
Correlation and Large-Scale Simultaneous Significance Testing

Bradley Efron

Abstract

Large-scale hypothesis testing problems, with hundreds or thousands of test statis-

tics “zi” to consider at once, have become familiar in current practice. Applications

of popular analysis methods such as false discovery rate techniques do not require

independence of the zi’s, but their accuracy can be compromised in high-correlation

situations. This paper presents computational and theoretical methods for assessing

the size and effect of correlation in large-scale testing. A simple theory leads to the

identification of a single omnibus measure of correlation. The theory relates to the

correct choice of a null distribution for simultaneous significance testing, and its effect

on inference.

1. Introduction Modern computing machinery and improved scientific equipment have

combined to revolutionize experimentation in fields such as biology, medicine, genetics, and

neuroscience. One effect on statistics has been to vastly magnify the scope of multiple

hypothesis testing, now often involving thousands of cases considered simultaneously. The

cases themselves are typically of familiar form, each perhaps a simple two-sample comparison,

but with their test statistics correlated in some unknown fashion. This paper concerns

the effect of correlation on multiple testing procedures, particularly false discovery rate

techniques, Benjamini and Hochberg (1995).

Test statistics from two microarray experiments are displayed in Figure 1. The exper-

iments, described in Section 2, reported two-sample t-statistics “ti” comparing expression

levels under two different conditions for N genes, N = 3226 for the breast cancer study

in the left panel, and N = 7680 for the HIV experiment on the right. The ti’s have been

converted to z-values for easy analysis later,

zi = Φ−1(G0(ti)), i = 1, 2, . . . , N, (1.1)

where Φ is the standard normal cumulative distribution function (cdf), and G0 is a putative

null cdf for the t-values. G0 was taken to be a standard student’s t cdf with appropriate

degrees of freedom for the HIV study, while a permutation method described in Section 4

provided G0 for the breast cancer experiment (also nearly a student’s t cdf.) Assuming G0

is the correct null distribution for ti, transformation (1.1) yields

zi ∼ N(0, 1) (1.2)
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Figure 1: Histograms of z-values from two microarray experiments . Left panel: breast cancer

study, 3226 genes; Right panel HIV study, 7680 genes. Heavy curves indicate N(0, 1) theoretical null

densities; Light curves indicate empirical null densities fit to central z-values, as in Efron (2004).

The theoretical null distributions are too narrow in the left panel and too wide in the right. Both

effects can be caused by correlations among the null z-values. Data from Hedenfalk et al. (2001),

left panel, and van’t Wout et al. (2003), right.

for the null cases, called the theoretical null in what follows. Form (1.2) for the null distri-

bution is convenient for general discussion, and can be achieved, or at least approximated,

in most testing situations via transformations like (1.1).

Microarray experiments usually presuppose most of the genes to be null, the goal being

to identify a small subset of interesting non-null genes for future study, so we expect N(0, 1)

to fit the center of the z-value histogram. This is not the case in Figure 1, where N(0, 1) is

too narrow for the breast cancer histogram and too wide for the HIV data.

This paper concerns two related results:

(1) Correlation can cause effects like those seen in Figure 1, considerably widening or

narrowing the distribution of the null z-values.

(2) These effects have substantial impact on simultaneous significance testing, and must be

accounted for in deciding which cases should be reported as non-null.

Sections 2 and 3 begin with a normal-theory analysis of z-value correlations. A sur-
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prisingly simple result emerges, in which the effect of all the pair-wise correlations, several

million of them for Figure 1’s examples, is summarized in a single omnibus measure. Section

4 replaces normal theory with permutation methods, carried out in detail for the breast

cancer data, showing nice agreement with the theory.

The effect of correlation on simultaneous inference is discussed in Section 5, particularly

in terms of false discovery rates (Fdr). Broadly speaking, a wide central histogram like

that for the breast cancer data implies more null z-values in the tails, so that significance

levels judged according to the theoretical N(0, 1) null will be too liberal. Conversely, the

theoretical null is too conservative for the HIV data. This provides some support for the

use of an empirical null distribution, a normal curve fit to the central portion of the z-value

histogram, Efron (2004, 2005). The light curves in Figure 1 are empirical nulls.

breast cancer : N(−0.09, 1.552) HIV : N(−0.11, 0.752). (1.3)

There is nothing subtle about the inferential effects of correlation. Factors of seven or

more on estimated false discovery rates are common in reasonable scenarios, as shown in

Section 5. Other simultaneous inference methods seen just as vulnerable as Fdr techniques,

the latter being featured here only because of their simple structure.

Three pertinent references are mentioned in the discussion that follows: Qui, Klebanov,

and Yakovlev (2005), Qui et al. (2005), and Owen (2005). Permutations and correlated

z-values also play a role in Westfall and Young’s theory of adjusted p-values (1993), Westfall

(1997), and Ge, Dudoit, and Speed (2003), but with less direct bearing on the ideas here. A

brief discussion and some remarks conclude the paper.

2. Correlation Effects on the Null Distribution We begin with a normal-theory anal-

ysis for the effects of correlation on the null distribution of z-values. For these calculations

it is assumed that all cases are null,

zi ∼ N(0, 1) for i = 1, 2, . . . , N, (2.1)

so that the theoretical N(0, 1) null distribution is individually correct. Nevertheless it will

turn out that correlation among the zi’s can make the null distribution effectively wider or

narrower than N(0, 1), as in Figure 1. Section 5 shows that in real problems, where we

hope to detect some non-null cases, correlation effects can play a major role in their correct

identification.

Here is a thumbnail description of the studies featured in Figure 1, along with some of

the notation used in what follows. The breast cancer study compared gene activity in 15
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patients observed to have one of two different genetic mutations known to increase breast

cancer risk, “BRCA1” or “BRCA2”, Hedenfalk et al. (2001). It included 7 BRCA1 and

8 BRCA2 women, each providing a microarray of expression levels on the same N = 3226

genes. The usual two-sample t-statistic “ti” comparing BRCA2 versus BRCA1 for the 15

gene i expression levels gave zi as in (1.1), with G0 nearly a student’s t-distribution with 13

degrees of freedom. Similarly, the HIV study compared four HIV positive patients versus

four HIV negative controls, N = 7680 genes per microarray, van’t Wout et al. (2003). In

this case G0 was taken to be student’s t with 6 degrees of freedom. These data sets are

discussed further in Efron (2004, 2005).

Let X represent the full data set, for example an N by n matrix for the breast cancer

study, having N = 3226 rows corresponding to genes and n = 15 columns corresponding

to microarrays. There each row of X yielded a t statistic ti and then a z-value zi as in

(1.1), with z representing the vector of all N zi’s. Note It is not necessary that the zi’s be

obtained from t-tests, only that null distribution (2.1) can be achieved or approximated. For

example, each of the original N cases might involve a separate linear regression, with the

ith case yielding p-value pi for some parameter of special interest, and zi = Φ−1(pi).

