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Summary 
This dissertation investigates four methods for attacking stream ciphers that are based on nonlinear 

combining generators: 

• Two exhaustive-search correlation attacks, based on the binary derivative and the Lempel-

Ziv complexity measure. 

• A fast-correlation attack utilizing the Viterbi algorithm 

• A decimation attack, that can be combined with any of the above three attacks 

 

These are ciphertext-only attacks that exploit the correlation that occurs between the ciphertext and an 

internal linear feedback shift-register (LFSR) of a stream cipher. This leads to a so-called divide and 

conquer attack that is able to reconstruct the secret initial states of all the internal LFSRs within the 

stream cipher. 

 

The binary derivative attack and the Lempel-Ziv attack apply an exhaustive search to find the secret 

key that is used to initialize the LFSRs. The binary derivative and the Lempel-Ziv complexity 

measures are used to discriminate between correct and incorrect solutions, in order to identify the 

secret key. Both attacks are ideal for implementation on parallel processors. Experimental results 
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show that the Lempel-Ziv correlation attack gives successful results for correlation levels of p = 

0.482, requiring approximately 62000 ciphertext bits. And the binary derivative attack is successful 

for correlation levels of p = 0.47, using approximately 24500 ciphertext bits. 

 

The fast-correlation attack, utilizing the Viterbi algorithm, applies principles from convolutional 

coding theory, to identify an embedded low-rate convolutional code in the pn-sequence that is 

generated by an internal LFSR. The embedded convolutional code can then be decoded with a low 

complexity Viterbi algorithm. The algorithm operates in two phases: In the first phase a set of suitable 

parity check equations is found, based on the feedback taps of the LFSR, which has to be done once 

only once for a targeted system. In the second phase these parity check equations are utilized in a 

Viterbi decoding algorithm to recover the transmitted pn-sequence, thereby obtaining the secret initial 

state of the LFSR. Simulation results for a 19-bit LFSR show that this attack can recover the secret 

key for correlation levels of p = 0.485, requiring an average of only 153,448 ciphertext bits. 

 

All three attacks investigated in this dissertation are capable of attacking LFSRs with a length of 

approximately 40 bits. However, these attacks can be extended to attack much longer LFSRs  by 

making use of a decimation attack. The decimation attack is able to reduce (decimate) the size of a 

targeted LFSR, and can be combined with any of the three above correlation attacks, to attack LFSRs 

with a length much longer than 40 bits. 
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Opsomming 

Hierdie verhandeling ondersoek vier metodes om stroomsyfers, gebaseer op nie-liniêre 

kombinatoriese generators, aan te val: 

• Twee korrelasie aanvalle, gebasseer op die binêre differensiaal en die Lempel-Ziv 
komplexiteit maatstaaf, deur middel van 'n volledige sleutel-soektog 

• 'n Vinnige korrelasie-aanval wat gebruik maak van die Viterbi algoritme 

• 'n Desimasie aanval wat gekombineer kan word met enige van die drie bogenoemde aanvalle. 

 

Hierdie is syferteks-aanvalle wat die korrelasie tussen die syferteks en 'n interne liniêre terugvoer 

skuifregister (LFSR) van 'n stroomsyfer benut. Dit lei tot 'n sogenaamde verdeeel-en-heers aanval, wat 

die geheime begintoestande van die interne LFSRs binne die stroomsyfer kan herwin. 

 

Die binêre afgeleide en die Lempel-Ziv aanvalle vind die geheime sleutel, waarme die LFSR’s ge-

inisialiseer word, deur middle van 'n volledige sleutel-soektog. Die Lempel-Ziv sekwensie-

kompleksiteit en 'n nuwe kompleksiteits-maatstaf vir die binêre afgeleide word gebruik om die 

korrekte oplossing te identifiseer en die geheime sleutel te vind. Beide aanvalle is ideaal vir 

implimentering op paralelle verwerkers. Eksperimentele resultate toon dat die Lempel-Ziv korrelasie 

aanval goeie resultate lewer vir 'n korrelasie van p = 0.482 en benodig ongeveer 62000 syferteks bisse 
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hiervoor. Die binêre afgeleide aanval is suksesvol vir korrelasie vlakke van p = 0.47 en benodig 

ongeveer 24500 syferteks bisse. 

 

Die vinnige korrelasie-aanval, gebaseer op die Viterbi algoritme, maak gebruik van die teorie van 

konvolusiekodes. 'n Lae-tempo konvolusie kode word gevind, op grond van die pn-sekwensie wat 

deur die LFSR genereer is. Hierdie konvolusie kode kan dan met behulp van die Viterbi algoritme 

gedekodeer word. Die algoritme benodig twee aparte stappe: In die eerste stap moet bruikbare pariteit 

vergelykings gevind word, gebasseer op die terugvoertappe van die LFSR. Hierdie stap hoef slags 

eenkeer uitgevoer te word tydens die aanval op 'n sisteem. In die tweede stap word die 

pariteitsvergelykings in 'n Viterbi dekodeer algoritme gebruik om die pn-sekwensie te herwin en 

sodoende word die geheime begintoestand van die LFSR gevind. Simulasie resultate vir 'n 19-bis 

LFSR toon dat hierdie aanval die geheime sleutel kan herwin vir 'n korrelasie van p = 0.485, waarvoor 

slegs 153,448 syferteks bisse benodig word. 

 

Al drie aanvalle wat in hierdie verhandeling ondersoek word, is in staat om LFSRs met 'n lengte van 

ongeveer 40 bisse aan te val. Hierdie aanvalle kan egter uitgebrei word na langer LFSRs deur van die 

desimasie aanval gebruik te maak. Die desimasie aanval wat hier ondersoek word, is in staat om die 

lengte van 'n LFSR te desimeer en kan gekombineer word met enigeeen van drie bo-genoemde 

korrelase aanvalle om LFSRs van heelwat langer as 40 bisse aan te val. 
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CHAPTER 1 INTRODUCTION 

1.1 Problem Statement

Many practical stream cipher systems are based on binary linear feedback shift registers (LFSRs). A 

keystream is generated by combining the output of a number of LFSRs using a non-linear combining 

function f as shown in Figure 1.1 below. 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Stream cipher based on a nonlinear combining generator 

In a stream cipher system the plaintext is encrypted by modulo 2 addition with the keystream, 

resulting in a ciphertext stream of the same length as the plaintext. The secret key for the stream 

cipher is used to initialize each of the component LFSRs, and has to be in the possession of both the 

sender and the receiver. In a brute force attack on such a stream cipher system an attacker would need 

to test all the possible states of the combined LFSRs, which is computationally infeasible in any 

contemporary system. 

 

In practical stream cipher systems it is often found that a correlation occurs between the ciphertext 

and the output of an individual LFSR within the key generator. By exploiting this correlation it is 

possible to formulate a so-called divide-and-conquer attack, thereby attacking the individual LFSRs 
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separately. Such divide-and-conquer correlation attacks radically reduce the effort of finding the 

secret key, since the initial condition of each LFSR may be reconstructed independently.   

 

Let p denote the amount of correlation occurring between the ciphertext and an individual LFSR 

within the key generator. For ideal cryptographic applications we would expect that p = 0.5. However, 

in practical systems it is often found that p < 0.5, due to correlation weaknesses in the stream cipher. 

The magnitude of the correlation p has important consequences for divide-and-conquer attacks on 

stream ciphers. As will be demonstrated in this dissertation, the complexity of correlation attacks 

generally increases exponentially when the value of p is close to 0.5.  

1.2 Objective 

This dissertation investigates four different ciphertext only correlation attacks on LFSR-based stream 

cipher systems.  

 

Firstly, two new correlation attacks are introduced which target a single LFSR within the key 

generator: 

o The binary derivative attack. 

o The Lempel-Ziv attack. 

In these attacks the Lempel-Ziv sequence complexity measure and the Binary Derivative being are 

used to discriminate between random-looking and systematic binary streams.  

 

Secondly, a fast-correlation attack, utilizing the Viterbi algorithm is introduced. The attack is quite 

complex, and its description together with the simulation results, forms the largest part of this 

dissertation. The attack models he targeted LFSR output as a wireless transmission that was corrupted 

by noise in a binary symmetric channel. The algorithm is used to reconstructs the LFSR’s initial 

condition from the ciphertext by means of a Viterbi decoder, which is derived using parity equations 

that are embedded within the structure of any LFSR. 

 

Thirdly, a decimation attack, based on an idea proposed by Filiol [1] is investigated. This attack 

reduces (decimates) the key-space of a targeted LFSR. The attack can be applied in combination with 

any of the above-mentioned attacks. 
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1.3 Contribution 

1.3.1 Correlation Attacks 

Correlation attacks were first introduced by Siegenthaler [2] based on the correlation function. The 

attacks in this dissertation extend his work, and are able to succeed for values of p close to 0.5, yet 

with much lower complexity. The Lempel-Ziv correlation attack is successful for correlation levels as 

low as p = 0.482. The binary derivative correlation attack was able to exploit correlation levels of p = 

0.47. Simulation results show an exponential reduction of the number of ciphertext bits that are 

needed when the attack applies more derivatives. Simulation results provide information on the 

relationship between correlation level, number of derivatives, and the amount of ciphertext required 

for a successful attack. 

1.3.2 Fast Correlation Attack 

The fast-correlation attack using Viterbi algorithm discussed in this dissertation gives a substantial 

improvement over previous results, and is successful for correlation levels of only p = 0.485. This is 

in contrast to results obtained by Johansson and Jönsson [3] who required a much greater correlation 

level of at least at least p = 0.42. Numerous simulations in the dissertation give a detailed relationship 

between the correlation levels, the number of parity equations, the number of required ciphertext bits, 

the size of the targeted LFSR, as well as the size of the convolutional encoder. It was found that the 

number of parity equations is the primary factor that determines the likelihood of success for a certain 

correlation level. These results make it possible to predict beforehand whether an attack is likely to 

succeed, since this leaves only two more parameters that can be varied. These are the size of the 

convolutional encoder, and the number of ciphertext bits. 

1.3.3 Decimation Attack 

In the dissertation a list of all the useful decimation factors for LFSRs bigger than 18 bits and smaller 

than 64 bits is presented. In many cases it was found that the decimation attack is ineffective because 

of the unrealistically large number of ciphertext bits required for success attacks. 

1.4 Outline 

Chapter 2 provides a general introduction to stream ciphers, including a historical overview and the 

general architecture of such a system. A detailed mathematical model is introduced which is used 

throughout the remainder of the dissertation. 
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Chapter 3 investigates two correlation attacks, the Lempel-Ziv attack and the binary derivative attack. 

A model for the attack is introduced, together with a detailed description of each attack. Simulation 

results are given for both attacks, which investigate the conditions under which the attacks are likely 

to succeed, followed by a discussion on the impact of these results. 

 

Chapter 4 investigates a fast correlation attack based on the Viterbi algorithm. A overview of the 

relevant mathematical background is presented, including a detailed description of the Viterbi 

algorithm. All steps in the process of the attack are accompanied by a theoretical explanation, 

followed by a practical example in the same section. These examples give a complete example for 

performing a fast correlation attack using a small LFSR. Simulation results are presented and 

discussed, followed by a number of general conclusions. 

