host signal,

Malvar and Florencio proposed the improved spread spectrum

(ISS) [18] by exploiting the side information at the encoder side.

The ISS scheme uses the correlation between the host signal and

the key to modulate the embedding power and it has led to the

best theoretical decoding performance for the category of SS

schemes. It is worth mentioning that although the SS scheme

1556-6013/$26.00 © 2010 IEEE
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was originally proposed for image watermarking [6], it is a gen-

eral embedding framework which could also be used for audio

[19]–[21] and video [22]–[24] data hiding.

In this paper, our main purpose is to propose an improved em-

bedding scheme based on SS which could efficiently decrease

the interference effect of the host signal. Inspired by the suc-

cess of ISS [18], we propose a correlation-and-bit-aware con-

cept for data hiding by exploring the correlation between the

host signal and the watermark key as well as the information

bit to be embedded into the host signal as the side informa-

tion at the encoder. The proposed approaches are referred as

correlation-aware data hiding approaches. By incorporating the

correlation-and-bit-aware concept with the SS scheme, a new

correlation-aware SS (CASS) data hiding scheme is proposed.

Our theoretical analysis shows that CASS is superior to the

SS counterpart in terms of watermark decoding performance.

To further improve the decoding performance of ISS, a cor-

relation-aware improved spread spectrum (CAISS) data hiding

scheme is proposed which is a combination of the SS, ISS, and

the correlation-and-bit-aware concept. Having introduced the

CAISS scheme, we will show theoretically that it outperforms

the ISS scheme by yielding higher decoding performance. In ad-

dition, wewill prove that the proposed CASS scheme ismore ro-

bust against the interference effect than the traditional SS. Simi-

larly, better robustness of the proposed CAISS over the ISS will

be shown. Moreover, it will be shown that employing the pro-

posed CASS and CAISS schemes could increase the payload.

Further assuming additional Gaussian noise is added to the re-

ceived signal, we derive the corresponding test statistic distribu-

tion at the decoder side. Based on the derived distributions, the

error probability of the CASS and CAISS schemes in the pres-

ence of noise will be presented. The simulation results verify the

integrity of the derived theoretical decoding performances and

support the claim that the proposed correlation-aware schemes

can provide better decoding performances in the presence or ab-

sence of additional noise. It is worth emphasizing that, com-

pared with the traditional blind SS scheme, the proposed cor-

relation-aware data hiding approaches do not require additional

information at the decoder side and do not change the simple

decoder structure.

The rest of the paper is organized as follows. In Section II, the

basic idea of SS embedding is described briefly. The correlation-

and-bit-aware concept and the CASS scheme are presented in

Section III and the improvements of CASS over SS are shown.

In Section IV, the CAISS scheme is proposed and its superiority

over other SS schemes is illustrated. The performance analyses

of the proposed correlation-aware data hiding schemes in the

presence of the noise are accomplished in Section V. Simulation

results are provided in Section VI and concluding remarks are

given in Section VII.

II. CONVENTIONAL SS SCHEME

In the conventional SS scheme, the bit message with am-

plitude is embedded into the host signal. The infor-

mation bit to be hidden in the host signal is usually from the

binary set . For simplicity, it is assumed that

the host signal follows Gaussian inde-

pendent and identical distributions (i.i.d.) with zero mean and

variance , i.e., , where and are

the identity matrix and zero vector with dimension ,

respectively. Here, is the number of the host coefficients

used for conveying one information bit. The SS scheme em-

ploys the key signal for the sake of se-

curity and this key is assumed to be selected from a binary set

. Based on the SS embedding, the watermarked

signal can be represented in the following

form:

(1)

Generally, the distortion due to any watermark embedding can

be defined as

(2)

where means the expectation operator and is defined

as the norm of a vector.

Since the host coefficients are assumed to be Gaussian i.i.d.’s,

the optimal decoder is the correlation between the received data

and the key. The correlator estimates the hidden information bit

as

(3)

where

(4)

and function gives out 1, 1, and 0 if its argument is

positive, negative, and zero, respectively.

Given and , the probability distribution func-

tions (pdfs) of the sufficient statistic could be deter-

mined as follows:

(5)

(6)

From the above pdfs, it is clear that the SS embedding scheme

is not error-free even in the absence of any additional noise. The

explanation of this phenomenon is that the host signal is actually

treated as noise in SS embedding. Since the host signal power is

generally much higher than the embedding signal (watermark)

power due to the imperceptibility requirement of data hiding,

this noise effect of the host signal results in a degradation in the

decoding performance of SS.

To reduce the interference effect of the host signal, Malvar

and Florencio proposed the improved spread spectrum embed-

ding [18] by modulating the energy of the inserted signal in the

following form:

(7)

where is a free parameter to be designed.