It is helpful to work with histogram counts rather than with the vector of z-values itself.

Each histogram in Figure 1 has its z-axis partitioned into K = 82 bins of width ∆ = 0.1,

running from -4.1 to 4.1. We denote the count vector by y,

yk = #{zi in kth bin}, k = 1, 2, . . . , K; (2.2)

y is essentially the order statistic of z, exactly so if we let ∆ → 0. Methods like False

Discovery Rates depend only on the ordered z-values.

The histogram counts yk arise from a partition of Z, the sample space for the z-values,

into K bins,

Z = ∪K
k=1Zk, (2.3)

each bin being of width ∆, with center-point “z[k]”. The following definitions lead to useful

representations for the mean and covariance of y:

πk(i) = Pr{zi ∈ Zk}, πk· =

N∑
i=1

πk(i)

N
, (2.4)

and

γk�(i, j) = Pr{zi ∈ Zk and zj ∈ Z�}, γk�· =

∑
i�=j

γk�(i, j)

N(N − 1)
. (2.5)
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Because of assumption (2.1) all the πk(i) values are determined by ϕ(z), the standard normal

density, with Taylor approximation around centerpoint z[k]

πk· = πk(i) =̇ ∆ · ϕ(z[k]) (ϕ(z) = e−
1
2
z2

/
√

2π). (2.6)

The expectation vector ν = (v1, v2, . . . , vK)′ of y is determined by (2.1),

ν = Nπ. =̇ (· · · , N∆ϕ(z[k]), · · · )′. (2.7)

Definitions (2.4-2.5) lead to a convenient expression for the covariance matrix of y;

Lemma 1

Cov(y) = C0 + C1 (2.8)

where C0 is the multinomial covariance matrix that would apply if the z-values were inde-

pendent,

C0 = diag(ν) − νν ′/N = N [diag(π·) − π·π
′
·], (2.9)

and

C1 =
(
1 − 1

N

)
diag(ν)δ diag(ν) with δk� = γk�·/πkπ�· − 1. (2.10)

Here “diag” indicates a diagonal matrix and π· = (π1·, π2·, . . . , πK·)
′.

Proof Let Ik(i) be the indicator function for event zi ∈ Zk, so yk =
N∑

i=1

Ik(i) and for

k �= �

E{yky�} = E

{∑
i�=j

Ik(i)I�(j)

}
=

∑
i�=j

γk�(i, j)

= N(N − 1)γk�·

(2.11)

Then
cov(yk, y�) = N(N − 1)γk�· − N2πk·π�·

= −Nπk·π�· + N(N − 1)(γk�· − πk·π�·).
(2.12)

Similarly,

var(yk) = N(πk· − π2
k·) + N(N − 1)(γkk· − π2

k·), (2.13)

verifying Lemma 1 �
If zi and zj are independent in (2.1) then γk�(i, j) = πk(i)π�(j); independence of all

z-values implies that all the elements of matrix δ in (2.10) are zero, leaving cov(y) = C0.

Conversely, the amount of correlation between the z-values determines the size of δ and the

increase of cov(y) above C0.
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To approximate δ, we add the assumption of bivariate normality for any pair of z-values,

cov(zi, zj) ≡ ρij, so that as in (2.6),

γk�(i, j) =̇
∆2

2π
√

1 − ρ2
ij

exp

{
− 1

2

z[k]2 − 2ρijz[k]z[�] + z[�]2

1 − ρ2
ij

}
, (2.14)

Letting g(ρ) indicate the empirical density of the N(N − 1) correlations ρij, and using (2.6)-

(2.14) yields a useful approximation:

Lemma 2 Under the bivariate normal approximation (2.14), the matrix δ in (2.10) has

elements

δk� =̇

∫ 1

−1

[
1√

1 − ρ2
exp

(
ρ

2(1 − ρ2)
{2z[k]z[�] − ρ(z[k]2 + z[�]2)}

)
− 1

]
g(ρ)dρ. (2.15)

(This compares with Theorem 1 in Owen (2005); the assumptions there imply the bivariate

normal condition (2.14).)

Application of Lemmas 1 and 2 requires an estimate of the correlation density g(ρ),

which we can obtain from observed correlations between the rows of X. As described in

Remark A of Section 7, this gave

breast cancer : g(ρ) ∼̇ N(0, 0.1532) (2.16)

for the breast cancer data, and, more roughly,

HIV : g(ρ) ∼̇ N(0, 0.422), (2.17)

for the HIV study. It is no accident that g(ρ) has mean near zero; in both cases the data

matrix X had its columns standardized to mean zero and variance one, usual practice to

negate “brightness” disparities between microarrays, see Bolstad et al. (2003) and Qui et

al. (2005). This forces the sum of covariances, and, nearly, the sum of correlations, to be

zero. The normality assumed in (2.16) is not crucial, see Remark B. Section 3 shows that

the standard deviation 0.153 is the vital number. Remark E discusses what happens in the

absence of standardization.

Approximation (2.16) indicates a substantial amount of global correlation among genes

in the breast cancer study, and even more correlation for the HIV study (2.17). The five

examples in Owen’s (2005) Table 1 had standard deviations for g(ρ) between 0.17 and 0.26, as

did Qui et al.’s (2005) main example. It is not surprising that correlations of this magnitude
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Independent Cnorm Cperm Poisson

sd(Y0): 26.4 171.4 176.0 176.4

sd(Y1): 4.5 16.1 14.9 14.7

cor(Y0, Y1): (-0.12) (-0.89) (-0.81) (-0.90)

Table 1: Standard deviations and correlations for central and tail counts (Y0, Y1), (2.19); zi ∼
N(0, 1) i = 1, 2, . . . , 3226; for zi’s independent or zi’s correlated as in Cnorm, (2.18); also for

permutation covariance Cperm, (4.2). Cnorm and Cperm produce much larger standard deviations

and much more negative correlations. “Poisson” calculated from Poisson approximation model

(3.15).

can undercut standard inference techniques, the key message in Qui et al. The goal here,

made explicit in Section 5, is to understand and correct correlational problems.