 

Chapter 5 investigates the decimation attack. Relevant mathematical theory is reviewed together with 

examples of finding practical decimation factors. Methods are discussed for applying the decimation 

attack to the previously introduced correlation attacks, and fast correlation attacks, as well as 

performing a theoretical mathematical analysis of the feasibility of the attack. 

 

Chapter 6 gives a conclusions of all the methods investigated. This chapter compares and contrasts the 

various attacks, giving a global discussion of the results obtained and the practical implication 

thereof. 
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CHAPTER 2 BACKGROUND ON STREAM CIPHERS 

2.1 Introducing the Stream Cipher 

Keeping information secret and confidential is an age-old practice. Cipher systems have been used 

and evolved from the times of the Romans. This evolution has been fueled by the battle between the 

cryptographer and the cryptanalyst, i.e. the people designing methods to keep information private, and 

those trying to break these methods. Throughout history there have been times when the 

cryptographers were holding the upper hand, their ciphers being believed to be unbreakable, and then 

there were times when no cipher was considered to be safe or unbreakable and the cryptanalyst were 

in ascendancy. 

 

Two main methods can be identified in a cryptanalyst’s armory. The first method involves the 

guessing of the key by working through every possible combination of the key space and checking the 

result to see if the guess proved to be correct. The larger the key space, the more difficult this 

becomes. If the key-space is small enough that an exhaustive search is feasible, the cipher is too weak 

and can be considered broken. It is therefore important to ensure the key space is large. The second, 

and by far preferable, method involves identifying of a weakness in the cipher that will save the 

cryptanalyst the trouble of trying every possible key. Using this method the key can be reconstructed 

using statistical information embedded in the ciphertext. A simple example of this is the Caesar Shift 

Cipher. 

 

The Caesar Shift Cipher, used by the Romans, in generalized terms, is a substitution cipher where 

each letter is substituted with another letter. The key in this case is the map, which tells a person 

which letter is transformed to which, e.g. every ‘a’ is substituted with an ‘x’. The key space for this 

example is huge: 689113726605635514032914611126!-226 =+  which even today at a key space 

of around 882  would be close to impossible to break using automated methods. However, because of 

the statistical nature of the language this system does not hide the statistical repetition and grouping of 

letters in the ciphertext, making it easy to break. This weakness in the cipher provides a back door by 

which one can retrieve the key without trying each possible one. 
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Until the Second World War most ciphers were based on the substitution of characters, the so-called 

substitution ciphers, some of which were extremely advanced, e.g. the German Enigma and the 

Japanese Purple1 cipher systems. With the development of the modern information age however these 

systems have changed to ones, which encipher digitally encoded data of any form and are thus not 

limited to enciphering text-based characters. Modern cipher systems can be loosely grouped into two 

categories, so-called stream ciphers and block ciphers. 

 

Block ciphers work on the basis of transforming fixed blocks of data to blocks of ciphertext of equal 

length (typically 64 bits in size) according to a key as shown in Figure 2.1 below which illustrates the 

typical functioning of this type of cipher. Examples of block ciphers include DES, Triple-Des, IDEA, 

Blowfish and RC-5 [4].  

 

 

 

 

 

 

 

 

Figure 2.1 Diagram of encryption using a typical block cipher 

Although the vast majority of network-based conventional cryptographic applications make use of 

block ciphers, stream ciphers are also widely used. For example, the A5/1 stream cipher [5], used for 

encryption in GSM, and RC 4 as well as many military communication systems. As far more effort 

has gone into the analyzing of block ciphers, the field of stream ciphers presents a big opportunity for 

further investigation and is the focus of this dissertation. 

 

 

                                                      
1 Both these ciphers made use of electro-mechanical devices for substituting characters based on a 

session key and are famous for being broken by the Allies [4].  
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In a stream cipher the plaintext message m  to be enciphered, is broken into successive characters 

K,, 21 mm . Each plaintext character jm  is enciphered by adding a keystream character jk  resulting 

in a ciphertext character jz . This type of cipher is also referred to as a Vernam cipher having been 

introduced by Gilbert Vernam an AT&T engineer in 1918 [4]. In this dissertation only the binary form 

of the Vernam cipher is considered where all additions are bitwise modulo 2 additions, equivalent to 

an exclusive-or (XOR) shown in equation (2.1). 

jjj kmz +=  K2,1,0=j   (2.1) 

The basic function of the Vernam cipher, illustrated in Figure 2.2 below, is to eliminate any statistical 

relationship between the plaintext and the ciphertext. This is done with the addition (XOR) of a 

random keystream with the plaintext. The device used to generate the random keystream, where each 

bit is equally likely to be 0 or 1 independent of the preceding bits, is called a binary symmetric source 

(BSS). 

 

 

 

 

 

 

 

 

Figure 2.2 Vernam stream cipher model 

A special form of the Vernam cipher proposed by Joseph Mauborgne [4] p 41 involves the use of a 

random keystream that is the same length as the message, without any repetitions. This scheme is 

known as a one-time-pad and is unbreakable. However, this method is impractical due to the fact that 

both the sender and the receiver have to be in possession of the same key, which is huge if the data to 

be encrypted is of any significant size. The key may also never be used again, otherwise there is 

repetition and the ciphertext is no longer unbreakable.  

 

BSS

Secure Channel 

mj mj 

kj kj 

zj
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Using a long random keystream, one can however still attain a very secure encryption system. The key 

to the one-time-pad strength is the long and completely random keystream. If one can produce a 

random sequence by seeding a generator with a shorter value, which always produces the same 

sequence, one only has to communicate the short value used for seeding the generator to the receiver. 

This generator is referred to as a Running Key Generator (RKG) and to the seeding value as the key 

( K ) which generates the random-looking keystream sequence )( jkk =  as illustrated in Figure 2.3 

below. 

 

 

 

 

 

 

 

 

 

Figure 2.3 Additive stream cipher model 

The ciphertext is now the bit-by-bit modulo-2 sum of the plaintext and the keystream, as shown in 

equation (2.2). 

jjj kmz ⊕=   K,2,1,0=j  (2.2) 

Fortunately for the cryptanalysist, the keystream )( jk  is not truly random but deterministic, being 

determined by the secret key K and the algorithm of the running key generator. Unlike the key for the 

Vernam cipher, the generator can only generate as many different keystreams as there are key input 

values. Once the key K  is known, the entire keystream sequence can be reconstructed which can be 

exploited by the cryptanalysist. The main aim of an attacker would thus be to determine K  as this 

allows the reconstruction of the keystream, and hence the secret message. As long as the cipher 

system is designed to ensure that it is practically impossible to determine K , the system is safe. 

Running 
Key 

Generator  

Secure 

Running 
Key 

Generator  

K K

mj mj zj

kj kj 
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2.2 Practical Running Key Generators 

2.2.1 The Linear Feedback Shift Register 

The running key generator needs to be designed to output a random keystream, which cannot easily be 

distinguished from a truly random sequence. To make the implementation practical the generator must 

be able to produce the keystream rapidly without being too complex. One well-known circuit that 

efficiently produces a random looking sequence is the linear feedback shift register, referred to as a 

LFSR from now on. The design of LFSRs is based on finite field theory, developed by the French 

mathematic Évariste Galois apparently shortly before being killed in a dual [6]. In digital circuits, 

which use binary arithmetic, the operations of LFSRs correspond to operations in a finite field, or 

Galois Field, with l2  elements usually denoted as )2( lGF . 

 

 

 

 

 

 

Figure 2.4 Structure of a linear feedback shift register of size l  

Figure 2.4 displays the structure of an l-bit LFSR. The shift register’s serial input is fed by the modulo 

2 addition of previous stages of the register. The connection determining whether a value is fed back 

or not is represented by the coefficients 1210 ,,,, −lcccc K  as shown in Figure 2.4. The next input bit to 

the LFSR is thus computed as a linear function of the current contents as given in the form of a 

recurrence relation in (2.3) below, where the initial contents of the shift register is given by the values 

110 ,, −laaa K . 

111100 −−+++= llk acacaca K  (2.3) 

Associated with a LFSR is a characteristic polynomial (often referred to as the generator 

polynomial) )(xg , which is also expressed in terms of the feedback coefficients shown in (2.4): 

ll
l xxcxcxccxg +++++= −
−

1
1

2
210)( K  (2.4) 

a 2 a 1 a l-8 a 0 

Cl-1 C2 C1 C0

a0, a1, a2,…. 
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The feedback coefficient lc  is equal to 1 by definition and 0c  is always chosen as 1, because the 

output sequence would otherwise just be a time-shifted version of the LFSR denoted by )(xgxn ⋅ . A 

LFSR of l  stages can produce a non-repeating sequence with a maximum length of 12 −= lL . This 

so-called pseudo-random bit sequence is of maximum length if the feedback polynomial )(xg  is 

primitive. A primitive polynomial of degree l  is an irreducible polynomial that divides 112 +−l

x , but 

not 1+dx  for any d  that divides 12 −l . 

 

The 5-bit LFSR in Figure 2.5 below represents an implementation of the primitive polynomial 

1)( 25 ++= xxxg  and is used as an example to illustrate the contents of the shift register for each 

clock cycle when started with the initial condition 01234 ,,,, aaaaa  equal to 0,0,0,0,1 . The content 

for the LFSR is shown in Table 2.1 for each clock cycle until the initial state is repeated. 

 

 

 

 

 

Figure 2.5 Implementation of LFSR for 1)( 346 ++++= xxxxxg  

It can be seen in Table 2.1 below that there are 31 unique states ( 125 −=L ) for the LFSR shown in 

Figure 2.5, where state 31 is a repeat of state 0 . Each consecutive state is a right-shifted version of 

the previous state, with 4a  being derived by the feedback taps from 0a  and 2a , also from the 

previous state. An interesting observation that can be made is the fact that the output sequence can be 

seen in column 0a  and is also 125 −=L  of length before repeating. Each column (each entry in the 

column represents the contents of a memory cell within the shift register at time j ) represents a time-

shifted version of the output sequence.  

a2 a1 a0 a4 a3 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  BBrruuwweerr,,  CC  SS    ((22000055))  



Chapter 2 Background on Stream Ciphers

 

Electrical,  Electronic and Computer Engineering 19
 

Table 2.1 State of LFSR shown in Figure 2.5 for each clock cycle up to first repeat 

Contents 
State 4a  3a  2a  1a  0a  

0 1 0 0 0 0 
1 0 1 0 0 0 
2 0 0 1 0 0 
3 1 0 0 1 0 
4 0 1 0 0 1 
5 1 0 1 0 0 
6 1 1 0 1 0 
7 0 1 1 0 1 
8 0 0 1 1 0 
9 1 0 0 1 1 
10 1 1 0 0 1 
11 1 1 1 0 0 
12 1 1 1 1 0 
13 1 1 1 1 1 
14 0 1 1 1 1 
15 0 0 1 1 1 
16 0 0 0 1 1 
17 1 0 0 0 1 
18 1 1 0 0 0 
19 0 1 1 0 0 
20 1 0 1 1 0 
21 1 1 0 1 1 
22 1 1 1 0 1 
23 0 1 1 1 0 
24 1 0 1 1 1 
25 0 1 0 1 1 
26 1 0 1 0 1 
27 0 1 0 1 0 
28 0 0 1 0 1 
29 0 0 0 1 0 
30 0 0 0 0 1 
31 1 0 0 0 0 

 

A LFSR is usually specified using the polynomial representation, which does not easily map to a 

hardware implementation. Consider a 8-bit LFSR, with feedback polynomial 

1)( 3568 ++++= xxxxxg  (2.5) 

It is easy to convert the polynomial representation to a recurrence relation representation, which can 

be readily mapped to the hardware representation of a LFSR, as will be shown with equation (2.5) as 

an example. Setting 0)( =xg  one obtains: 
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10 3568 ++++= xxxx  (2.6) 

Multiplying by nx  gives: 

nnnnn xxxxx ++++= ++++ 35680  (2.7) 

Multiply by 8−x then produces 

85320 −−−− ++++= nnnnn xxxxx  (2.8) 

Replacing nx  with na  results in: 

85320 −−−− ++++= nnnnn aaaaa  (2.9) 

As these all are GF(2) or modulo 2 operations nn aa −= ; thus 

2358 −−−− +++= nnnnn aaaaa  (2.10) 

which represents the LFSR shown in Figure 2.6 below where the output sequence is denoted by 

K,,, 210 uuu  and n  denotes any relative point in time. 