III. CASS DATA HIDING APPROACH

As introduced in Section II, in SS embedding, the host signal

is the source of uncertainty at the decoder side. The fundamental

reason is that, as implied in (6) and (5), the pdf leakage causes

the decoding error. The leakage means that the test statistic

given in (4) could get negative and positive values whenwe send

the bit of 1 and 1, respectively. This phenomenon has been
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Fig. 1. Illustration of the pdfs in (6) and (5) of the test statistic in (4) for the
SS scheme.

demonstrated clearly in Fig. 1. To reduce this interference effect

of the host signal, the correlation-and-bit-aware concept is intro-

duced in this section. The SS-based correlation-and-bit-aware

concept is motivated by the prior knowledge that we know the

decoder structure is the correlation between the received signal

and the key. Such correlation is a summation of the correla-

tion between the host signal and the key and the correlation be-

tween the key and the modulated hidden information. As the

encoder side, since we know the correlation between the host

signal and the key and the bit message to be embedded in ad-

vance, we could exploit such side information in a smart way

to reduce the original pdf leakage in SS. By exploring the cor-

relation-and-bit-aware concept in SS embedding, we therefore

propose an embedding scheme, referred as correlation-aware

spread spectrum (CASS), as follows:

(8)

where and are two amplitude levels

determined with respect to the allowed distortion.

The intuitive idea behind the CASS embedding scheme is

to modulate the bit message of information by two amplitude

levels based on the correlation between the host signal and the

key as well as the bit message to be embedded. More specifi-

cally, suppose that the message bit 1 needs to be embedded:

if the correlation between the host signal and the key is positive

then the smaller amplitude should be used for modulation; if

the correlation is negative then the larger amplitude should

be employed. Suppose the bit message 1 is to be embedded:

if the correlation of the host signal and the key is negative then

the smaller amplitude is used, and if the correlation is positive

then the larger amplitude is used. The underlying advantage of

the proposed CASS embedding is cleared when the sufficient

statistic of the decoder is investigated shortly.

We can prove that, with the assumption that the host signal

follows Gaussian i.i.d., the optimal decoder for the CASS em-

bedding scheme (8) is the correlator as defined in (3) with the

test statistic defined in (4). The detailed proof is omitted here

Fig. 2. Illustration of the pdfs in (10)–(13) of the test statistic in (9) for the
proposed CASS scheme.

since CASS can be treated as a particular case of CAISS with

, while we will describe CAISS and provide the proof of

CAISS in Section IV.

With the optimal decoder in (3), the sufficient statistic in (4)

using CASS embedding in (8) can be expressed by the following

form:

(9)

Since the host signal is assumed to followGaussian distribution,

given the bit message and the sign of the correlation between

the host signal and the key, the sufficient statistic consists of

four conditional half-Gaussian pdfs as follows:

(10)

(11)

(12)

(13)

where defines the step function.

The above pdfs of the sufficient statistic provide us more

insight into the underlying advantages of the proposed CASS

embedding scheme and the superiority of CASS over SS. The

pdfs in (10)–(13) of the sufficient statistic are shown in Fig. 2.

It depicts how CASS embedding could reduce the host-interfer-

ence effect. It is seen that when the message bit is 1 and the

correlation between the host signal and the key is positive, there

is no pdf leakage. Similarly, when the bit message is 1 and the

correlation is negative, there is no pdf leakage. For the cases that

the bit message is 1 and the correlation is negative and that the

bit message is 1 and the correlation is positive, theremight still

be some pdf leakage. Therefore, from comparing Figs. 1 and 2, it

is justified intuitively that the pdf leakage for the CASS scheme
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is less than the conventional SS where the message bit is mod-

ulated by a single amplitude level regardless of the correlation

between the host signal and the key.

Having intuitively explained the underlying advantage of

CASS data hiding, we now proceed to analyze the decoding

performance of CASS by deriving the bit-error rate (BER). The

probability of error of CASS data hiding is defined as

(14)

where is the decoded bit. As discussed earlier, the second

and the fourth terms are zero since there are no pdf leakages.

Therefore, the error probability is simplified to the following

expression:

(15)

where . To fairly

compare different data hiding algorithms, the same distortion

due to embedding should be assumed. The distortion defined

in (2) due to CASS embedding in (8) can be expressed as

(16)

Thus, using (15) and (16), the error probability of CASS in terms

of the distortion is expressed as

(17)

It is noteworthy that, since , according to the

distortion expression in (16), the amplitudes and always

satisfy the following inequalities:

(18)

To compare the error probability of CASS with that of SS, we

need to provide the error probability of the SS scheme in terms

of . We can show that

(19)

The superiority of the proposed CASS over SS is presented

as a proposition as follows.

Proposition 1: With the assumption that the host signal fol-

lows Gaussian i.i.d., the proposed CASS scheme in (8) yields

smaller error probability (17) than the traditional SS in (19).