Substituting (2.16) into (2.15) and then into Lemma 1, gives estimated null hypotheses

covariance matrix “Cnorm”,

cov(y) = Cnorm (2.18)

for the breast cancer data. The correlation term C1 in cov(y) = C0 + C1, (2.8), dominates

the independence term C0. As an informative example we will use later, define

Y0 = #{zi ∈ [−1, 1]} and Y1 = #{zi ≥ 2.5}, (2.19)

these being central and tail counts for a hypothetical null vector z satisfying (2.1). Table 1

shows standard deviations and correlation for Y0 and Y1 if the zi’s are independent, or if they

are correlated such that cov(y) = Cnorm. (Table 1 can be computed from cov(y) since Y0

and Y1 are linear functions of y). Results for Cperm, the permutation estimate from Section

4, agree with Cnorm. The cutoffs ±1 and 2.5 in (2.19) were chosen for convenient exposition,

and could just as well be replaced by similar values, say ±0.75 and 3.0.

We see that gene correlations have a powerful effect on the counts that would be observed

under null hypothesis (2.1): standard deviations are multiplied several fold (this being the

main point in Owen (2005)), while the negative correlation between the central and tail

counts is driven toward -1. Tail null counts play a crucial role in computing false discovery

rates, as discussed in Section 5 where the extreme negative correlation between Y0 and Y1

is used to “condition” Fdr estimates. Section 3 provides an explanation for the negative

correlation.

3. First Eigenvector Lemmas 1 and 2 decompose the covariance matrix of the count
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vector y into an independence term C0 and an additional term C1 that accounts for cor-

relation among the z-values, (2.8). This section presents a simple approximation to C1 in

terms of its first eigenvector, which will be used in Sections 4 and 5 to explain the effects of

correlation on simultaneous inference.

The smooth curve in Figure 2 is the first eigenvector of Cnorm, (2.16)-(2.18) the normal-

theory estimate of cov(y) for the breast cancer data, while the jagged curve is the corre-

sponding quantity for the permutation-based estimate Cperm of Section 4. The dots indicate

the first eigenvector of Cnorm for the HIV data, using (2.17). All three curves exhibit the

same “wing-shaped” form. This will turn out to be proportional to

w(z) ≡ ϕ(z)
z2 − 1√

2
= ϕ′′(z)/

√
2, (3.1)

where ϕ(z) is the standard normal density, (2.6).

Figure 2: First eigenvectors of three different estimates of cov(y): smooth curve normal-theory

estimate (2.18) for breast-cancer data; dots normal-theory estimate for HIV data (2.17); jagged

curve permutation estimate for breast cancer data (4.2); The striking “wing-shaped” form is pro-

portional to the second derivative of the standard normal density. Dashes indicate bin midpoints

z[k].

We use notation (2.3)-(2.6), and work in the discretized framework of Lemmas 1 and 2:

Lemma 3 Suppose g(ρ), the correlation density in (2.15) has mean zero and standard
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deviation

α =

[ ∫ 1

−1

ρ2g(ρ)dρ

] 1
2

. (3.2)

Then the matrix δ in (2.10) is approximated by the outer product

δ =̇ α2qq′ where qk =
z[k]2 − 1√

2
, (3.3)

with z[k] the centerpoint of the kth histogram bin, k = 1, 2, . . . , K; approximation (3.3)

becomes exact as α → 0.

Proof Let Rk�(ρ) be the integrand in (2.15),

Rk�(ρ) =
1√

1 − ρ2
exp

{
ρ

1 − ρ2
z[k]z[�] − 1

2

ρ2

1 − ρ2
(z[k]2 + z[�]2)

}
− 1. (3.4)

Expanding Rk�(ρ) in a Taylor series around ρ = 0, and ignoring terms of order ρ3 or higher,

gives

Rk�(ρ) =̇ ρz[k]z[�] + ρ2qkq�; (3.5)

then, since g(ρ) has mean 0,

δk� =

∫ 1

−1

Rk�(ρ)g(ρ)dρ =̇ α2qkq�, (3.6)

which is (3.3). �
Combining the three lemmas yields a useful approximation for the null covariance matrix

of the count vector y under the bivariate normal assumptions of Section 2:

Theorem If g(ρ) has mean 0 and standard deviation α, then

cov(y) =̇ [diag(ν) − νν ′/N ] +
(
1 − 1

N

)
(αW)(αW)′ (3.7)

Here ν = E{y} as in (2.7), while W has components

Wk = N∆ϕ(z[k])
z[k]2 − 1√

2
= N∆w(z[k]), (3.8)

with w(·) the wing-shaped function (3.1), N the number of cases, and ∆ the bin width.

The Theorem helps explain Figure 2: the second term in (3.7) dominates cov(y) in our

two examples, making its first eigenvector nearly proportional to w(z).

Table 2 relates to the accuracy of the Theorem. It shows the proportion of variance

explained by the first eigenvector (i.e. first eigenvalue divided by sum of eigenvalues) for C1,
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the correlation term in (2.8), and also for cov(y) = C0 + C1, assuming g(ρ) ∼ N(0, α2). For

the breast cancer value α = 0.153, the proportions are 98% for C1, (the crucial quantity for

the accuracy of (3.7)), and 45% for Cnorm = cov(y). N = 3226 in Table 2, but this choice

has little effect on the numbers. The 98% proportion indicates the theorem’s substantial

accuracy in the breast cancer context. For the HIV data the proportion was 86%, still quite

adequate.

α: 0 0.05 0.10 0.15 0.20 0.25 0.30

C1: 1.00 1.00 0.99 0.98 0.97 0.95 0.90

Cnorm: .04 0.10 0.27 0.45 0.59 0.68 0.72

Table 2: Proportion of total variance explained by first eigenvector, as a function of α; for

C1, the correlation term in (2.8), and also for Cnorm; assuming g(ρ) ∼ N(0, α2) and N = 3226.

Proportions for C1 determine accuracy of approximation (3.7).

The Theorem summarizes the effect of z’s entire correlation structure in a single param-

eter α. This permits a relatively simple analysis of the inferential effects of correlation in

what follows.

Poisson process considerations lead to a somewhat rough but evocative interpretation of

the Theorem. Let y ∼ Po(u) indicate a vector of independent Poisson variates, yk
ind∼ Po(uk)

for k = 1, 2, . . . , K, while y ∼ (ν, Γ) denotes that vector y has mean ν and covariance Γ.

It is convenient here to consider the number of cases N to be a Poisson variate, say

N ∼ Po(N0), (3.9)

with N0 = 3226 in the breast cancer study. This slightly simplifies (3.7), to

cov(y) =̇ diag(ν) + (αW)(αW)′, (3.10)

with ν and W as in (2.7), (3.8) except that N0 replaces N . If the z-values are independent

then (3.9) makes the counts yk independent Poisson variates,

y ∼ Po(ν), (3.11)

agreeing with (3.10) at α = 0.