 

 

 

 

 

 

Figure 2.6 LFSR of size 8 

an-7 an-6 an-5 an-8 an-3 an-2 an-1 an-4 ,.....,, 210 uuu
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Thus, a LFSR generates a random looking bit sequence of length 12 −l  using a short seeding value. 

However a LFSR cannot be used on its own as a running stream generator. Consider the following 

case illustrated in Figure 2.7: 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7 Cracking a stream cipher with a weak running key generator 

Looking at the viewpoint of the interceptor it is known somebody is writing to Alice, as is the inner 

working of the cipher system being used and for this special case the keystream is referred to as 

ju instead of jk . By guessing that the message starts with “Dear Alice” provides 10  letters of known 

plaintext, as the ciphertext jz  produced by jj um ⊕  is known. Assuming the guess is correct and the 

message was written using ASCII letters allows for the retrieval of 808*10 =  bits of the key 

sequence as jjj zmu ⊕= .  As long as the LFSR in the system shown in Figure 2.7 above is shorter 

than 80 bits, the system has been cracked as one can derive the whole key sequence, forward or 

backward, from the section retrieved. The reason this particular example of a running key generator 

can be broken so easily is the lack of confusion, a concept that is introduced and elaborated on in the 

following section. 

Dear Alice…. Dear Alice…. 

LFSR 

Secure Channel

LFSR  

K K

zj

Interceptor

uj uj

Alice 
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2.2.2 The Combining Function for the Running Key Generator 

The lesson learned from the hypothetical attack described at the end of the previous section is the fact 

that if one wants to make use of the speed and simplicity of implementation of a LFSR in the 

construction of the running key generator, measures must be taken to prevent an attacker from 

retrieving the initial state of the LFSR.  

 

The terms diffusion and confusion were introduced by Shannon [4], p60 and are fundamental to any 

practical cryptographic system. In diffusion it is attempted to make each bit in the key influence many 

plaintext bits in order to hide the statistical structure of the plaintext in the ciphertext. Confusion 

attempts to make the statistical relationship between the ciphertext and the key as complex as 

possible. When using LFSRs in a running key generator, the criteria set by diffusion is easily met as 

changing one bit in the seeding value of the LFSR (which forms part of the key) changes the output 

sequence of the LFSR, thus also the keystream and as a result the ciphertext.  

 

Several methods are used to introduce confusion in stream ciphers for hiding the individual LFSR 

output bits in order to prevent the reconstruction of the key. The most common methods [7] are 

nonlinear filter generators, clock-controlled generators2 and nonlinear combining generators, the 

latter being the focus of this dissertation. Nonlinear combining generators combine a fixed number of 

n  LFSRs using a nonlinear combining function f  as shown in Figure 2.8 below. The individual 

output streams from the various LFSRs are identified by the superscript na K1 . 

                                                      
2 A5/1 used for encryption in GSM networks makes use of clock-controlled generators. 
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Figure 2.8 Stream cipher based on a nonlinear combining generator 

An example of a simple combining function is the Geffe generator, shown in Figure 2.9 below [7]. 

The key of this generator is the initial conditions of the three component LFSRs.  

 

 

 

 

 

Figure 2.9 The Geffe key generator 

To investigate the confusion in the keystream introduced by the Geffe generator the truth table of the 

combining function, shown in Table 2.2 below, is examined. 
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Table 2.2 Truth table for Geffe combining function 

1
ja  2

ja  3
ja  jk  

0 0 0 0 

0 0 1 1 

0 1 0 0 

0 1 1 0 

1 0 0 0 

1 0 1 1 

1 1 0 1 

1 1 1 1 

 

Looking at the correlation between the individual LFSR outputs ia  it can be seen that 

4
3

8
6)()()( 321 ======= jjjjjj kaPkaPkaP . Thus 75% of the time a bit in the keystream is 

equal to the contents of a specific component LFSR. Because of this, it is no longer possible to 

directly deduct the initial condition of a component LFSR from the keystream, however the 

correlation can be exploited, as the remainder of this dissertation will endeavour to illustrate. 

 

A brute force attack attempts to examine all the possible states of the component LFSRs. Such an 

attack is however the last resort for a cryptanalysist when all else fails and is unlikely to succeed. Any 

cipher system would be designed in such a way as to ensure that the key size is orders too large for a 

brute force attack to succeed. In fact, because of the rapid rate at which computers are increasing in 

speed, the key-size is usually huge and brute force attacks can typically only be expected to work on 

very old systems. 
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Fortunately for the cryptanalysist, Siegenthaler [2][1] has shown that by exploiting the measure of 

correlation that exists between the running key k  and the outputs of individual LFSRs ia , as shown 

in the example of the Geffe generator, it is possible to perform a divide and conquer attack on the 

individual LFSRs thereby reducing the effort of finding the key from ∏
n

li

1

2  to ∑
n

li

1
2 . This is 

possible by performing a brute force attack, targeting the output of only one of the component LFSR’s 

independently from the output of the others. This approach was shown to work for a number of 

combining functions, e.g. as proposed by Brüer [8], Geffe [9] and Pless [10]. Siegenthaler used the 

correlation function to discriminate between random-looking binary sequences, resulting from the 

false initial states, and non-random (deterministic) binary sequences corresponding to the correct 

state.  

 

To prevent the type of attack introduced by Siegenthaler, one would ideally want to have a combining 

function, which provides a keystream with a correlation for 5.0)( == kaP i  that would be 

completely random and thus the ultimate in confusion. In practice however, implementations of 

combining functions never reach correlation levels that are completely random, and in general it is 

found that 5.0)( ≠= kaP i . In the following section a mathematical model is introduced that can be 

used for exploiting this weakness. 

2.3 Review of the Statistical Model 

In this section a model for representing the statistical relationship between the individual LFSRs 

within a nonlinear combining generator and the ciphertext is introduced. The model is slightly 

different for each type of attack described in this text and is refined at the relevant sections. Assume 

that a segment of N  ciphertext bits is being observed by an attacker. From the attacker’s viewpoint it 

is desirable that the value N  should be as small as possible; i.e. 12 −=<< ilLN . The fundamental 

assumption for correlation attacks of stream ciphers is that the ciphertext sequence )( jkk =  is 

correlated with probability 5.0'>q  to the sequence )( jaa = generated by a particular internal LFSR, 

i.e.  

L,2,1,05.0)'1(')( =>−=== jpqakP jj  (2.11) 
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The corruption of the internal LFSR sequence )( ja due to other LFSRs in the stream cipher may be 

modeled as “errors” in the sequence. In the case of binary-valued digits, the model may be simplified, 

by setting L,2,1,0, =⊕= jrak jjj . This is illustrated in Figure 2.10. 

 

 

 

 

 

 

Figure 2.10 Stream cipher model 

The simplifying assumption that jk depends only on the input ja at time j  is made. The corruption 

of the LFSR sequence ja due to the other LFSRs in the stream cipher and the addition of the plaintext 

may be modeled by the addition of “error digits” jr . 

'1')0()( pqrPkaP jjj −=====  (2.12) 

The assumption is made that the “error bits” )( jr , generated by the memoryless Binary Noise Source 

(BNS), are identical and independently distributed random variables. In typical applications one 

further finds that 5.0)0( ≠=jmP . In fact, the statistical nature of the data being encoded is usually 

a known factor, for instance for the transmission of voice or the transmission of English ASCII text. 

Because of this, the effect of the plaintext can be incorporated into the BNS allowing for the 

simplification of the stream cipher model as shown Figure 2.11 below, where the corruption of the 

LFSR sequence ja  due to the other LFSRs in the stream cipher and the addition of the plaintext has 

now been combined in a unified addition of “error digits” je . 

 

kjLFSR 

BNS 

zjaj

rj

mj 
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Figure 2.11 Simplified stream cipher model 

The simplified model has a lower correlation level between the LFSR output ja  and the ciphertext 

jz  than exists between ja  and jk  making any attack more difficult. The huge advantage with the 

simplified model is however that one now is able to perform a ciphertext-only attack on the system 

instead of a known plaintext attack. This correlation level is shown by equation (2.13) where the 

probabilities q  and p now combine the effect of the combining function and the effects of the 

statistical nature of the plaintext. 

pqePzaP jjj −===== 1)0()(  (2.13) 

 

The challenge of the cryptanalyst is to restore the unknown LFSR sequence )( ja from the observed 

ciphertext sequence )( jz , which may be viewed as a “noisy” version of )( ja as shown with the 

equivalent model in Figure 2.12 below. 

 

 

 

 

 

Figure 2.12 BSC equivalent model for stream cipher 

The BNS sequence of peP j == )1(  which determines the correlation between jz  and ja  has been 

replaced by a Binary Symmetric Channel (BSC) with an error probability of p . 

aj zj
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CHAPTER 3 CORRELATION ATTACKS 

3.1 Introduction 

The correlation attack is a divide-and-conquer attack. The goal with this attack is the finding of the 

initial condition of a targeted LFSR in the stream cipher model presented in section 2.3. To do this a 

test LFSR, identical to the LFSR under attack is introduced to the simplified model of a stream cipher 

system presented in Figure 2.10. For the attack, the Test LFSR is stepped through all 12 −l non-zero 

initial states, and the output is XOR-ed with the output of the stream cipher model, as shown below. 

 

 

 

 

 

 

 

 

Figure 3.1 Model for the attack 

The amount of correlation between the LFSR-sequence and the ciphertext can be adjusted, by 

changing the probability )1( == jePp of the BNS emitting a 1. A high level of correlation implies 

that only very few 1’s are injected into the LFSR output sequence by the BNS. In general, the output 

sequence )( jy of the model will appear to be ”random”, since it is the XOR of two out of phase pn-

sequences, the number of 0s and 1s in the sequence being roughly equal. However, when the Test 

LFSR is initialized with the correct initial state (identical to the initial state of the LFSR under 

attack), the output sequence )( jy will be unbalanced, consisting mainly of long runs of 0’s, 

interspersed with a few 1’s. Two new methods are introduced for identifying this unbalanced binary 

sequence from all other ”random”-looking sequences. Two new binary discriminators, based on the 

Lempel-Ziv sequence complexity, and the Binary Derivative combined with the runs test, are 

introduced. 

yj 

xj 

LFSR 

BNS 

zj aj 
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For the practical application of the attacks, it is important to estimate the number of ciphertext bits 

that are required for the attacks to be successful. In a practical situation it is very unlikely that high 

levels of correlation will occur between the ciphertext and any internal LFSR. Realistic correlation 

levels that may be encountered in practice will lie in the range 60.052.0 ≤≤ q . Such fairly low 

correlation levels imply that the output sequence of this model will be a very “noisy” version of the 

LFSR sequence )( ja under attack. 