Proof: For CASS to have better decoding performance

than that of SS, the error probability of the CASS scheme should

always be smaller than that of SS. In other words, we should

have

(20)

Since is a monotonic decreasing function, to sat-

isfy the aforementioned expression, we need to show that

. It is pretty straightforward to show that

it requires . From (18), it is obvious that this

constraint is always satisfied. Therefore, it is concluded that

the CASS always outperforms the SS scheme in decoding

performance.

The superiority of the CASS over SS scheme in the sense of

decoding has been proved so far. In the rest of this section, we

aim at quantitatively investigating the improvement of CASS in

terms of error probability, robustness, and payload. We attempt

to answer the question of how much improvement is obtained

by employing the CASS scheme.We define the error probability

improvement factor (EPIF) as follows:

(21)

where and are two probability of error functions to be

compared. EPIF represents the improvement ratio and a smaller

value implies a better improvement. In data hiding, it is more

appropriate to express EPIF as a function of the document to

watermark ratio (DWR) defined in the following form:

(22)

When comparing the error probabilities of CASS (17) and SS

(19), we have the EPIF as

(23)

Since , it could be shown that the

is bounded as follows:

(24)

The lower bound represents the best achievable improvement

given the DWR and the number of host coefficients.

We proposed using EPIF as a measure to investigate the error

probability improvement of the CASS over SS under a fixed

distortion. As discussed earlier, the host signal is an interference

source for decoding. It is important to measure the robustness of

the embedding schemes against interference. We now proceed

to investigate how much more host-interference CASS could

tolerate compared with the SS scheme, given a fixed error prob-

ability and distortion due to embedding. It should be clarified

that the robustness discussed here is referred to the interference

effect of the host signal and not to other additional noise. To

quantify the robustness, assuming equal error probability and
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equal distortion due to embedding, we define the interference

robustness improvement factor (IRIF) as

(25)

where and represent the corresponding host signal

powers of two embedding schemes to be compared. Let us de-

note and the host signal powers in CASS and

SS, respectively, when the error probability and the distortion

are assumed to be the same in two embedding schemes. With

equal error probability and equal distortion due to embedding,

referring to the error probabilities in (17) and (19), we have

(26)

According to the IRIF definition in (25), we have

(27)

where

(28)

It is straightforward to show that since the

is bounded as

(29)

The IRIF robustness in (29) reveals that CASS is more robust

to the host interference than SS, and CASS can tolerate the in-

terference power up to twice the conventional SS scheme.

Another advantage of the CASS scheme is its increased pay-

load. Given the same error probability and distortion due to em-

bedding, more information bits could be embedded into the host

signal in the CASS scheme than SS. We define the payload im-

provement factor (PIF) as a payload measure in the following:

(30)

where and are the numbers of host coefficients used for

conveying one bit of information where the error probability

and the distortion are assumed to be same in the embedding

schemes. Referring to the PIF definition and the error proba-

bilities in (17) and (19), we have the following expression

(31)

where and are the required numbers of host coeffi-

cients for the CASS and SS schemes. This expression results in

the following PIF using (28)

(32)

We can see that the obtained PIF is always greater than one,

meaning that the CASS scheme could increase the payload of

data hiding in comparison with SS.

IV. CAISS DATA HIDING APPROACH

In this section, we proceed to exploit the correlation-and-bit-

aware concept for designing an improved embedding scheme

based on ISS. As mentioned earlier, the ISS embedding scheme

[18] was introduced to improve the decoding performance of the

traditional SS. We plan to incorporate the ISS with the correla-

tion-and-bit-aware idea to further improve the decoding perfor-

mance of ISS.

By taking a look at Fig. 2, we can see that the main source

of decoding error is the pdf leakage from two cases: one is that

and is negative, and the other is that and

is positive. Intuitively, squeezing the two pdfs involving

the leakage (e.g., as in ISS) could improve the decoding per-

formance. Therefore, the basic idea of the CAISS scheme is to

combine CASS and ISS: for the cases that there is no pdf leakage

(i.e., when and is positive, and when and

is negative), employ the CASS scheme because there is no

interference effect at the decoding side; for the left two cases

that there is leakage, the ISS embedding is employed since ISS

can modulate the embedding energy to compensate for the host

signal interference. We describe the proposed CAISS embed-

ding scheme as follows:

(33)

where is a parameter determined by the allowed distortion.

We will later show that the following bound on holds

(34)

Before we can show why the CAISS scheme can yield better de-

coding performance than that of both CASS and ISS, we need

first to obtain the optimal decoder, and so the following propo-

sition is provided.

Proposition 2: With the assumption of Gaussian i.i.d. host

signal samples, the optimal decoder for the CAISS scheme (33)

which minimizes the error probability is the correlator defined

in (3) with the test statistic in (4).