A hierarchical model generalizes (3.11) to incorporate dependence. We assume that y

depends on a mean vector u, itself random,

y|u ∼ Po (u) where u ∼ (ν, Γ), (3.12)
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so that the components of y are conditionally independent given u, but marginally depen-

dent, with mean and covariance

y ∼ (ν, diag (ν) + Γ). (3.13)

To match (3.10) we need to set

Γ = (αW)(αW)′, (3.14)

Formulas (3.13)-(3.14) suggest a hierarchical Poisson structure for the count vector y:

y ∼ Po(u) where u = ν + AW, with A ∼ (0, α2). (3.15)

If α = 0 this reduces to the independence case (3.11); otherwise the Poisson intensity vector

ν is modified by the addition of an independent random multiple “A” of W having standard

deviation α.

Model (3.15) can only be an approximation since u may have negative coordinates, but

it nicely explains phenomena like the extreme negative correlations between Y0 and Y1 seen

in Table 1: vector W is negative in [−1, 1] and positive elsewhere, as in Figure 2, so positive

A in (3.15) decreases the central counts and increases the tail counts, (2.19), the opposite

happening when A is negative. (The “Poisson” column of Table 1 was calculated from model

(3.15), α = 0.153 and N = 3226, except that the components of u were truncated at zero.)

Pursuing model (3.15) more carefully, the mean vector u turns out to be roughly pro-

portional to a scaled normal density,

uk =̇
N∆√
2πσ2

A

exp

{
− z[k]2

2σ2
A

}
with σ2

A = 1 +
√

2 A, (3.16)

see Remark D; (3.16) implies that positive A makes the counts behave in an overdispersed

normal fashion compared to the theoretical N(0, 1) density, and conversely for A negative.

This confirms the first main point of the Introduction: even if the null z-values are individu-

ally N(0, 1), correlation can make the ensemble z behave as N(0, σ2
A), with σA substantially

different from 1. Section 4 shows the same phenomenon happening in a permutation analy-

sis. This point is refined in Section 5, where it is shown that “A” can be estimated and used

to condition simultaneous hypothesis tests.

4. Permutation Methods The previous results depend upon the assumption of bivariate

normality for every pair of z-values. Permutation methods lead to a direct empirical estimate

“Cperm” for cov(y). Carried out here for the breast cancer data, Cperm agrees well with the
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normal-theory estimate Cnorm, (2.18), and lends support to the inferential theory of Section

5.

Let X represent the 3226×15 matrix of observed expressions. Each row of X, that is each

gene, provides a two-sample t-statistic comparing the 8 BRCA2 and 7 BRCA1 expressions,

t representing the vector of all 3226 t-values. Repeating the computation after a random

permutation of the columns of X, that is after a random division of the patients into groups of

7 and 8, yields permuted matrix X∗ and t-vector t∗. 1000 such permutations were employed

to estimate a permutation null distribution G0 for the t-values, which turned out to be

slightly shorter-tailed than a standard t variate with 13 degrees of freedom; z-values for the

actual data were then calculated as in (1.1), zi = Φ−1(G0(ti)), giving count vector y:

X −→ t −→ z −→ y

3226 × 15 3226 3226 82
. (4.1)

The permutations contain information beyond G0. Each permuted data matrix X∗

produces a count vector y∗ according to (4.1). The sample covariance matrix of the 1000

y∗’s,

Cperm =
1000∑
b=1

(y∗b − y∗·)(y∗b − y∗·)′/999 [y∗· =
∑

y∗b/1000], (4.2)

is a nonparametric estimate of the null covariance matrix for y. By permuting entire microar-

rays we preserve the correlation structure of the genes while nullifying any actual BRCA1-

BRCA2 differences. (Note: the matrix X in (4.1) had each gene’s BRCA1 or BRCA2 average

subtracted from its corresponding expression values in order to eliminate any genuine group

differences from the permutation results.) Table 1 and Figure 2 demonstrate the similarity

of Cperm to Cnorm.

Each permutation vector z∗ gave central and tail counts (Y ∗
0 , Y ∗

1 ) as in (2.19). Figure

3 plots Y ∗
1 versus Y ∗

0 , now for 4000 permutations. The unconditional average of Y ∗
1 is 18.7,

but that does not take into account the powerful covariate Y ∗
0 : in particular, for Y ∗

0 equaling

the observed count 1570, a conditional expectation of about 118 is predicted. (Section 5

discusses why the observed central count might be so atypical of the permutation values in

Figure 3.)

122 genes have zi exceeding 2.5 for the breast cancer study. Does this collection of

122 genes deserve to be reported as “mostly non-null”? The answer obviously depends

on whether the expected number of null genes having zi ≥ 2.5 is 18.7 or 118. Section 5

investigates this question, which bears on the second main point of the Introduction, the

effect of correlation on simultaneous inference.
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Figure 3: Central and tail counts (Y ∗
0 , Y ∗

1 ) as in (2.19), for 4000 column-wise permutations of

the breast cancer data; Y ∗
1 has unconditional expectation 18.7, but conditional expectation about

118 given Y ∗
0 equal to the observed central count 1570. Smooth curve is fitted smoothing spline..

The central count Y ∗
0 provides convenient estimates of standard deviation for z∗, a

permutation vector of N z-values,

σ̂∗
0 = 1/Φ−1

(
1 + Y ∗

0 /N

2

)
(4.3)

If we assume that the elements of z∗ are normally distributed with mean 0 and some variance

σ∗2
0 ,

z∗i ∼ N(0, σ∗2
0 ), (4.4)

then E{Y ∗
0 } = N ·[2Φ(1/σ∗

0)−1] so (4.3) is a method of moment estimate for σ∗
0 that depends

only on the central count Y ∗
0 .

In Figure 4 the 4000 permutation y∗ vectors have been averaged in groups having about

the same central spread σ̂∗
0, (4.3); curve “1.2” is the log of the average of those y∗ vectors

having 1.15 ≤ σ̂∗
0 ≤ 1.25, etc. To first order the curves fall off as −z2/(2σ2

0), with σ0 =

1.2, 1, 0.8, i.e. as the log of a N(0, σ2
0) density. This agrees with theoretical result (3.16),

where σA plays the role of σ0, again showing how correlation can widen or narrow the effective
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null distribution: those y∗’s with large central spread put more null cases into the far tails,

and conversely. Section 5 discusses how this phenomenon affects simultaneous significance

testing, particularly false discovery rate methods.

Figure 4: Log average densities for the 4000 y∗ vectors contributing to Figure 3; “1.2” graphs

log y∗·
k , from average of y∗’s having σ̂∗

0 in [1.15, 1.25], versus z[k], etc. Dotted curves are −.5z[k]2/σ2
0

for σ2
0 = 1.2, 1.0, 0.8..