3.2 Lempel-Ziv Complexity of a Binary Sequence 

The Lempel-Ziv (L-Z) algorithm forms the basis of one the most useful and versatile universal, 

noiseless, data compression algorithms [11]. It is a dictionary-type parsing algorithm that parses a 

given sequence of digits into consecutive, non-overlapping phrases or codewords. The number of 

parsed phrases, m _, serves as a measure of complexity and is commonly referred to as the Lempel-Ziv 

complexity. The L-Z parsing process may be briefly summarized as follows: 

• Search through all parsed codewords for a matching word. Determine the longest possible 

matching word that serves as the prefix. 

• Extend the selected prefix by one new bit from the sequence, i.e. by a suffix, and mark the 

resulting codeword with a comma. Continue until all the bits in the given sequence have been 

parsed. 

 

The codewords in the parsed sequence are all unique. The L-Z complexity of the sequence is 

determined by counting the number of parsed words. 

 

3.2.1 Example: 

Given the binary sequence: 

110010010110100110010110 . 

LZ-parsing gives: 

.0,0110,101,0101,010,011,01,10,1,0  
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The sequence is parsed into m codewords, where the last codeword is incomplete. The corresponding 

codebook entries may be tabulated as follows: 

1: 0 6: 010 
2: 1 7: 0101 
3: 10 8: 101 
4: 01 9: 0110 
5: 011 10: 0. 

 

The suffixes are shown in bold print. Note that the prefix of each word corresponds to a previously 

occurring codeword. Gilbert et al have derived exact analytical results for the LZ-parsing of binary 

sequences [12]. Based on their results, it is possible to use the L-Z algorithm to discriminate between 

random and deterministic binary sequences.  

 

The searching for the longest possible matching word in the list of all parsed codewords can be a time 

consuming task. When adding the fact that this needs to be done for each bit parsed in the input string 

the need arises to speed up this process. Using a hash-table it possible to determine in a single 

operation whether a codeword is contained in the list or not. This is approached as follows: The 

codeword is considered as an index into an array of Booleans. If true, the codeword is already 

contained in the list, if false it is not. The obvious problem with this approach is the fact that although 

any codeword starting with a ‘1’ is unique however considering the following two codewords: 0001  

and 001 . Although these are completely different codewords both point to the same index in the 

hash-table. This can be easily resolved by keeping two separate hash-tables, one for code words 

starting with a ‘1’ and a different one for codewords starting with ‘ 0 ’. To find an entry in the hash-

table containing codewords starting with ‘ 0 ’ codeword to be looked up is inverted, thus 0001  

becomes 1110  and 001  becomes 110 . These inverted codewords do provide unique index positions 

in the hash-table for codewords starting with ‘ 0 ’. 

 

This approach works well with random sequences as the size of the codeword grows slowly. When 

working with non-random sequences a simple mind experiment can show that the memory 

requirement for hash-table would be to big. Consider the sequence .111,111111,11111,1111,111,11,1  

which is the same length as the one used before. The codewords for this sequence are shown below. It 

is clear from these results that a hash-table approach would not work as the value of the codeword 

grows exponentially with each bit parsed, thus quickly using up the available memory. 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  BBrruuwweerr,,  CC  SS    ((22000055))  



Chapter 3 Correlation Attacks

 

Electrical,  Electronic and Computer Engineering 31
 

1: 1 6: 111111 
2: 11 7: 111. 
3: 111   
4: 1111   
5: 11111   

 

However, as one is working with random pn-sequences and using the Lempel-Ziv attack on LFSRs, 

which are in the size ranges were a codeword is unlikely to exceed the memory available to the 

cryptanalysist, this does not present a problem. 

 

For the special case of equi-probable binary sequences, the required average length ][ mxE of a binary 

sequence that has been parsed into codewords, is given by the following recursion [12] in (3.1):  

][
2
1][ 1

0

1

−
=

−

∑ 













+= k

m

k

m

m xE
k
m

mxE  (3.1) 

with 1][ 1 =xE and 0][ =mxE for 1<m   

_ 

The second moment ][ 2
mxE is recursively given by  

( ) ][2][][][
2
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11
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1
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m xEmmxExExE
k
mxE ⋅+−
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= ∑

=
−−−−

−

 (3.2) 

starting with 0][ 2
0 =xE  and 1][ 2

1 =xE . The standard deviation mσ is obtained as the square root of 

the variance 22 ][][ mm xExE − . In Table 1 selected values are shown for the number of parsed words 

m  and the corresponding average sequence length and standard deviation. These values can be used 

to discriminate between random and deterministic binary sequences.  
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Figure 3.2 and Figure 3.3 present graphs of ][ mxE  and σ  for 100000 ≤≤ m . The exact values can 

be found in Appendix A. The calculation of ][ mxE  and ][ 2
mxE  present a challenge in determining as 

the complexity grows directly proportional to 2m . Further it can be seen that the factor 
1

2
1 −









m

 

becomes minute as m grows while 
!

))1(()2()1(
k

kmmmm
k
m −−−⋅−⋅=






 L
 is huge for certain 

values of k  as m grows. It is very easy to loose resolution of these values while calculating and 

special care needs to be taken to continually use the factor 
1

2
1 −









m

 to scale 







k
m

 as it is not feasible 

to calculate these two factors separately and only then multiply them with each other. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 ][ mxE  as a function of m for 100000 ≤≤ m  
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Figure 3.3 σ  as a function of m  for 100000 ≤≤ m  

3.3 Binary Derivative with Runs Test 

3.3.1 Binary Derivative of Sequence 

The binary derivative has been proposed as a test for a binary sequence, to determine if it is random or 

deterministic [13]. Consider the following binary sequence of length 16=n : 0101011000100011 . 

The binary derivative of the sequence is obtained by computing the XOR of each pair of adjacent bits 

in the sequence. The derivation process can be repeated recursively any number of times. The initial 

sequence, as well as the first four derivatives, is shown below. Note also that the sequence length of 

each derivative is one less than its preceding sequence. The index k denotes the thk −  derivative, 

with 0=k for the initial sequence. 

 

The binary derivative can be rapidly computed by creating a copy of the sequence that is shifted 1 bit 

to the right and then XOR-ing these two sequences. This can be done very efficiently by using, for 

example, 32-bit unsigned integers, without the need for bit-operations. Note also, that if the initial 

sequence is truly random, all subsequent derivatives will also be random. 
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00000111010101:2
111111010011001:1
1010101100010001:0
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=
=

k
k
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k
k

 

 

Several complexity measures based on the binary derivative have been suggested, to test the 

randomness properties of a binary sequence as shown in [13],[14],[15] and [16]. These measures 

comprise the counting of the number of 1’s or 0’s in a derivative sequence, and then determine the 

maximum and minimum values thereof. The investigations in this dissertation have shown that these 

measures are inadequate for the purpose of cryptanalysis considered here. Therefore, a new 

complexity measure is introduced, based on the distribution of runs in a binary sequence. 

3.3.2 Runs in a Binary Sequence 

Consider a binary sequence of 16=n values: 0101011000100011 . A run is defined as a sequence of 

identical observations that is preceded and followed by a different observation, or no observation at 

all. In this example there are 11=r  runs in the sequence. 

 

The number of runs that occur in a sequence gives an indication of the randomness properties of the 

sequence. Specifically, if the sequence may be regarded as random, then the number of runs r in the 

sequence is approximately normal distributed, with the mean value given by equation (3.3): 

12][ 01 +=
n
nnrE  (3.3) 

Where 1n  is the number of runs in the sequence consisting of 1’s, and 0n the number of runs 

consisting of 0’s. For the special case when the sequence is truly random, it follows that 

2/10 nnn == , and the expected number of runs is given by 

1
2

][ += nrE  (3.4) 

The expected number of runs of a binary sequence can be applied as a non-parametric test, to 

evaluate the randomness properties of the sequence [17],[18]. 
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Counting the number of runs in a sequence is a time consuming exercise. To speed this process up a 

trade-off of processing power versus memory usage is once again used. Instead of looking at two 

adjacent bits, a hash table is setup for the number of runs contained in a word. The size of the word 

depends on the amount of memory that is available. It makes sense to use words sizes inherent in the 

addressing of the computer architecture being used, typically either an 8-, 16-, 32- or 64-bit words. In 

this implementation a word-size of 16 bits was used (unsigned short). Thus the number of runs in 

every number contained in a 16-bit word was calculated and entered in the corresponding index 

position of the array. All that remains to be done is to compare the last bit of one word and the first bit 

of the next word to see if the next word is also the start of a new run.  

3.3.2.1 Example 

Consider the sequence 00000000111000001111111111001111 . This sequence has 4 runs. 

When using the hash-table method one works as follows: 

• runs = ArrayOfAllPossibleRunsIn16BitWord[ 1111111111001111 ]  

thus: 3=runs   

(the entry ArrayOfAllPossibleRunsIn16BitWord[ 1111111111001111 ] was calculated 

once before beginning the attack, as were all other possible index positions for 0 to 65535) 

• Compare bit 15 of first word with bit 0 following word. If they mach one knows the last run 

in the first word continues in the second word. In this case they mach:  

runs += ArrayOfAllPossibleRunsIn16BitWord[ 0000000011100000 ] – 1 

thus: 123 −+=runs  

 

Now consider the sequence 11111111000111111111111111001111 . This sequence has 5 

runs. Again using the hash table: 

• runs = ArrayOfAllPossibleRunsIn16BitWord[ 1111111111001111 ]  

thus: 3=runs  

• If bit 15 of first word and bit 0 following word do not match as is now the case one gets: 

runs += ArrayOfAllPossibleRunsIn16BitWord[ 1111111111001111 ] 

thus: 23 +=runs  
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When using this approach the amount of effort for determining the number of runs in a sequence is 

reduced by a factor of 16 when using a word size of 16. Using hash tables of word-size 32-bits would 

further reduce the complexity although it has to be remembered that the effort is further reduced only 

by a factor of 2 while the memory used for the hash-table grows from 65536 bytes to 4294967296 

bytes, hardly worth the gain. 

3.3.3 Goodness-Of-Fit Run Test 

In this section a new non-parametric randomness test is proposed for binary sequences, by combining 

the Binary Derivative with the runs test. The aim of this test is to discriminate between random and 

deterministic binary sequences.  

Let kr  denote the number of runs in the thk −  binary derivative. The expected number of runs for 

the thk −  derivative is given by  

1
2

+=
k

k
e

nr  (3.5) 

where kn is the sequence length of the thk −  derivative. Let kr0  denote the observed number of runs 

of the thk −  derivative. Next the 2χ goodness-of-fit test is applied to test the hypothesis that a given 

sequence is random, if the observed number of runs closely follows the (theoretical) expected number 

of runs. Thus the 2χ -value for a total of K  binary derivatives is calculated as follows: 

∑
=

−=
K

k
k

e

k
e

k

r
rr

0

2
02 )(χ  (3.6) 

 
For each derivate, the difference between the observed and expected number of runs is determined, 

then the difference is squared and summed. The resulting 2χ -value is approximately normal 

distributed, with K  degrees of freedom.  