Proof: The optimal decoder minimizing the error proba-

bility is obtained by the maximum likelihood

(ML) criterion. The ML estimate is expressed as

(35)

where represents the conditional pdf of

given the bit message, amplitudes, and the key. Therefore, the

decoder decides if

(36)

It is clear that the conditional pdfs are needed to obtain the

decision rule. Assuming that the host signal coefficients are

Gaussian i.i.d.’s with zero-mean and variance , we can show
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that the conditional pdfs regarding the CAISS embedding in

(33) are in the following form:

(37)

(38)

where

(39)

and denotes the determinant operator. By plugging the con-

ditional pdfs (37) and (38) into the decoder in (36), with some

calculations, we have that the decoder decides if the

inequality (40) is satisfied

(40)

Now, we want to show that if is positive, then the above

inequality holds. If , then the first term in the left-hand

side of (40) would be larger than one. To show that the second

term in the left side is larger than the second term in the right

side of inequality (40), we need to prove that

(41)

With (39) and using Woodbury equation, we have

(42)

where

(43)

Therefore, with (42) and (43), now (41) becomes

(44)

To satisfy (44), the parameter is required to always

be positive. It is easy to show that and

thus is always positive.

Therefore, the decoder decides when . Sim-

ilarly, we can show that the decoder decides when

. We thus conclude that the optimal decoder is the cor-

relator defined in (3) with the test statistic in (4).

By comparing the embedding schemes in (8) and (33), it is

clear that CASS is a particular case of CAISS with .

Therefore, we can similarly show that the same correlator de-

coder is optimal for CASS, and the performance analysis of the

CASS scheme presented in Section III can be considered a spe-

cial case of CAISS.

We have shown that the correlator is the optimal decoder for

the CAISS scheme. One important issue is to determine an ap-

propriate value of the parameter in CAISS. We propose de-

termining by minimizing the error probability. For CAISS

in (33), the test statistic in (4) can be expressed as

(45)

Given and the correlation between key and the host signal, the

conditional pdfs of the test statistic are in the following form:

(46)

(47)

(48)

(49)

Now we proceed to derive the theoretical BER performance of

the proposed CAISS data hiding scheme. The distortion (2) due

to CAISS embedding (33) is expressed as

(50)

Referring to the distributions of the statistics given in (46)–(49),

the distortion in (50), and the bit-error probability defined in

(14), we can show that the BER of the CAISS scheme is ob-

tained as

(51)

We now can determine the optimal value of the parameter

by minimizing the above error probability. Since the function
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Fig. 3. Illustration of the pdfs in (46)–(49) of the test statistic in (45) for the
proposed CAISS scheme.

is monotonically decreasing, it is equivalent to maximizing its

argument. Taking the derivative of the argument and letting it

to be zero and some simplifications lead us to

(52)

To provide more insight into the parameter , we further

show that the inequality in (34) always holds. From (52), it is

clear that is a function of the distortion , i.e., . To

prove the inequality in (34), we show that when the distortion

approaches zero and infinity, approaches zero and , re-

spectively, and that is a monotonically increasing func-

tion of the distortion . It is pretty easy to verify that

(53)

To show that is a monotonically increasing function of

, the derivative of (52) with respect to is taken and we see

that . Thus, we can conclude that is an

increasing function of the distortion. Therefore, together with

(53), the inequality in (34) is verified.

From the monotonically increasing behavior of and

the pdfs in (47) and (48), we can see that increasing the embed-

ding distortion could decrease the variance in the related pdfs

and thus improve the decoding performance. To intuitively ex-

plain the superior performance of CAISS over CASS, we plot

the pdfs of the test statistic in (46)–(49) in Fig. 3. Compared

with the pdfs in Fig. 2, we can see that, similar to CASS, the

correlation-and-bit-aware concept could separate two pdfs com-

pletely in CAISS, and that the left two pdfs are better separated

in CAISS than in CASS due to smaller variances in the related

distributions. Therefore, substantial reduction of pdf leakage is

observed in CAISS and thus leads to the reduced interference

effect of the host signal.

We have shown in Section III that the proposed CASS is su-

perior to SS. Here similarly, we show that the proposed CAISS

outperforms both SS and ISS, with more details provided in the

following Proposition.

Proposition 3: With the assumption of Gaussian i.i.d. host

signal samples, the error probability of the CAISS embedding

scheme in (51) is smaller than that of ISS, i.e.,

.

Proof: The proof details are given in the Appendix.

It should be noted that since SS is a particular case of ISS and

has worse performance than that of ISS, the above proposition

implies that the error probability of CAISS is smaller than that

of SS.

So far, we have proved that the proposed CAISS data hiding

scheme provides better decoding performance than that of the

SS and ISS schemes. We now proceed to quantify the perfor-

mance improvement of CAISS over SS and ISS in terms of error

probability, robustness, and payload. We first examine the EPIF

measure for BER performance improvement of CAISS over SS.