5. Large-Scale Significance Testing The scientific world is fond of significance testing

because it requires a minimum of probabilistic modeling, no more than the specification of a

null hypothesis distribution. However, as described in Sections 2.4, a disturbing danger arises

in large-scale testing situations: correlations among the test statistics may substantially

widen or narrow the effective null distribution. This section discusses the consequences of

correlation effects on false discovery rates and other simultaneous testing techniques, as well

as methods for connecting their inferences.

Suppose for a moment that we knew which zi’s among the full set of z-values correspond

to null cases. For a given choice of x define

Y (x) = #{null zi ≥ x} and T (x) = #{zi ≥ x}. (5.1)

Y1 in (2.19) is Y (2.5) in this notation, and T (2.5) = 122 for the breast cancer study. Lehman

and Romano (2005) define the false discovery proportion to be

Fdp(x) = Y (x)/T (x), (5.2)
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assuming here that we are searching for “discoveries” in only the right tail. If Fdp(x) were

known (but not the identity of the null cases), say Fdp(2.5) = 20/122 = 0.16, the group of

122 genes could be reported as “mostly significant”, with the assurance of producing only

16% false discoveries.

In practice Y (x) is unobservable, and likewise Fdp(x). A useful tactic is to replace Y (x)

by its expectation, as in Benjamini and Hochberg (1995), giving an estimated false discovery

rate

Fdr(x) = E{Y (x)}/T (x). (5.3)

Benjamini and Hochberg’s procedure actually involves the expected ratio

FDR(x) = E{Y (x)/T (x)}, (5.4)

ingeniously prescribing a data-based choice of x that controls the FDR below some preset

value.

Our calculations will focus on Fdr(x), (5.3), an observable ratio that is important and

useful in its own right. Fdr(x) is an empirical Bayes estimate of the a posteriori probability

that case i is null given zi ≥ x, Storey (2002), Efron and Tibshirani (2002), amounting to a

version of Storey’s “q-value”. Since T (x) is observable, Fdr(x) has intuitive interpretation

as the expected proportion of null cases among those having zi ≥ x.

Formula (5.3) glosses over the fact that E{Y (x)} itself is not directly calculable. Ben-

jamini and Hochberg’s original procedure replaced E{Y (x)} with its upper bound assuming

that all N cases were null, as in (2.1) where

E{Y (x)} = N · Φ̄(x) [Φ̄(x) ≡ 1 − Φ(x)]. (5.5)

Improvements on (5.5) are possible via estimation of “po”, the proportion of null cases,

Langaas et al. (2005), Storey et al. (2004), a point discussed later. For p0 near 1.0, the

preferred situation in microarray studies where the goal is to discover a small number of

genuinely interesting genes, (5.5) is a good starting point for the discussion of correlation

effects.

The hierarchical structure (3.15) gives conditional expectation

E{y|A} = ν + AW (5.6)

(using only E{y|u} = u, not the full Poisson assumptions). Letting the bin width ∆ → 0
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in (2.7) and (3.8) produces a conditional version of (5.6), Remark H,

E{Y (x)|A} = NΦ̄(x)

[
1 + A

xϕ(x)√
2 Φ̄(x)

]
. (5.7)

The term multiplying A equals 4.99 at x = 2.5, giving conditional expectation NΦ̄(x)[1.75]

for A = 0.15, and NΦ̄(x)[0.25] for A = −0.15.

Even such relatively modest values of A greatly affect the conditional Fdr

Fdr(x|A) = E{Y (x)|A}/T (x), (5.8)

which can be expressed as

Fdr(x|A) = Fdr0(x)

[
1 + A

xϕ(x)√
2 Φ̄(x)

]
, (5.9)

where Fdr0(x) is the standard unconditional estimate NΦ̄(x)/T (x). For x = 2.5, Fdr(x|A)

varies by a factor of seven as A goes from -0.15 to +0.15. A principal point of this paper

is that conditional Fdr estimates are available in situations like those of Figure 1, while the

unconditional estimates can produce grossly misleading results.

The idea in what follows is that “A” in (5.9) or some equivalent parameter, can be

estimated from the central spread of the histogram of z-values. We begin with a simple

approach and then go on to more realistic procedures. Generalizing definition (2.19), for

x0 > 0 let

Y0 = #{zi ∈ [−x0, x0]}. (5.10)

and define

P0 = 2Φ(x0) − 1 and Q0 =
√

2x0ϕ(x0). (5.11)

Then E{Y0|A} = N [P0 − AQ0] yielding

Â =
P0 − P̂0

Q0

[P̂0 = Y0/N ] (5.12)

as an estimate of A. Remark H shows that x0 = 1 is a reasonable choice, and derives the

approximate standard error given A, yielding estimates

breast cancer : Â = 0.57 ± 0.04, HIV : Â = −0.21 ± .03 (5.13)

for our two examples. For the breast cancer data, (5.13) implies E{Y (2.5)|Â} = 77 and

Fdr(2.5)|Â) = 77/122 = 0.63, underestimates according to our later calculations.
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Permutation methods permit model-free estimates of the conditional Fdr, as in Figure

3 which suggests E{Y (2.5)|Y0} =̇ 118, with corresponding estimated Fdr 118/122 = 0.97.

Both of these approaches depend on the same basic idea: we use the observed central

count Y0 to condition the estimate of Y (x), the unobserved null tail count. This is similar

in spirit to Fisher’s exact test for a 2 × 2 table, where the observed table margins, playing

the role of Y0, are used to establish the appropriate conditional null distribution.

The discussion so far has ignored the fact that not all N cases are null. Let N0 be the

actual number of nulls, so

po = N0/N ; (5.14)

po is assumed to be large in the context of this paper, at least 0.90. We should really be

dividing by N0 rather than N in (5.12). Working back through the factors in (5.7)-(5.9), this

error can substantially bias conditional Fdr estimates unless p0 is very close to 1.0, perhaps

po ≥ 0.98.

Efron (2004) employs an estimate of central spread that does not depend on po. In

terms of the histogram notation (2.2)-(2.3), suppose there are K0 bins whose midpoints z[k]

lie within the interval [−x0, x0], with K0 indicating the corresponding set of bin indices. The

general linear model

yk
ind∼ Poisson(exp{β0 + β1z[k] + β2z[k]2}) for k ∈ K0 (5.15)

yields maximum likelihood estimates (β̂0, β̂1, β̂2).

If we assume that null z-values have a N(0, σ2
0) distribution, that there are proportion

po of them, and that the non-null counts fall mainly outside [−x0, x0], then

E{yk} =̇ N∆
po√
2πσ2

0

exp

{
− 1

2

z[k]2

σ2
0

}
(5.16)

for k ∈ K0. We see that β2 equals −1/2σ2
0 so that

σ̂0 = 1/

√
−2β̂2 (5.17)

efficiently estimates the central spread of the null z-values no matter what the value of po

may be. (This is an example of “Lindsey’s Method”, described in Efron (2005) and Efron and

Tibshirani (1996, Section 2). Efron (2004) shows that σ̂0 has negligible bias for po ≥ 0.90.)