 

Based on this discussion, the 2χ  goodness-of-fit run test leads to the following algorithm. 

3.3.3.1 Algorithm D: 2χ Goodness-Of-Fit Run Test 

(1) Initialize: Set the derivative counter 0=k . 
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(2) Count runs: Determine kr0 , the observed number of runs in the thk −  derivative of the 

given sequence. 

(3) Compute 2χ : Compute the 2χ -value for the thk −  derivative  

∑
=

−=
K

k
k

e

k
e

k

r
rr

0

2
02 )(χ   

(4) Binary derivative: Differentiate the sequence, and obtain the next derivative. 

(5) Loop: Set 1+= kk . Return to Step 2. Continue until a total of k derivatives have been 

tested. 

(6) Sum 2χ : Sum the K  2χ  values. 

(7) Compare 2χ : Choose a confidence level α and compare the computed 2χ  value to the 

theoretical limits that can be found in [19]. If the 2χ value is less than the limit, conclude that 

the given binary sequence is random. Else the sequence is classed as deterministic. 
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3.4 Experimental Results 

3.4.1 Lempel-Ziv Attack 

In Figure 3.4 experimental results are shown where the Lempel-Ziv algorithm is used to test the 

output of the model shown in Figure 3.1. The probability )1(Pp = of the BNS was set to 47.0=p  

and the Lempel-Ziv algorithm was set to parse 1000=m  codewords. The Test LFSR was stepped 

sequentially through all possible initial states. As can be seen from Figure 3.4, the correct initial state 

is clearly recognizable as a peak in the otherwise noisy parsed sequence. The lower horizontal line in 

Figure 3.4 depicts ][ 2470xE while the upper horizontal line depicts mmxE σ⋅+ 4][ .  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Parsing with different initial states ( 2470=m , 47.0=p ) 
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Any peak exceeding the upper horizontal line can safely be considered the correct initial condition, as 

is the case for relative initial condition 22 in Figure 3.4 above [19]. Figure 3.5 shows the number of 

ciphertext bits that are needed for correlation values in the range 48.040.0 ≤≤ p  where the peak of 

the correct initial condition fulfills the criteria or exceeding mmxE σ⋅+ 4][ . Note that there is an 

exponential increase in the number of ciphertext bits, as the correlation between ciphertext and an 

internal LFSR decreases. The exact values are can be found in Appendix B. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Required ciphertext bits for L-Z attack 
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3.4.2 Binary Derivative and Runs Attack 

Figure 3.6 shows the results of the Binary Derivative, combined with the run test, with the probability 

)1(Pp =  of the BNS set to 45.0=p . The peak, corresponding to the correct initial state of the Test 

LFSR, is clearly identifiable. 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 Illustration of Binary Derivative attack ( 45.0=p , 15=K , 8000=bits ) 

For the practical application of this attack, two parameters need to be investigated; the number of 

binary derivatives K  and the number of required ciphertext bits.  
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In  Figure 3.7 experimental results for 47.04.0 ≤≤ p  are shown for various derivatives in the range 

250 <≤ K . The results indicate that a trade-off exists between the number of derivatives and the 

required number of ciphertext bits needed for the attack to succeed.  
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Figure 3.7 Binary Derivative attack as for 47.04.0 ≤≤ p  

The exact values of the data acquired from simulation results for Figure 3.7 are listed in Appendix C. 
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As the number of available ciphertext bits increases (as can be seen in Figure 3.7), there is an 

exponential decrease in the number of derivatives that need to be computed. This observation may be 

of considerable importance in a practical situation where an attacker has a limited number of 

ciphertext bits available. This can also be clearly observed in Figure 3.7 that the correct initial 

condition can be obtained for a certain p  by using fewer bits but more derivatives K . 

 

A similar result can be seen in Figure 3.7 when looking at the relation between K  and p  for constant 

amounts of available ciphertext. Higher values of p can still be broken when having the same amount 

of bits available by increasing K .  The fewer bits are available, the bigger K  needs to be. It must be 

noted however that this procedure cannot be continued indefinitely. Although it has been observed 

that the correct initial condition could be retrieved when using values of K  as big as 60, this could 

not be reliably repeated. Experimental data would seem to indicate that using values of K  in excess 

of 25 have little or no benefit. 

3.5 Discussion 

Two new correlation attacks on stream ciphers have been introduced. The first attack utilizes the 

Lempel-Ziv complexity measure of a binary sequence. The second attack is based on the Binary 

Derivative of a sequence, combined with the runs test.  

 

Both attacks give very good results, and are able to recover the unknown initial states of a LFSR-

based stream cipher, even if a very small correlation of 52.0=q  occurs between the observed 

ciphertext and an internal register of the stream cipher. Experimental results indicate that 

approximately 60000 ciphertext bits are required for these attacks to succeed in the case of 52.0=q . 

 

The memory requirements of the Binary Derivative attack are substantially lower than the Lempel-Ziv 

attack. This makes the former attack suitable for stream ciphers with longer component LFSRs. 

Furthermore, it is possible to reduce the computational complexity of both attacks by making use of 

decimation techniques to reduce the total number of LFSR-states that have to tested.  
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CHAPTER 4 FAST CORRELATION ATTACK 

4.1 Introduction 

The obvious problem with the exhaustive approach (used by the correlation attacks in the previous 

chapter) of finding the correct initial condition of one of the LFSRs is the fact that a LFSR of size l 

has 12 −l  non-zero initial conditions. By increasing l>40 it becomes virtually impossible to find the 

correct initial state by exhaustively searching for the correct key. 

 

The fast correlation attack, like the correlation attacks described in the previous chapters, is a divide 

and conquer attack. The model (presented in section 2.3) used for fast correlation attacks was shown 

in Figure 2.12 and is repeated in Figure 4.1 below for convenience. 

 

 

 

 

 

Figure 4.1 BSC equivalent model for a correlation attack 

Fast correlation attacks, as described by [3], are based on the same principle used by convolutional 

codes for correcting errors occurring during transmission of data over a noisy channel. This approach 

is possible due to the fact that one can identify an embedded low-rate convolutional code in the pn-

sequence generated by the LFSR. The embedded convolutional code can then be decoded with low 

complexity using the Viterbi algorithm. The Viterbi algorithm was chosen for this dissertation as it is 

one of the most well-known and widely used decoding algorithms for convolutional codes. 

 

All algorithms for fast correlation attacks operate in two phases: In the first phase the algorithms find 

a set of suitable parity check equations based on the feedback taps from the LFSR, in this case from 

the LFSR’s equivalent block code. The second phase uses these parity check equations in a fast 

decoding algorithm to recover the transmitted codeword and thus the initial state of the LFSR.  
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The following aspects are covered in this chapter: 

• A review is presented of the theory required by the different elements used for this attack.  

• The Viterbi algorithm is introduced using a small example. 

• Simulation results are presented and discussed.  

4.2 Review of Coding Theory 

4.2.1 Convolutional Codes 

Convolutional codes are codes where redundancy is introduced into a data stream through the use of a 

linear shift register [20].  Most codes for computer systems are over )2(GF and )2( bGF . This 

dissertation will only concentrate on binary codes over )2(GF . 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Rate 1/2 linear convolutional encoder 
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Figure 4.2 shows a typical rate-1/2 linear convolutional encoder. The rate of this encoder is 

established by the fact that the encoder outputs two bits for every input bit. In general, an encoder 

with k inputs and n outputs is said to have a rate of
0

0

k
nR = . With each successive input to the shift 

register, the values of the memory elements are tapped off and added according to a fixed patter, 

creating a pair of output coded date streams, ...),,( )0(
2

)0(
1

)0(
0

)0( yyyy =  and ...),,( )1(
2

)1(
1

)1(
0

)1( yyyy = . 

These output streams can be multiplexed to create a single coded data stream 

...),,,,,( )1(
2

)0(
2

)1(
1

)0(
1

)1(
0

)0(
0 yyyyyyy =  where y is the convolutional code word. The infinite set of all 

infinitely long codewords that one obtains by exciting this encoder with every possible input sequence 

is called an ),( 00 kn  tree code [21], pp 348-350. 

 

The constraint length v of a convolutional code is the maximum number of bits in a single output 

stream that can be affected by any input bit. Although different definitions exist, for this text the 

constraint length is defined by 0mkv = For convolutional encoders with a single input stream the 

constraint length v will thus always be equal to the length of the shift register [21], pp 348-350. 

 

There are several other length measures for a tree code. Let  0)1( kmk ⋅+= . This k is closely related 

to the constraint length and is called the word length of a convolutional code. The corresponding 

measure after encoding is called the blocklength n given by [21], pp 348-350:  

0

0
0)1(

k
nknmn ⋅=+=  (4.1) 

The convolutional encoder in Figure 4.2 for instance, has 4,3,2,1 00 ==== kvnk  and 8=n . An 

),( 00 kn  tree code is linear, time invariant, and has finite wordlength 0)1( kmk ⋅+=  and is called an 

),( kn  systematic convolutional code [21], pp 361-364. This means one can refer to the same code as 

an ),( 00 kn  tree code or as an ),( kn  convolutional code. Generally k is significantly larger than 0k  

which should avoid confusion. 
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4.2.1.1 Polynomial Description of Convolutional Codes 

An ))1(,)1(( 00 kmnm ++ convolutional code with constraint length 0mkv =  can be encoded by 

0n sets of finite impulse response (FIR) filters, each set consisting of 0k FIR filters [21], pp 348-350. 

The input to the decoder is a stream of symbols with a rate of 0k symbols per unit time and the output 

to the channel is a stream of 0n  symbols per unit time.  

 

 

 

 

 

 

 

 

Figure 4.3 A convolutional encoder 

Each FIR filter can be represented by a polynomial of degree of at most m. If the input stream is 

written as a polynomial (possibly of infinite length) the operation of the filter can be written as 

polynomial multiplication. In this way, the encoder for the convolutional code can be represented by a 

set of polynomials, and thus the code itself can also be represented by this same set of polynomials. 

That is, the set of codewords that this set of polynomials will produce. These polynomials are called 

the generator polynomials of the code.  

 

In contrast to block codes, which are described by a single generator polynomial, a convolutional code 

requires multiple generator polynomials to describe it, a total of 00 nk ⋅  polynomials. These can be put 

together in a generator-polynomial matrix, a 0k  by 0n  matrix of polynomials given by: 

)]([)( , xgxG ji=  (4.2) 

For example the matrices of generator polynomials for the encoder in Figure 4.2 is given by: 

)](),([)( 1,21,1 xgxgxG =  (4.3) 

1 Bit 

5 Bits per unit FIR 

FIR 

FIR 

FIR 

FIR 
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with  

1)( 23
1,1 ++= xxxg  (4.4) 

and  

1)( 3
1,2 ++= xxxg  (4.5) 

Thus  

]1,1[)( 323 ++++= xxxxxG  (4.6) 

As the output of the convolutional encoder interleaves the two output streams from the two FIR filters 

the generator matrix can also be shown as: 

]...[)( 1,21,11,21,11,21,1 1100 mm
ggggggxG =  (4.7) 

]11011011[)( =xG  (4.8) 

or for 1)( 23
1,1 ++= xxxg  and 3

1,2 )( xxg =  one gets 

]11010001[)( =xG  (4.9) 
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4.2.1.2 Matrix Description of Convolutional Codes 

A convolutional code consists of an infinite number of infinitely long codewords. It is linear and can 

be described by an infinite generator matrix. A large number of generator matrices can be used to 

describe each code, but only a few of them are convenient to deal with. Even in the best case, a 

generator matrix for a convolutional code is more cumbersome than a generator matrix for a block 

code [21], pp 361-364.  