According to the error probabilities in (51) and (19), the EPIF

is obtained as

(54)

Since and , it could be shown

that the above EPIF is bounded as

(55)

By comparing (55) with (24) for the CASS scheme, a smaller

lower-bound is observed for CAISS, implying a further im-

provement of CAISS over SS. Similarly, referring to the error

probabilities in (51) and (85), the improvement of CAISS over

ISS can be described by

(56)

We can show that the above EPIF is bounded as

(57)

We now proceed to investigate the robustness of CAISS

against the host signal effect. With a fixed error probability, we

have the following Proposition 4, which shows that the CAISS

scheme is more robust against the interference effect of the host

signal than ISS.

Proposition 4: With the assumption that the host signal fol-

lows Gaussian i.i.d., the IRIF for the CAISS (33) and ISS (7)

schemes is less than one, i.e., , where

(58)

The parameters and are the corresponding

variances of the host signal in the ISS and CAISS schemes, with

the error probability and the distortion being assumed the same

in both embedding schemes. It could be shown that, referring to

the error probabilities in (51) for CAISS and in (85) for ISS, and

assuming equal error probability, we further have the expression
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(59), shown at the bottom of the page, where has been used

to denote for notation simplicity.

Proof: The proof details are given in the Appendix.

Based on Proposition 4, it is straightforward to show that,

with the assumption of i.i.d. Gaussian host signal samples,

is less than one where

(60)

The parameter and are the variances of the

host signal in the SS and CAISS schemes, respectively, with

the error probability and the distortion being assumed the same.

Using (59) leads us to the following expression:

(61)

where we use to denote .

We further prove that the CAISS scheme can increase the pay-

load in data hiding in comparisonwith both SS and ISS schemes.

Referring to the error probabilities in (19) and (51) and the PIF

definition in (41), we can show that

(62)

where for notation simplicity we use to denote . Since

the PIF in (62) is the inverse of the IRIF for the CAISS and SS

scheme, it is larger than one, meaning that the CAISS scheme

increases the payload in data hiding.

The proof of the superiority of the CAISS scheme over ISS

in terms of payload is not as easy as the case of SS. We provide

the following proposition, with the proof details given in the

Appendix.

Proposition 5: With the assumption of Gaussian i.i.d. host

signal samples, for a given error probability and embedding dis-

tortion, the PIF for the CAISS and the ISS schemes is larger than

one, i.e., , where by using (28) we have

(63)

In summary, we have shown that the proposed correlation-

and-bit-aware concept could improve the performance of the

conventional SS and ISS schemes from several aspects: given a

fixed embedding distortion, CASS and CAISS yield better de-

coding performances; for a fixed error probability, CASS and

CAISS aremore robust against the interference effect of the host

signal; and they can increase the payload of data hiding.

V. CASS AND CAISS IN THE PRESENCE

OF ADDITIONAL NOISE

In Sections III and IV, the concept of correlation-and-bit-

aware data hiding was introduced and two versions of corre-

lation-aware embedding schemes, called the CASS and CAISS

schemes, were presented. We so far have proved the superiority

of CASS andCAISS over the SS and ISS schemes in the absence

of additional noise. In practice, the received watermarked-signal

might be contaminated with additional noise and thus its effects

on the proposed correlation-aware data hiding schemes should

be investigated. Therefore, in this section, we first show that the

optimal decoder for both CASS and CAISS in the presence of

additional Gaussian noise is still in the form of the correlator

defined in (3) and (4). Then, the decoding performances of the

proposed CASS and CAISS schemes in the presence of addi-

tional Gaussian noise are analyzed.

Since CASS can be considered as a particular case of CAISS

with , we only need to prove the optimality of the cor-

relator decoder for CAISS. The optimality of the correlator for

CASS could be simply shown by assuming in CAISS.

With additional Gaussian noise, the received noisy signal in

the CAISS scheme could be described as

(64)

where includes the i.i.d. Gaussian noise

samples with zero-mean and variance of . We can show that

the pdf of the received signal model in (70) has the following

form:

(65)

(66)

where

(67)

By plugging (65) and (66) into (36), we can show that the op-

timal decoder decides if . Referring to

(67) and Woodbury equation, the aforementioned decision ex-

pression changes to . Since

(59)
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the denominator is positive, the decision rule becomes the cor-

relator defined in (4).

Having obtained the correlator as the optimal decoder, we

proceed to analyze the error probability of the CAISS and CASS

schemes in the presence of the noise. The probability of error for

the CAISS scheme is first derived, and the corresponding error

probability for the CASS embedding scheme can be obtained

by substituting in the analysis.

Applying the correlator for the received signal of the CAISS

embedding scheme (70) leads the test statistic (4) be expressed

in the following form:

(68)

Since the test statistic in (68) is a sum of one Gaussian random

variable and one random variable with half-Gaussian distribu-

tion, it is non-Gaussian distributed. This is the distinct point

making the analysis of the CAISS scheme in the presence

of additional noise different from the noise-free scenario in

Sections III and IV. We first derive the pdf for the case that

. Similarly, the pdf for other cases can be de-

rived. We let where and .