At this point we could take Â = (σ̂2
0−1)/

√
2 as in (3.16) and use (5.7)-(5.9), but it is simpler

to estimate Y (x) directly from NΦ̄(x/σ̂0), yielding conditional Fdr estimate

Fdr(x|σ̂0) = NΦ̄(x/σ̂0)/T (x). (5.18)
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Having estimated σ0 in (5.16), we can also estimate the proportion of null cases po. Let

P0(σ) = 2Φ(x0/σ0) − 1, (5.19)

so P0 = P0(1) in (5.11). An estimate of po going back to Schweder and Spjotvoll (1982) is

p̂o = P̂0/P0(σ̂0) [P̂0 = Y0/N ], (5.20)

a version of the simplest possibility investigated in Langaas et al. (2005). Incorporating

(5.20) into (5.18) gives an improved conditional Fdr estimate

Fdr(x|σ̂0) = Np̂oΦ̄(x|σ̂0)/T (x). (5.21)

The equivalent unconditional estimate is

Fdr0(x) = Np̂ooΦ̄(x)/T (x)

[
p̂oo =

P̂0

P0(1)

]
, (5.22)

(5.21) except with σ̂0 replaced with 1, this being the theoretical null Fdr estimate corre-

sponding to the empirical version (5.21).

Figure 5 reports on a small simulation experiment comparing (5.21) with (5.22). The

simulation involved 200 trials, each with N = 3000 z-values, proportion po = 0.95 null. The

null counts were generated from the Poisson model (3.15) with α = 0.15, while the 150

non-null z’s followed a N(2.5, 1.25) distribution. Details appear in Remark F.

For each of the 200 trials, Fdr(x|σ̂0) and Fdr0(x), x = 2.5, are plotted versus the actual

false discovery proportion (5.2). Strikingly, the unconditional estimate goes in the wrong

direction, declining as the actual Fdp increases. This yields misleading inferences at both

the low and high ends of the Fdp scale. The conditional estimate Fdr(x|σ̂0) correctly tracks

Fdp(x), though with a considerable amount of random noise.

Figure 5 validates the second main claim of the Introduction: correlation effects can

and sometimes must be taken into account in the analysis of large-scale simultaneous testing

problems. Not doing so may yield dangerously erroneous estimates of actual false discovery

proportions.

To reiterate the basic idea, even assuming that null cases individually follow the theoret-

ical null distribution zi ∼ N(0, 1), correlation effects can make the ensemble null distribution

behave more like N(0, σ2
0) with σ0 surprisingly far from 1. Ignoring this effect can undercut

any simultaneous testing procedure. Figure 6 concerns 1000 trials of the same simulation
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Figure 5: Simulation experiment comparing conditional Fdr estimates (5.21), solid points, with

unconditional estimates (5.22), open circles; N = 3000, po = 0.95, x = 2.5. Null counts generated

as in (3.15), α = 0.15; non-null counts from z ∼ N(2.5, 1.25). Horizontal axis is actual False

Discovery Proportion (5.2) for each of the 200 trials. The unconditional estimate, which is based

on the theoretical null distribution, declines as actual Fdp increases..

used in Figure 5. The Benjamini-Hochberg (1995) FDR-controlling procedure, control pa-

rameter 0.10, was run for each trial, and the actual Fdp value (5.2) computed.

The overall mean of Fdp was 0.096, close to the theoretical control level, (even though the

simulation model does not obey a correlation structure justifying the FDR algorithm, as in

Benjamini and Yekutieli (2001) or Reiner et al. (2003)) but we see a strong dependence on the

null dispersion parameter A, (3.15)-(3.16). Fdp averaged 0.34 for the upper 5% of A values,

and 0.03 for the lower 5%. As in Figure 5, an estimate of A based on the observed central

histogram counts, (5.15)-(5.17), can be used to correct the Benjamini-Hochberg inferences,

so that Fdp averages about 0.10 across the range of A.

False discovery rates are convenient to analyze, but the same phenomena can be demon-

strated for other simultaneous inference techniques. Remark K shows results like those in

Figure 6 occurring with Lehmann and Romano’s “kFWER” procedure, a generalization of

the Family Wise Error Rate (2005).
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Figure 6: Benjamini-Hochberg FDR-controlling procedure, q = 0.10, run for 1000 trials of

Figure 6’s simulation; actual False Discovery Proportion Fdp, (5.2), for each trial plotted versus

null dispersion parameter “A” (3.15)-(3.16). Overall Fdp averaged 0.096, close to q, but with a

strong dependence on A, as shown by smooth regression curve..

The empirical null distributions (1.3) were obtained from “locfdr”, a version of (5.15)

that estimates the mean as well as the variance of the null, Efron (2004, 2005), (available as

an R function from the Comprehensive R Archive Network.) Estimating the null distribution

can be worrisomely noisy, as seen in Figure 5, where it is still preferable to depending on the

theoretical null.

There is a lot at stake here. Table 3 shows the number of gene discoveries identified by

the Benjamini-Hochberg two-sided procedure, FDR control level q = 0.10, for the two studies

of Figure 1. The HIV results look much more dramatic using the empirical null distribution

N(−0.11, 0.752). In fact a null standard deviation of σ0 = 0.75 is quite believable given the

amount of correlations in (2.17), while Figure 1 argues against the theoretical null.

The breast cancer data has been used in the microarray literature to compare analysis

techniques, under the presumption that better techniques will produce more discoveries,

recently for instance in Pawitan et al. (2005) and Storey et al. (2005). Table 2 suggests

caution in the interpretation, where using the empirical null negates any discoveries at all.

(Part of the disagreement concerns this paper’s focus on large values at po, see Remark I.)

The theory of this paper is intended to show why correlation effects might support such a
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breast cancer HIV

Theoretical Null: 107 22

Empirical Null: 0 180

Table 3: Number of genes identified as significant discoveries by two-sided Benjamini-Hochberg

procedure, 0.10 control level. Top row based on theoretical N(0, 1) null distribution; Bottom row

using empirical null distribution (1.3).

negative conclusion, even if one is skeptical about the particular methodology behind (1.3).

Other factors besides z-value correlations can affect the null distribution. Efron (2004,

2005) suggests two other possibilities: unidentified covariates in an observational study, and

correlations across microarrays. In fact, Figure 3 makes it seem unlikely that correlation

effects alone are responsible for the extreme central overdispersion. These factors, as well as

correlation, argue against uncritical use of theoretical null distributions in large-scale testing

problems.