 

Figure 4.4 A general convolutional encoder (without feedback) 

The generator polynomials, indexed by i  and j , can be written 

∑=
l

l
ijlij xgxg )(  (4.10) 

For each l , let lG  be the 0k by 0n  matrix ][ ijll gG =  

Then the code of blocklength n is 
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where each 0 is a 0k by 0n  matrix of zeros. The generator matrix for the convolutional code is 

u t-1 u t-2 u t-m  u t 

G0 G1 Gm 

+ ++
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where the matrix continues indefinitely down and to the right. Equation  (4.12) depicts such a a bi-

infinite systematic convolutional encoder. Except for the diagonal band of m non-zero submatrices, all 

other entries are equal to zero. For a systematic convolutional code, these two matrices can also be 

written as: 
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where the pattern is repeated, right-shifted in every row, and unspecified matrix entries to the left and 

right are filled with zeros. Here I is a 0k by 0n  identity matrix, 0 is a 0k by 0n  matrix of zeros and 

mPP ,...,0  are 0k by )( 00 kn −  matrices. The first row describes the encoding of the first information 

frame into the first m codeword frames. One should interpret this matrix expression in terms of the 

shift-register description of the encoder. 

 

If the data symbols 110 ,...,, −kddd  of every message d are unchanged and appear in the codeword 

),...,( 1−= no uuu , then the code is said to be a systematic code [22]. The generator matrix G in 

equation (4.15) is in its systematic form.  
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 (4.15) 

The parity equations P  introduce redundancy to the data being transmitted based on relations 

between various data symbols. A decoder of a convolutional code (refer to section 4.2.5 - The Viterbi 

Decoding Algorithm) exploits this redundancy to correct errors that occurred during transmission. A 

big part of fast convolutional attacks on stream ciphers is the finding of suitable parity equations 

within the equivalent block-code description of the LFSR. 

 

4.2.2 Converting a LFSR to a Block Code 

There is a corresponding Nl ×  generator matrix LFSRG  which produces the same output as a LFSR, 

namely LFSRGuU 0=  where 0u  is the initial stare of the LFSR. A LFSR of length l  has a set of 

possible LFSR code vectors nU  denoted by L  [3]. Clearly lL 2=  and for a fixed length N the 

truncated sequences from L is also a linear [ ]lN ,  block code referred to as C . It can easily be seen 

that for any code vector, all its cyclic shifts are also in L  [22]. Using l  linearly independent code 

vectors or LFSR output sequences nU  from L  (which is the also the maximum amount of linearly 

independent vectors in L ) the equivalent linear [ ]lN ,  block code is be obtained: 
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 (4.16) 

The matrix is now transformed to its systematic form to 
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000

010
001

C  (4.17) 

A lot of effort can be saved by choosing the starting value for each LFSR sequence or code vector 

nU as required for C  in its reduced form. Thus for a LFSR of size l  choose starting values:  
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 (4.18) 

Thus the first code vector is obtained by using the starting value ]001[][ 10 LL =luuu  

etc. 

4.2.2.1 Example of Converting a LFSR to a Block Code. 

The feedback taps of a LFSR are often specified using the polynomial representation. Consider a 

length 8 LFSR, with feedback polynomial 

1)( 3568 ++++= xxxxxg  (4.19) 

Initially presented in section 2.2.1 and repeated here for convenience, the polynomial representation 

can be easily converted to a recurrence relation representation, which can be more easily mapped to 

the hardware representation of a LFSR. Setting 0)( =xg  gives: 

10 3568 ++++= xxxx  (4.20) 

Multiplying by nx  produces: 

nnnnn xxxxx ++++= ++++ 35680  (4.21) 

Multiply by 8−x then gives: 

85320 −−−− ++++= nnnnn xxxxx  (4.22) 

Now replacing nx  with na  results in: 

85320 −−−− ++++= nnnnn aaaaa  (4.23) 

As these all are GF(2) or modulo 2 operations nn aa −= ; thus 

2358 −−−− +++= nnnnn aaaaa  (4.24) 

which represents the LFSR shown in Figure 4.5 below. 
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Figure 4.5 LFSR of size 8 

Using the starting values  

0,0,0,0,0,0,0,1 12345678 ======== −−−−−−−− nnnnnnnn aaaaaaaa  (4.25) 

one obtains  

[ ]L000000010 =U  (4.26) 

Similarly using the starting value 

0,0,0,0,0,0,1,0 12345678 ======== −−−−−−−− nnnnnnnn aaaaaaaa  (4.27) 

to obtain  

[ ]L000000101 =U  (4.28) 

Continuing along the same lines gives 

[ ]L000001002 =U  (4.29) 

[ ]L000010003 =U  (4.30) 

[ ]L000100004 =U  (4.31) 

[ ]L001000005 =U  (4.32) 

[ ]L010000006 =U  (4.33) 

[ ]L100000007 =U  (4.34) 

Which results in ],[ lN  = ]8,27[  block code shown below. Obviously N  can be made any size by 

using a longer code vector obtained from the LFSR output. 

a n-7 a n-6 a n-5 a n-8 a n-3 a n-2 a n-1 a n-4 ,.....,, 210 uuu
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  1 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 0 
  0 1 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 
  0 0 1 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 

0 0 0 1 0 0 0 0 1 0 1 0 1 0 1 0 0 0 1 1 0 0 0 1 1 1 1 =LFSRG
0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 1 0 0 0 1 1 0 0 0 1 1 1 

  0 0 0 0 0 1 0 0 1 0 0 1 0 1 1 1 0 0 0 0 1 1 0 1 1 0 1 
  0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0 
  0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 0 0 

 

 (4.35) 

The same result can be achieved by using any initial values to obtain arbitrary code vectors nU . The 

Gauss-Jordan reduction method can then be used to obtain the same ],[ lN  block code C . 

4.2.3 Finding Parity Equations within a Block Code 

The finding of parity equations [3] in a block code is explained in this section using the equivalent 

block code obtained for a LFSR as derived in the previous section (section 4.2.2). The generator 

matrix for a block code is written in its systematic form,  

[ ]ZIG lLFSR =  (4.36) 

which is already the case when using the method described in the previous section (section 4.2.3) used 

to derive an equivalent block code from a LFSR. 

 

To find these equations one can start by considering the index position 1+= Bn  and introducing the 

following notation for the generator matrix [3], 









=

+−+−

++

)1()1(

11

0 BlBl

BB
LFSR Z

ZI
G  (4.37) 
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The parameter l  is the size of the LFSR and B is a design parameter, which will later be shown 

to be the size of the convolutional encoder that is in the process of being constructed. Using 

equation (4.35) as an example and choosing 4=B , the form described by equation (4.37) is 

easily understood: 

 

 

  1 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 0 
  0 1 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 
  0 0 1 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 

0 0 0 1 0 0 0 0 1 0 1 0 1 0 1 0 0 0 1 1 0 0 0 1 1 1 1 =LFSRG
0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 1 0 0 0 1 1 0 0 0 1 1 1 

  0 0 0 0 0 1 0 0 1 0 0 1 0 1 1 1 0 0 0 0 1 1 0 1 1 0 1 
  0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0 
  0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 0 0 

 

 (4.38) 

The aim is to find all parity check equations in LFSRG that involve a current symbol nu , an arbitrary 

linear combination of the b previous symbols Bnn uu −− ,...,1 , together with at most t  other symbols. 

For simplicities sake only 2=t  is considered, as shown below: 

0

0
0

2211

2222112

1221111

22

11

=++⋅++⋅+⋅+

=++⋅++⋅+⋅+
=++⋅++⋅+⋅+

++−−−

++−−−

++−−−

mm jninBnBmnmnmn

jninBnBnnn

jninBnBnnn

uuucucucu

uuucucucu
uuucucucu

L

M

L

L

 (4.39) 

Thus one tries to find the index positions i and j  together with the linear combination of 

1010,10 2211 ====== BB corccorccorc L  that satisfy each of the 

equation above. 

The column vectors in LFSRG  are numbered as follows: 

[ ])1(11 +−+= BNBLFSR ggIG L  (4.40) 

or  

[ ])1(10)1( +−−−−= BNBBLFSR gggggG LL  (4.41) 

B+1 

)1( +− Bl

l
1+B
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The parameter B , in the equations above, is a design parameter chosen by the user, which will 

determine the size of the convolutional decoder to be constructed. To find parity equations in LFSRG  

one wants to find the columns that satisfy an equation in equation (4.42): 

0011)1()1(

v
L =+++⋅++⋅+⋅ −−−−− jiBBBB ggggcgcgc  (4.42) 

The column pairs ji gg ,  need to satisfy the following: 














∗∗∗=+

+− 48476
L

48476 )1(

0,,0,0,1,,...,,][
BlB

T
ji gg  (4.43) 

As a column pair satisfying equation (4.43) with index positions i  and j  has now been found, all that 

remains to be done is the trivial job of determining Bcc L1  to determine the column vectors Bg−  to 

1−g which will be used in equation (4.42). Terms where 0=yc , with y being any arbitrary index 

position, are omitted.  

4.2.3.1 Example for Finding Parity Equations in a Block Code 

Equation (4.38) will now be used as an example with B  chosen as 4=B . Column pairs in the 

)1( +− BlZ part need to be found which, when added together, form the zero column vector )1(0 +− Bl . 

Using the requirements set by equation (4.43) all pairs of columns ji gg ,  are found such that  

}












∗∗∗∗=+

34

0,0,0,1,,,,][
876

T
ji gg  (4.44) 
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n+
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n+

19
 

n+
20

 
n+

21
 

n+
22

 

  1 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 0
  0 1 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1
  0 0 1 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1

0 0 0 1 0 0 0 0 1 0 1 0 1 0 1 0 0 0 1 1 0 0 0 1 1 1 1=LFSRG
0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 1 0 0 0 1 1 0 0 0 1 1 1

  0 0 0 0 0 1 0 0 1 0 0 1 0 1 1 1 0 0 0 0 1 1 0 1 1 0 1
  0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0
  0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 0 0

 

 (4.45) 

Assigning the index values as above to LFSRG , the following eight column pairs in equation (4.38) to 

satisfy equation (4.44) are found:  

 

Table 4.1 Finding parity equations in equation (4.38) 

Columns 

1g  16g  

4g  9g  

5g  6g  

7g  10g  

9g  17g  

12g  15g  

13g  15g  

14g  15g  

 

Vectors 4g  and 9g  in Table 4.1 above will now be used to illustrate how the column vectors that 

were found to satisfy equation (4.44) are used to construct a parity equation. It can be seen that 
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94 gg  (4.46) 

satisfies equation (4.44). 