It can be shown that the distribution of could be described in

the form

(69)

Because of the symmetric characteristics of the integrals and

, we have . We can show that has the following

form:

(70)

Using the definition of function and combining (69) and (70),

we have the distribution of as

(71)

Fig. 4. With additional noise: Illustration of the pdfs in (72), (75), (73), and
(74) of the test statistic in (68) for the CAISS scheme.

Therefore, regarding the test statistic (70) and above expression,

we have

(72)

Applying a similar derivation to (71) and regarding the test

statistic (70), the following distributions are obtained:

(73)

(74)

(75)

Fig. 4 shows the above distributions of and it is observed

from it that in the presence of additional noise, pdf leakage ex-

ists even for the cases that and that
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, and thus apparently more bit de-

coding errors will be expected. It is due to the fact that the ad-

ditional Gaussian noise makes the distribution interfere.

Referring to the distributions in (72)–(75) and the probability

of error expressed in (14), we can calculate the bit error proba-

bility of CAISS in the presence of additional Gaussian noise as

it is provided

(76)

It should be noted that the second and the fourth terms of (14)

are no longer zero and thus also contribute to decoding errors,

therefore, the error probability could be rewritten in the form of

(77), shown at the bottom of the page.

It is worth mentioning that the error probability in (77)

does not have a closed form expression and should be

calculated numerically. To simplify the calculation, an

approximation for function can be used. Using the ap-

proximation in [25], we have the error probability in the

form of (78), shown at the bottom of the page, where

.

The parameter in (78) determines the approximation accu-

racy, i.e., a higher value of means a more accurate approxi-

mation of function. Without loss of generality, is assumed

to be odd and consequently the error probability in (78) has the

following closed form expression:

(79)

where

(80)

(81)

and is obtained using the expression (82),

shown at the bottom of the next page.

In practice, one issue is to determine the parameters and

in the presence of additional noise. Due to the complex ex-

pression of the error probability in (79) for CAISS, finding a

closed form solution of the parameters is not feasible and a

numerical approach should be employed. The parameters

(77)

(78)
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Fig. 5. With additional noise: Illustration of the pdfs in (72)–(75) of the test
statistic in (68) when for the CASS scheme.

and could be obtained by solving the following constrained

two-dimensional minimization problem:

(83)

We can employ standard numerical methods to solve the above

minimization problem and obtain the desired parameters.

With , referring to the error probability for the CAISS

scheme, we could obtain the corresponding error probability

for the CASS scheme as follows:

(84)

Fig. 5 depicts the distribution of the test statistic for the CASS

scheme. It is clear that CASS leads to more pdf leakage when

compared with CAISS in Fig. 4.

VI. SIMULATION RESULTS

In this section, we conduct extensive simulations to verify

the analysis results derived for the proposed CASS and CAISS

Fig. 6. Theoretical and experimental error probabilities versus DWR for the
CASS scheme with different .

schemes. The simulation results have been obtained by em-

ploying the Monte Carlo simulations using unless

stated otherwise. For the noiseless cases, the value of the param-

eter is determined for each DWR based on the expressions in

(52), and for the additional Gaussian noise cases, is obtained

by numerically solving the minimization problem in (83).

To show the preciseness of the obtained error probability for

the CASS scheme in (17), both the theoretical and simulation

results versus DWR are shown in Fig. 6, where different values

of the amplitude are investigated. From this figure, excel-

lent matches between the theoretical and simulation results are

observed. It also reveals that a smaller value of the amplitude

yields a better decoding performance. In the absence of any

additional noise, given a fixed embedding distortion, a smaller

value of would save embedding distortion and thus lead to a

larger value of . Since for the noise-free case the pdfs relating

to have no leakage, intuitively a larger value of makes

the pdfs leading to leakage be further apart from each other and

thus reduces the decoding error.

Fig. 7 illustrates the theoretical (51) and experimental error

probabilities for the CAISS scheme. Almost perfect match

between the results is observed, which verifies the correctness

of the theoretical derivations. Similar to the CASS case, due to

(82)
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Fig. 7. Theoretical and experimental error probabilities versus DWR for the
CAISS scheme with different .

Fig. 8. Logarithm of EPIF versus DWR curves for evaluating of decoding per-
formance improvements of the proposed CAISS over the ISS scheme.

the reasoning that would save embedding distortion

without sacrificing error probability in the absence of noise, we

can see that a smaller yields better decoding error proba-

bility in CAISS. We also evaluate the decoding improvement

of CAISS using the EPIF measure in (56). Fig. 8 clearly shows

a substantial decoding performance improvement of the CAISS

data hiding scheme over ISS. Though not reported specifically,

we would like to mention that the proposed CAISS yields

significant decoding performance improvement over the SS

scheme as well. It is also noted from Fig. 8 that the EPIF has

an asymptotic behavior for high DWR, which represents the

low embedding distortion region. Basically, it means that when

the embedding distortion is very small, CAISS and CASS yield

similar decoding performances. Based on (53), it is noted that

approaches zero for a small embedding distortion (i.e.,

for a high DWR), and a similar observation for is noted.