6. Discussion Massive data sets like those from the breast cancer and HIV studies

can be misleadingly comforting in their suggestion of great statistical accuracy. Correlation

considerations produce a more sobering picture. A single degree of freedom, embodied by the

random variable A in (3.15), can dominate variability as it does in Table 1. Qui, Klebanov,

and Yakovlev (2005) emphasize the harmful effect of correlation, using it as an argument

against empirical Bayes microarray analyses such as those in Storey (2002) or Efron et al.

(2001). Their arguments could be used just as well against all other popular microarray

analysis techniques.

The results presented in this paper are more optimistic. The correlation effect, though

perhaps very large, is shown to manifest itself via the simple wing-shaped function of Section

3. This enables the statistician to identify and remove much of it. In Figure 3, for example,

the tail count Y1 has standard deviation 15.5, much bigger than the value 4.5 applying to

independent zi’s, but the standard deviation reduces to 6.5 after prediction from the central

counts. This is the idea behind the empirical null, Efron (2004, 2005), whose most important

job is predicting the conditional expectation of the tail null counts.

That being said, Qui et al.’s concern for the consequences of correlation on microar-

ray analyses, nicely summarized in their Section 7, remains pertinent, especially in high-

correlation settings like the HIV study. Improved biomedical methods in exposure, registra-

tion, and background control of arrays may alleviate the problem, as might new array designs
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that incorporate greater gene duplication. Purely statistical improvements can also reduce

correlations, for instance by more extensive standardization techniques as in Qui, Brooks,

Klebanov, and Yakovlev (2005). None of this will help, however, if microarray correlations

are inherent in the way genes interact at the DNA level, rather than a limitation of current

methodology.

Not all large-scale testing situations involve microarrays. Correlation may be less of

a problem in other scientific venues like fMRI imaging or time of flight spectroscopy. In

any case it seems worthwhile to obtain some overall measure of correlation such as α, (3.2).

Large α’s suggest the use of correlation-resistant analysis techniques like the Fdr/empirical

null combination.

7. Remarks

A (Section 2) Empirical correlation distributions (2.16)-(2.17) were obtained from the

row-wise correlations of the original data matrix X, with X 3226×15 and 7680×8 in our two

examples. Let ρ̂ij be the sample correlation between rows i and j of X, after first subtracting

off each gene’s average response within each treatment group (in order to nullify any genuine

treatment differences); g(ρ) is essentially the empirical distribution of all N(N − 1)/2 ρ̂ij

values, as in Owen (2005), but when dealing with small numbers of microarrays, only 15 or

8 points per correlation in our two examples, some care is needed to remove the variability

added by sampling error. This was done by transforming to

ξ̂ij =
1

2
log

1 + ρ̂ij

1 − ρ̂ij

; (7.1)

assuming a translation model ξ̂ij = ξij + ε on this scale; estimating the distribution of

ε by repeating the calculations beginning with matrices X∗ in which the entries within

columns of X were independently permuted; inferring the ξ distribution by deconvolution;

and retransforming back to the ρ scale. These calculations apply to the correlations within

each column of X. Assuming independent columns, it is easy to demonstrate by simulation

that nearly the same g(ρ) distribution applies to the z-values (1.1).

B (Section 2) Owen’s examples support normality for g(ρ) as in (2.16), but a wide

range of other distributions fit reasonably well. Table 4 shows the best distribution supported

on just three ρ values. “Best” here is defined in terms of numerically minimizing a chi-square

discrepancy between the empirical distribution of the ξ̂ij values and the model ξ̂ = ξ + ε,

taking the ε distribution as above. The solution turned out to have mean 0 and standard

deviation α = 0.153, as in (2.16), and gave about the same estimate of cov(y) as (2.18).

22



ρ: -0.250 0.000 0.444

g(ρ): 0.131 0.793 0.076

Table 4: Best 3-point distribution estimate for the breast cancer correlation density g(ρ).

C (Section 2) The amount of gene-wise correlation represented by (2.16) is enormous.

For comparison, suppose that there were actually 10 equal sized groups of genes, with inde-

pendence across groups but ρij = 0.50 for all genes within groups. After standardization of

X this gives α = 0.15, about the same as (2.16).

D (Section 3) The components of u = ν + AW in (3.15) are

uk =̇ N∆fA(z[k]) where fA(z) = ϕ(z) · [1 + Aq(z)], (7.2)

q(z) = (z2 − 1)/
√

2, (2.7), (3.8); fA(z) is symmetric around zero, with even moments easily

obtained from Hermite polynomial calculations,∫ ∞

−∞
fA(z)dz = 1,

∫ ∞

−∞
fA(z)z2dz = 1 +

√
2A,

∫ ∞

−∞
fA(z)z4dz = 3 +

12√
2

A. (7.3)

This supports approximation (3.16), which can be improved upon using higher order Edge-

worth terms.

E (Section 3) The vectors ν and W in (3.15) relate to the zeroth and second Hermite

polynomials. Standardization of the columns of X suppresses the first polynomial, with im-

portant consequences here. Without standardization, the first eigenvector of cov(y), divided

by ϕ(z), may be proportional to z, the first polynomial, instead of the second polynomial

z2 − 1.

F (Section 4) The permutation calculations at the beginning of Section 4 provided

1000 z∗i values for each index i, after which the empirical distribution of all 3226× 1000 val-

ues provided the “permutation null” G0. This kind of calculation ignores correlation among

the zi’s since it only depends on marginal permutation distributions. It is worth restating

that permutation null distributions as typically computed tend to resemble theoretical nulls,

and do not automatically compensate for correlation effects. The sophisticated permutation

algorithms of Westfall and Young (1993) and Westfall (1997) do involve gene-wise correla-

tions, but applied toward different purposes than in this paper. Their “step-down max-T”

algorithm gave results similar to using a N(0, 1) null for the breast cancer and HIV studies.
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G (Section 4) Permutation methods produced unstable results for the HIV data.

Partly this reflects small sample sizes, with only 34 distinct permutations available. Of more

concern, there seem to be secular effects systematically disturbing expression levels across

microarrays, as described in Section 3 of Efron (2005). A version of Remark A based on

random subsamples of the 7680 genes gave (2.17).

H (Section 5) Linear functions of the count vector y yield useful estimates of A. For

m = (m1,m2, . . . ,mK)′ define

θm =
∑

k

mkuk/N and θ̂m =
∑

k

mkyk/N (7.4)

in Poisson model (3.15). It is convenient to work with a continuous version of m, say m(z)

where m(z[k]) = mk. Letting

Pm =

∫ ∞

−∞
m(z)ϕ(z)dz and Qm = −

∫ ∞

−∞
m(z)q(z)ϕ(z)dz (7.5)

gives

θm =̇

∫ ∞

−∞
m(z)fA(z)dz = Pm − AQm (7.6)

as in (7.2). If m(z) is the indicator function of (x,∞) then (7.6) becomes (5.7).