The columns with indexes 0LB−  that satisfy equation (4.42) now need to be found: 
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1
0

][ 940123 gggggg  (4.47) 

Which results in the parity equation 

094123 =+++++ ++−−− nnnnnn uuuuuu  (4.48) 

Re-writing the above gives: 

094321 =+++++ ++−−− nnnnnn uuuuuu  (4.49) 

Applying the same process to the other column pairs found in Table 4.1 provides: 

 

Table 4.2 Parity equations found in GLFSR, equation (4.38), with B=4 

Equation no Columns Parity Equation 

1 1g  16g  0161 =++ ++ nnn uuu  

2 4g  9g  094321 =+++++ ++−−− nnnnnn uuuuuu  
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Equation no Columns Parity Equation 

3 5g  6g  0654321 =++++++ ++−−−− nnnnnnn uuuuuuu

4 7g  10g  0107421 =+++++ ++−−− nnnnnn uuuuuu  

5 9g  17g  0179432 =+++++ ++−−− nnnnnn uuuuuu  

6 12g  15g  01512431 =+++++ ++−−− nnnnnn uuuuuu  

7 13g  15g  01513321 =+++++ ++−−− nnnnnn uuuuuu  

8 14g  15g  015142 =+++ ++− nnnn uuuu  

 

4.2.3.2 Verifying a Parity Equation 

A quick check that can be used to verify a parity equation is the requirement that a parity-check 

polynomial )(xp must be divisible by the generator polynomial )(xg . 

( ) 0)(mod)( =xgxp  in )2(GF  (4.50) 

4.2.3.2.1 Example 

The parity equation 0161 =++ ++ nnn uuu  from Table 4.2 will be used as an example: 

Replacing n
n xu =  results in 

0161 =++ ++ nnn xxx  (4.51) 

Multiplying with nx−  produces 

01 16 =++ xx  (4.52) 

Thus resulting in the polynomial 

1)( 16 ++= xxxp  (4.53) 

The feedback polynomial for the LFSR in Figure 4.5 (used to generate LFSRG , equation (4.38)) was 

originally given in example (4.19) and is repeated here for convenience: 

1)( 3568 ++++= xxxxxg  (4.54) 
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All calculations are shown below for illustration purposes. Normally one would only be interested in 

the remainder and would not try to calculate the quotient. 

0
)1(

1
)(

1
)(

1
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1
)(

1
)(

1
)(

11
1
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345789
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xxxxxxx
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xxxxxx
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xxxxxxx

xxxxx
xxxxxx

xxxxx
xxxxx

xxxxx
xxxxxx
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(4.55) 

As can be seen from the calculations in equation (4.55) that the requirement set by equation (4.50) has 

been satisfied.  

4.2.3.3 The Expected Number of Parity Equations within a Block Code 

To find a parity equation one needs to find columns within LFSRG  where the sum of the two columns 

provides the following result T
Bl

ji gg ]001**[*
448476

L

−

=+ . As the rows of LFSRG  are PN-sequences 

(refer to section 4.2.2) the probability of two corresponding bits in two columns either providing 0  or 

1 as required is equal to 5.0 .  Thus the probability of finding any two columns that satisfy equation 

(4.43) is equal to Bl−5.0 . 

 

In a generator matrix, LFSRG  of dimensions Nl ×  there are N  columns to be compared with each 

other to find possible parity equations. When comparing N  different columns vectors with each 

other, this amounts to )1(
2
1 −⋅⋅ NN  comparisons. 
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When combining these two equations it is found that the amount of parity equations that can be 

expected to be found in a generator matrix, LFSRG  of dimensions Nl × , is given by equation (4.56) 

below for a certain value of B . Γ is chosen to be equal to the number of parity equations. 

eNNE
2
1)1(

2
1][ ⋅−⋅⋅=Γ  (4.56) 

where  

Ble −=  (4.57) 

 

The graph shown in Figure 4.6 below gives a graphical representation of equation (4.56) for various 

values of N  and e . Tables of the exact values are given in Appendix D.  

To simplify the presentation of Figure 4.6 the new parameter ( n ) in equation (4.58) below is 

introduced. N  is chosen to be equal to the number of columns to be searched. One can never search 

more columns than there are ciphertext bits available, thus N  is also equal to the minimum amount of 

required ciphertext bits. This is because of the fact that the parity equations are subsequently applied 

to the ciphertext to reconstruct the original LFSR output. Because of this there is no use in searching 

more columns within LFSRG  than there are available ciphertext bits as any parity equation containing 

an index larger than the number of ciphertext bits available, cannot be used. 

Nn 2log=  (4.58) 
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Figure 4.6 The expected number of parity equations to be found for selected values of e 

Figure 4.6 represent the number of equations one can expect to find for selected values of e, showing 

a general indication of the minimum required size of B ( Ble −= ) and the minimum amount of 

ciphertext that is required for finding sufficient parity equations. A number of reference tables 

showing the number of parity equations that can be found for 492 ≤≤ e are presented in Appendix 

D. It can be seen from Figure 4.6 that a trade-off exists between e and the amount of ciphertext 

required, thus by reducing e, less ciphertext is needed to find sufficient parity equations. For the case 

of 49=− Bl , to find any equations, one needs to search at least 262=N  columns, which amounts to 

at least 512≈  operations, a figure close to impossible. The search for parity equations can however be 

performed in parallel, potentially allowing this number of columns to be searched.  

4.2.4 Creating a Convolutional Encoder using Parity Equations 

The parity equations found in the previous section (4.2.3) are now used to create a bi-infinite 

systematic convolutional encoder. The generator matrix for such a code is in the form as shown in 

equation  (4.12) and repeated here for convenience.  
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Identifying the parity check equations from equation (4.39) with the descriptive form of the 

convolutional code as in equation  (4.12) gives [3] 
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 (4.60) 

Which results in a convolutional encoder with )1/(1 += mR . This is one more than the number of 

equations found. One of the prerequisites of equation (4.39) is the fact that 

1,,1,1,1 0020100 ==== mcccc L  which is why it is never explicitly shown. The extra equation is 

derived from 0=+ nn uu  and can be seen in the first column (Thus 

0,,0,0,0,1 030201000 ===== Bccccc L ). 
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4.2.4.1 Example for Using Parity Equations to Create a Convolutional Encoder 

Looking at the equations found in LFSRG  and shown in Table 4.2 it is seen that the parameters mic ..1  

were determined as follows (using the same order as the equations are shown in): 
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3837363534333231

2827262524232221

1817161514131211
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 (4.61) 

Which gives 
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110111100
011011100
111111111
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1

0

G
G
G
G
G

 (4.62) 

4.2.5 The Viterbi Decoding Algorithm 

The Viterbi algorithm is an asymptotical optimum algorithm for the decoding of convolutional codes 

in memoryless noise. The Viterbi algorithm is introduced here as a maximum likelihood decoding 

algorithm for convolutional codes.  

4.2.5.1 The Trellis Diagram 

A trellis diagram is an extension of a convolutional code’s state diagram that explicitly shows the 

passage of time [20]. The rate 1/3 encoder shown in Figure 4.7 has two memory cells, which results in 

the state diagram with four states as shown in Figure 4.8. 
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Figure 4.7 Encoder for a rate1/3 convolutional code 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 State diagram for encoder in Figure 4.7 
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In Figure 4.9 the state diagram is extended in time to form a trellis diagram. The branches of the 

trellis diagram are labelled with the output bits corresponding to the associated state transitions. The 

notation jk is used to identify the branch moving from state jS  to state kS  in the trellis. The 

corresponding output bits are denoted as ),,,( )1(,1,0, −= njkjkjkjk yyyy L . The convolutional code is 

time invariant, thus jky  is always the same.  

Figure 4.9 Trellis diagram for the encoder shown in Figure 4.7 

Every code word in a convolutional code is associated with a unique path, starting and stopping at 

state 0S , through the associated trellis diagram. The trellis structure enables certain useful 

observations to be made. A general ),( kn  binary convolutional encoder with total memory M and 

maximal memory order m will now be considered. The associated trellis diagram has M2  nodes at 

each stage, or time increment t. There are k2  branches leaving each node, one branch for each 

possible combination of input values. After time mt = , there are also k2  branches entering each 

node. It is assumed that after the input sequence has been entered into the encoder, m state transitions 

are necessary to return the encoder to state 0S . Given an input sequence of Lk ⋅  bits, the trellis 

diagram must have mL +  stages, the first and last stages starting and stopping respectively in state 

0S .  
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There are thus kL2  distinct paths through the general trellis, each corresponding to a convolutional 

code word of length )( mLn + . For example, the length-3 input sequence )011(=x  is shown in 

Figure 4.10 to correspond to a five-branch path associated with the 15)23(3 =+ -bit convolutional 

code word )110001000111000(=y . Note that all paths though the trellis intersect all 

other possible paths at one or more nodes. The Viterbi algorithm exploits this fact. 

Figure 4.10 Trellis diagram for the input )011(=x  to encoder shown in Figure 4.7 

The Viterbi decoder operates iteratively frame by frame, tracing a path through a trellis identical to 

that used by the encoder in an attempt to emulate the encoder’s behaviour [21], pp 348-350. At any 

frame time the encoder does not know which node the encoder reached and thus does not try to 

decode this node immediately. Given the received sequence, the decoder determines the most likely 

path to every node, and it also determines the distance called the discrepancy of the path. If all paths 

in the set of most likely paths begin in the same way, the decoder knows how the encoder began.  

 

Then in the next frame, the decoder determines the most likely path to each of the new nodes of that 

frame. But to get to any one of the new nodes the path must pass through one of the old nodes. One 

can get the candidate paths to a new node by extending to this new node each of the old paths that can 

be thus extended. The most likely path is found by adding the incremental discrepancy of each path 

extension to the discrepancy of the path to the old node. As already mentioned there are k2  such 

paths to each new node, and the path with the smallest discrepancy is the most likely path to the new 

node. In this case as already mentioned k  is always equal to 1 as one is always working with rate 
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)1/(1 +m  encoders. This means there are always two paths entering each node and two paths leaving 

each node. At the end of the iteration, the decoder knows the most likely path to each of the nodes in 

the new frame.  

 

When looking at the set of surviving paths to the set of nodes at the rth frame, one or more of the 

nodes at the first frame time will be crossed by these paths. If all of the paths cross through the same 

node at the first frame time, then regardless of which node the encoder visits at the rth frame time, 

one knows the most likely node it visited at the first frame time. That is, one knows the first 

information frame even though one has not yet made a decision for the r-th frame. 

 

To implement a Viterbi decoder, one must choose a decoding-window width b, usually several times 

as big as the blocklength. At frame time nt = , the decoder examines all surviving paths to see that 

they agree in the first branch. This branch defines a decoded information frame, which is passed out 

of the decoder. 

 

Now the decoder drops the first branch and takes in a new frame of the received word for the next 

iteration. If again all surviving paths pass through the same node of the oldest surviving frame, then 

this information frame is decoded. The process continues in this way, decoding frames indefinitely.  

4.2.5.2 The Viterbi Algorithm 

The node corresponding to state jS  at time t  is denoted tjS , . Each node in the trellis is to be 

assigned a value )( ,tjSV . The node values are computed as follows: 

(1) Set 0)( 0,0 =SV  and 0=t . 