Therefore, by taking this into consideration and referring to the

expression in (56), we can show that in the asymptotic case

(i.e., for high DWR), the EPIF of CAISS over ISS approaches

Fig. 9. IRIF versus DWR curves to illustrate the improvement of the proposed
CAISS over ISS. Different values are illustrated.

which

is close to one for a small distortion. Thus, the observed

asymptotic behavior is intuitively explained. It is also worth

mentioning that, since both and approach zero in the

asymptotic case, CAISS performs similarly as CASS and ISS

performs similarly as SS asymptotically for a small embedding

distortion.

The result of IRIF defined in (59) for comparing CAISS and

ISS is shown in Fig. 9. It is clear that the CAISS scheme is more

robust against the interference than the ISS scheme. Based on

the expression of (59), it could be shown that the IRIF of CAISS

and ISS asymptotically approaches for the high

DWR region. In Fig. 9, it is noted that a smaller value of

leads to better robustness against the interference effect of the

host signal. Once again, intuitively this is because that in the

absence of noise, a smaller value of reduces the pdf leakage

and thus allows the correlation-aware schemes to tolerate more

host-interference effect for a fixed error probability and embed-

ding distortion. Even though the result of IRIF for the CAISS

and ISS scheme has been reported here, since the ISS scheme

outperforms the SS scheme, we can easily show that the CAISS

scheme enhances the robustness against the interference effect

of the host signal when compared with SS. In addition, because

of the inverse relationship between IRIF and PIF for the CAISS

and SS schemes, it is clear that the proposed CAISS scheme im-

proves the payload for data hiding.

To verify the derivation of the distributions of the test statistic

in the presence of additional Gaussian noise, Fig. 10 plots

both the theoretical pdf in (72) and the experimental one. In

this figure, we have used the notion watermark-to-noise ratio

(WNR) defined as , and have set

dB. The simulation results in Fig. 10 demonstrate

the accuracy of the theoretical derivation of the pdf and thus

support the correctness of the derivation.

To verify the derived decoding performances for CASS (84)

and CAISS (79) in the presence of additional Gaussian noise, the

error probability versus DWR curves are plotted in Figs. 11 and

12, respectively, where and differentWNR are studied.

The figures illustrate the consistence between the theoretical and
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Fig. 10. Theoretical and experimental results of the pdf expressed in (72).

Fig. 11. Theoretical and experimental error probabilities versus DWR for the
CASS scheme with different WNR.

Fig. 12. Theoretical and experimental error probabilities versus DWR for the
CAISS scheme with different WNR.

empirical results and prove the correctness of the theoretical

analysis.

Fig. 13. EPIF versus DWR curves to demonstrate the improvement of the pro-
posed CAISS over SS. Different WNR values are illustrated.

Fig. 14. EPIF versus DWR curves to demonstrate the improvement of the pro-
posed CAISS over ISS. Different WNR values are illustrated.

To demonstrate the decoding performance improvements of

CAISS over both SS and ISS even in the presence of additional

Gaussian noise, the EPIF curves are shown in Figs. 13 and 14.

We can see that the proposed CAISS scheme is still superior

to the SS and ISS schemes. It is observed that the EPIF does

not demonstrate a monotonic behavior in these figures: as the

DWR decreases, the EPIF decreases first and then increases. For

Fig. 13, we can show that the corresponding EPIF is a compli-

cated function, where the error probability of the CAISS scheme

is expressed in (79) and the error probability of SS can be de-

rived as , and thus theoretical justifi-

cation of this behavior is not easy. Numerically, we note that

at the minimal point, the parameter tends to take the ex-

treme value of in order to maximally reject the effect of the

host signal. An intuitive explanation of the observed non-mono-

tonic behavior is as follows. With additional Gaussian noise,

there are two conflicting factors contributing to the overall de-

coding performance: the embedding distortion and the addi-

tional noise with variance . A larger distortion, whichmeans a

higher watermark power, leads to a smaller decoding error rate,

while a larger noise variance results in more pdf leakage and
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Fig. 15. EPIF versus WNR curves to demonstrate the improvement of the pro-
posed CAISS over ISS. Different DWR values are illustrated.

Fig. 16. Logarithm of EPIF versus curves to demonstrate the improvement
of the proposed CAISS over ISS where DWR dB. Different WNR values
are illustrated.

thus increases the decoding error rate. Since for each curve in

Fig. 13, we fix the WNR, and increase or decrease si-

multaneously. Given a WNR, as we first decrease the DWR

(i.e., increasing ), the factor of is dominant and thus the

performance measure EPIF decreases (until the parameter

approaches ); as we further decrease the DWR, does

not change anymore, while the noise variance is larger and

causes more pdf leakage, and thus becomes the dominant factor

and leads to the increased EPIFmeasure. The behavior in Fig. 14

can be similarly explained.We also want to mention that, to pro-

vide a good trade-off between decoding performance and imper-

ceptibility in practical data hiding, the DWR cannot be too large

and meanwhile it cannot be too small.