Since E{θ̂m|A} = θm, (7.6) suggests

Â =
Pm − θ̂m

Qm

(7.7)

as a method of moments estimator for A; (5.12) is (7.7) where m(z) is the indicator function

of (−x0, x0), Model (3.15) then yields var{θ̂m|A} =̇
∫

fA(z)m(z)2dz/N and

var{Âm|A} =̇
1

N

∫ ∞
−∞ fA(z)m(z)2dz

(
∫ ∞
−∞ ϕ(z)q(z)m(z)dz)2

. (7.8)

This formula, with A equaling 0.57 and -0.21 for the two studies, gave the standard errors

in (5.13).

Suppose we wish to minimize (7.8) among functions m(z) supported on (−x0, x0). The

formula is linear in A and in fact does not vary much across reasonable values of A. At

A = 0, standard theory says that choosing m(z) proportional to q(z) = (z2 − 1)/
√

2 within

(−x0, x0) is optimal, the minimum variance equaling [N
∫ x0

−x0
ϕ(z)q(z)2dz]−1. For x0 = 1 this

gives var{Âm|A = 0} = 5.03/N , compared to 1/N for x0 = ∞, (the ideal choice but an
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unallowable one given the possibility of biasing Âm with non-null data). Taking m(z) as

the indicator of (−1, 1) gives 5.83/N . Reducing x0 to 0.80 provides slightly smaller variance

when m(z) is the indicator, 5.36/N . The more important point is that conditional variance

estimates, as in (7.8), are both convenient and appropriate for the calculations here.

I (Section 5) “A” = 0 in (3.15)-(3.16) corresponds to null counts following the N(0, 1)

theoretical null distribution. At A = 0 formula (7.8), with x0 = 1 and optimal m(z), gives

conditional standard deviations

breast cancer 0.040, HIV 0.028, (7.9)

making (5.13) strongly contradict the theoretical null.

As explained following (5.14), these standard errors are optimistically small in that they

assume po very near 1. The GLM method (5.15) disposes with this assumption, at the cost of

decreased efficiency: with x0 = 1, σ̂0 in (5.17) has about twice the standard error suggested

by (7.9) and the relationship σA =̇ 1 + A/
√

2 from (3.16). A more daring choice, x0 = 1.5,

is necessary to get efficiency equivalent to (7.9).

J (Section 5) All estimates of the null proportion po in the literature, such as p̂oo

(5.22), assume correctness of the theoretical null distribution, Langlass et al. (2005). If it is

not correct then methods that take the estimated null spread σ̂0 into account, like p̂o (5.20),

become necessary.

An important assumption of Section 5 is that po is large, po ≥ 0.9, reflecting the usual

goal in large-scale testing of winnowing an enormous class of possibilities down to a manage-

ably small set of interesting cases. Efron (2004), shows that (5.17) will give nearly unbiased

estimates of σ0 when po exceeds 0.9. Langlass et al., using the theoretical null, estimate po as

0.67 for the breast cancer data, which is what p̂oo gives with x0 = 0.5. Pawitan et al. (2005)

suggest po = 0.43. Such small po values are necessary to explain the central spread of the

breast cancer data assuming the theoretical null is correct. This paper suggests that corre-

lation effects may undermine the theoretical null, and also the usual estimates of po. Note:

the referee points out that a preliminary removal of “uninteresting cases” may sometimes

decrease the apparent value of po, as in Ein-Dor et al. (2005). This is a dangerous tactic

since the cases removed may contain valuable information concerning the null distribution.

For the HIV data, p̂oo = 1.19 when x0 = 0.5, reflecting the underdispersion seen in the

right panel of Figure 1. Using the empirical null gives the sensible estimate p̂o = 0.93.
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K (Section 5) Each point in Figure 5 and Figure 6 was calculated from the counts of

a simulated vector of N = 3000 z-values, discretized into K = 101 bins of width 0.1 running

from -4.1 to 6.0. Each count vector was constructed as follows: 150 non-null counts were

obtained from an idealized N(2.5, 1.25) distribution,

zi = 2.5 + 1.25
1
2 Φ−1((i − .5)/150) i = 1, 2, . . . , 150; (7.10)

null counts were generated according to model (3.15), with N = 2850, α = 0.15, and the

components of u truncated at zero; the values of A in (3.15) followed an idealized N(0, α2)

distribution.

The Fdr estimates in Figure 5 were obtained from (5.21) and (5.22). The calculation of

σ̂0 proceeded as in (5.15), (5.17), with one further correction. Because u = ν + AW, is not

exactly proportional to N(0, σ2
A = 1 +

√
2 A) near z = 0, procedure (5.15)-(5.17) tends to

be biased for estimating σ0, as shown in Table 5. The mapping from (5.17) to σA in Table

5 was used to correct the value of σ̂0 used in (5.21).

A -0.40 -0.20 0 0.20 0.40

(5.17) 0.80 0.88 1 1.18 1.55

σA 0.66 0.85 1 1.13 1.25

Table 5: Estimate (5.17) of σ0 taking yk proportional to fA(z[k]), (7.2), in (5.15); compared to

σA = (1 +
√

2 A)1/2.

The correction could be avoided by changing (5.15) to Po(fA(z[k]) for k ∈ K0 and

directly estimating A, but doing so requires special software since fA is not an exponential

family. This would be a worthwhile effort if correlation alone affected σ0, but other causes

such as unobserved covariates are possible, where fA does not play a dominant role.

L (Section 5) The fact that correlations can greatly widen or narrow the null dis-

tribution has to affect any simultaneous testing procedure, not only false discovery rates.

The same simulation model used in Figures 5 and 6 was applied to Lehmann and Romano’s

(2005) “k-FWER” procedure, in this case calibrated to produce k = 20 or more false discov-

eries no more than 10% of the time. In Figure 7 the actual number of false discoveries for

each replication is plotted against σ̂0, its estimated null standard deviation. The k-FWER

procedure performed conservatively, averaging less than 3 false discoveries per replication,

with only 2 out of 400 exceeding k = 20. (The number of true discoveries was 39, 40, or

41 in all 400 trials, averaging 39.1.) As in Figure 6, the false discovery proportion was a

strongly increasing function of σ̂0, averaging .036 for σ̂0 ≤ 0.90 and .224 for σ̂0 ≥ 1.20.
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Figure 7: 400 replications of simulation model used in Figures 5 and 6 applied to Lehmann-

Romano k-FWER procedure, k = 20, error control rate 0.1; number of false discoveries increase

with σ̂0, the null standard deviation. Two points at right had 39 and 51 false discoveries. Curve is

smoothing spline..
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