To study the performance of CAISS against WNR, three dif-

ferent values of DWR are studied in Fig. 15. It is noted that the

CAISS scheme consistently yields better performance, even at

a low WNR. Fig. 16 shows the logarithm of the EPIF measure

as a function of the number of host coefficients when

dB. We can see clear improvements of the CAISS scheme

over ISS, especially when , the number of the host coeffi-

cients, increases. We also note an asymptotic behavior of EPIF

when is small. At the extreme case when the number of the

host coefficients is small, we note that both and numeri-

cally approach zero. To have a rough idea regarding the asymp-

totic behavior, we can simply consider the noise-less case (e.g.,

assuming a high WNR). Since both and tend to be zero,

the EPIF of CAISS over ISS is reduced to the EPIF of CASS

over SS as expressed in (23). Applying an approximation of

the function, i.e., , we can

show that the EPIF expression in (23) can be approximated as

. For a small ,

and considering the fact that dB is used in Fig. 16,

the exponential term in the above approximation tends to be

1, and the EPIF asymptotically approaches .

Thus, the observed asymptotic behavior can be explained.

VII. CONCLUSION

In this paper, the correlation-and-bit-aware concept for

spread spectrum embedding has been introduced. We have

shown that the proposed CASS and CAISS data hiding schemes

can improve the performance of the traditional SS and ISS

schemes by taking into consideration the correlation between

the host signal and the key and the bit message to be embedded.

Thorough theoretical analysis on decoding error probability

has been provided to prove that the CASS scheme outperforms

the SS scheme and that the CAISS scheme outperforms the ISS

scheme. We have also proved the superior robustness of the

proposed CASS and CAISS data hiding schemes against the

interference effect of the host signal. Furthermore, our analysis

shows that using the proposed correlation-and-bit-aware data

hiding schemes could increase the payload. In addition, the

theoretical BER performances of the proposed schemes in the

presence of additional noise have been derived. Extensive sim-

ulation results confirm the theoretical analysis and demonstrate

the superiority of the the proposed CAISS scheme over the

traditional SS and ISS schemes.

APPENDIX

Proof of Proposition 3: To compare the proposed CAISS

scheme with the ISS scheme, we recall that the error probability

of the ISS [18] can be obtained as

(85)

where

(86)

To prove that the proposed CAISS provides a better decoding

performance, referring to the error probabilities in (51) and (85),

we should prove that

(87)
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We can show that (87) can be equivalently expressed as

where

(88)

With in (52) and in (86), three cases may occur: the first

one is when ; the second one is when

; and the third one is

when . We now prove the inequality in (87) for

each of the three cases.

Case I: With , referring to (52) and

(86), we have and . So, we have

.

Based on the assumption that and the

fact that , it could be concluded that and

thus the inequality in (87) holds for Case I.

Case II: With , refer-

ring to (52) and (86), we have and . So,

now in (88) becomes

. Based on the assumption on in this case, we can

see that and thus the inequality (87) holds for Case II.

Case III: With , referring to (52) and (86),

we have and . It is straightforward to show

that for this case.

Based on the above three cases, we can conclude that

and thus the CAISS embedding scheme has better decoding

performance than the ISS scheme.

Proof of Proposition 4: To prove that ,

referring to (59), it is equivalently to show that with

(89)

We need to prove for two cases as follows.

Case I: In this case, it is assumed that

and thus .

We now can write as

(90)

where

(91)

To prove , it is equivalent to prove that is positive.

From (91), it is noticed that is a quadratic function in the

form of . Therefore, to prove that is

positive, we need to show that both and are pos-

itive. For , we can write

. Since is a quadratic convex

function, to show that it is always positive, it is equivalent to

prove that has no real root. Referring to , we have

. Since it is assumed and ,

we have . Therefore, the discriminator is

negative and consequently and are positive.

It is pretty straightforward to show that we have

, which is positive always. Therefore, we com-

plete the proof that for Case I.

Case II: is assumed for Case II and

thus . Therefore, referring to (59), we have

where .

Proof of Proposition 5: Let us denote that and

for simplicity. Assuming an equal error prob-

ability for the CAISS and ISS schemes, referring to (51) and

(85), we have

(92)

The above expression can be rewritten as

(93)

Two cases are proved here to complete the Proof of

Proposition 5.

Case I: and are assumed

for Case I. Based on these assumptions and (93), we can have

PIF as in (63) and thus .

Case II: We have for Case II. To have (93) still

hold, should tend to be . Referring to (52) and (86), it

could be seen that we should have which implies

the PIF expression as in (63).
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