(2) At time t , compute the partial path metrics for all paths entering each node. 

(3) Set )( ,tkSV  equal to the best partial path metric entering the node corresponding to state kS  

at time t . Ties can be broken by randomly choosing any one of the two. The non-surviving 

branches are deleted from the trellis. 

(4) If mLt +< , increment t  and return to step (2). 
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4.2.5.3 Calculating Path Metrics  

Each path in the trellis is assigned a metric [20]. The maximum likelihood (ML) decoder selects, by 

definition, the estimate y’ that maximizes the probability )'|( yrp . If the distribution of the source 

words is uniform, then the tow decoders are identical and can be related by Bayes’ rule: 

)()|()()|( rprypypyrp =  (4.63) 

A rate nk /  convolutional encoder takes k  input bits and generates n  output bits with each shift of 

its internal registers. Suppose that one has an input sequence x  composed of L  k -bit blocks. 

),,,,,,,,( )1(
1

)1(
1

)1(
1

)0(
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)1(
0

)1(
0

)0(
0

−
−

−−= k
L

kk xxxxxxxx LL  (4.64) 

The output sequence y will consist of L  n -bit blocks (one for each input block) as well as m  

additional blocks, where m  is the length of the longest shift register in the encoder. 
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A noise-corrupted version r  of the transmitted code word arrives at the receiver, where the decoder 

generates a maximum likelihood estimate 'y  of the transmitted sequence. r  and 'y  have the 

following form: 
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One assumes that the channel is memoryless meaning that the noise process affecting a given bit in 

the received word r  is independent of the noise process affecting all of the other received bits. Since 

the probability of joint independent events is simply the product of the probabilities of the individual 

events [20] it follows that: 

)]'|()'|()'|([)'|( 1)1(1)1(
1
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ii yrpyrpyrpyrp L  (4.68) 
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There are two sets of product indices, one corresponding to the block numbers (subscripts) and the 

other corresponding to bits within the blocks (superscripts). By taking the logarithm of each side of 

equation (4.69) one obtains the log likelihood function 
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In hardware implementations of the Viterbi decoder, the summands in equation (4.70) are usually 

converted to a more easily manipulated form called the bit-metrics 

( )( )byrpayrM j
i

j
i

j
i

i
i += )'|(log)'|( )()()(  (4.71) 

a  and b  are chosen such that the bit-metrics are small positive integers that can be easily 

manipulated by digital logic circuits. In this case the use of integers is preferred, as floating-point 

operations take significantly longer on a processor. The path metric for a code word 'y  is then 

computed as follows.  
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If the probability of bit-errors is independent of the value of the transmitted bit, then the channel is 

said to be a binary symmetric channel as shown in Figure 4.11. 

 

 

 

 

Figure 4.11 Binary symmetric channel model 

If a  and b  in equation (4.71) are set to ( ) ( )( ) 1
2 1loglog −−−= ppa  and ( )pb −−= 1log2 , the bit-

metrics are independent of the value of the crossover probability p . 
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For the BSC case, the path metric for a code word y  given a received word r  is simply the Hamming 

distance ),( yrd . The surviving paths are those paths with the minimum partial path metric at each 

node. 

 

However, setting ( ) ( )ppa 22 log1log −−=  and ( )pb 2log−=  the bit-metrics shown in equation 

(4.75) is produced. 
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 (4.75) 

4.2.5.4 Example 

The encoder in Figure 4.7 encodes the sequence )101011(=x , generating the code word 

)110111001111001001000111(=y . 

This codeword, y , is transmitted over a noisy binary symmetric channel and is received as 

)110111011111110001001101(=r , with the indicated bits having been 

corrupted. 

The bit-metrics as shown in equation (4.75) for calculating the partial path metrics to reconstruct the 

transmitted sequence will be used. All surviving paths are shown in bold print within the trellis 

diagrams (Figure 4.12 to Figure 4.19) shown in this section.  

 

 

 

 

 

 

 

 

Figure 4.12 Trellis diagram at time 1=t  
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The decoder always starts from state 0S  as it is known that this was the case on the encoder side. 

 

 

 

 

 

 

 

 

Figure 4.13 Trellis diagram at time 2=t  

 

 

 

 

 

 

 

 

 

 

Figure 4.14  Trellis diagram at time 3=t  

When using a using a n/1  rate encoder a maximum of one path may enter each node and a maximum 

of two paths may leave each node as can be seen for node 2,3S  in Figure 4.14 above.  
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Figure 4.15  Trellis diagram at time 4=t  

When using the path metrics as determined in equation (4.75) the path with the largest partial path 

metric is always chosen. Looking at Figure 4.15 the path from 3,1S to 4,3S  survives as it’s partial path 

metric is 7)( 4,3 =SV  while the partial path metric for the path going from 3,3S to 4,3S  would have 

been 5)( 4,3 =SV . 

Sometimes ties occur.  Looking at Figure 4.16 it can be seen that the partial path metric from 4,3S to 

5,3S  is 9)( 5,3 =SV , while the partial path metric from 4,1S to 5,3S  is also 9)( 5,3 =SV . The partial 

path that was chosen as shown was chosen randomly.  

 

 

 

 

 

 

   

 

 

Figure 4.16  Trellis diagram at time 5=t  
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Figure 4.17  Trellis diagram at time 6=t  

When inserting k  input bits into a rate 0/1 n  convolutional encoder, )(0 Lkn +⋅  output bits are 

received, where L  refers to the length of the LFSR. This means that the last L  steps in the encoding 

process only received 0 as input as the last state of a Viterbi encoder is always 0S . When decoding, 

knowing this, one does not have to bother about the paths in the trellis diagram that result from 

inputting 1 into the encoder. Looking at Figure 4.18 and Figure 4.19 it is seen that only the paths for 

inputting 0  into the decoder are considered. 

 

 

 

 

 

 

 

 

 

Figure 4.18  Trellis diagram at time 7=t   
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Looking at Figure 4.19 it can be seen that there is now only one surviving path left that can be traced 

backwards from the final state 8,0S . Doing this it is found that the estimated transmitted 'y  word is 

given by )110111001111001001000111('=y . Comparing this with the transmitted 

word )110111001111001001000111(=y  it is seen that all errors that occurred 

during transmission were successfully corrected.  

 

 

 

 

 

 

 

 

Figure 4.19  Trellis diagram at time 8=t  

 

4.2.5.5 Generating the Received Stream 

The convolutional encoder in section 4.2.4.1 was derived using a part of each parity equation (index 

positions Bni −=  to ni = ) shown in Table 4.2. Index positions ni =  to BNni −+=  (where N is 

the number of ciphertext bits available) are now used to transform the ciphertext iz  to the received 

sequence ir .  
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The index positions mii L1  and mjj L1  are the same as specified in equation (4.39). The equations 

introduced in (4.76) are now used to construct the received stream with a length of at least lm ⋅+ )1(   

(where )(LFSRsizeofl = ) from the ciphertext stream. 

4.2.5.6 Example for Generating the Received Stream 

Applying (4.76) to the parity equations found in Table 4.2 (Also refer to Table 4.1) the following 

equations to generate the received stream are found: 

1514
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 (4.77) 

4.2.5.7 Applying the Viterbi Algorithm for fast Correlation Attacks 

The received stream is now sent through the Viterbi decoder created in section 4.2.4. If the decoding 

process is successful the output of the LFSR is extracted from the ciphertext. The Viterbi algorithm, 

as introduced in section 4.2.5, relies in part on the fact that the decoder always starts and ends in the 

all zero ( 0S ) state. This does not apply for the case of fast correlation attacks, as this type of attack 

has neither a fixed starting point nor endpoint. In this case the starting point is in the middle of the 

trellis diagram and the paths with the best metrics are kept. The initial metric 00, =nS  is assigned to 

each state.  

 

In the following section 4.3.4 an example of the implementation of the methods introduced in this 

section is presented. 
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4.3 Introducing the Algorithm Based on a Small Example 

4.3.1 Obtaining a Ciphertext Stream for Simulation Purposes 

For this example the LFSR depicted in Figure 4.5 is continued to be used. Using the initial condition  

)10100000(=IC  (4.78) 

a pn-sequence of length 35 shown below is generated. 

00000)111000110110110000000000010111(050 =xa  (4.79) 

050xa  is now sent through a BSC with an error probability of 14.0=p  resulting in a ciphertext 

sequence of length 32=N  (Erroneous bits have been overstruck). 

)00111010000111000111101100000000010(=z  (4.80) 

 

4.3.2 Find Parity Equations and Generate Convolutional Encoders 

To successfully execute the fast correlation attack, a sequence of eight sequential bits need to be 

decoded correctly for finding the initial condition of an 8-bit LFSR. A ciphertext sequence with a 

length of 35  bits was generated in the previous section (4.3.1). Thus an equivalent block code that 

generates a stream of 27835 =−  bits in length can be used to find a number of parity equations for 

the pn-sequence generated by the example LFSR. 

 

Choosing 4=B  one can re-use the parity equations as found in Table 4.2 and the associated 

convolutional encoder (equation (4.62)) derived in the example shown in section 4.2.4.1.  This 

convolutional encoder will be used as the Viterbi decoder and is shown here again for convenience: 
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This is equivalent to the convolutional encoder, which is shown in Figure 4.20 below together with its 

state table shown in Table 4.3 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.20 Implementation of convolutional encoder represented by equation (4.62) 
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Table 4.3 State table for convolutional encoder shown in Figure 4.20 

Current State Next State Input Output 
0 0 0 000000000 
0 1 1 111111111 
1 2 0 001110110 
1 3 1 110001001 
2 4 0 001111011 
2 5 1 110000100 
3 6 0 000001101 
3 7 1 111110010 
4 8 0 001101110 
4 9 1 110010001 
5 10 0 000011000 
5 11 1 111100111 
6 12 0 000010101 
6 13 1 111101010 
7 14 0 001100011 
7 15 1 110011100 
8 0 0 000111100 
8 1 1 111000011 
9 2 0 001001010 
9 3 1 110110101 

10 4 0 001000111 
10 5 1 110111000 
11 6 0 000110001 
11 7 1 111001110 
12 8 0 001010010 
12 9 1 110101101 
13 10 0 000100100 
13 11 1 111011011 
14 12 0 000101001 
14 13 1 111010110 
15 14 0 001011111 
15 15 1 110100000 
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4.3.3 Creating the Received Sequence 

To decode eight bits, a received stream of length R⋅8 , where R  is the rate of the Viterbi decoder, 

needs to be generated. In this case a Viterbi encoder with a rate of 9=R  was created, thus requiring 

a received sequence of 72 bits. This received stream is now generated by applying equation (4.77), 

found in the example given in section 4.2.5.7 on the key sequence z . 

00
)0(

0 == zr  (4.82) 

110161
)1(

0 =+=+= zzr  (4.83) 

11094
)2(

0 =+=+= zzr  (4.84) 

10165
)3(

0 =+=+= zzr  (4.85) 

110107
)4(

0 =+=+= zzr  (4.86) 

101179
)5(

0 =+=+= zzr  (4.87) 

1011512
)6(

0 =+=+= zzr  (4.88) 

1011513
)7(

0 =+=+= zzr  (4.89) 

0001514
)8(

0 =+=+= zzr  (4.90) 

Thus receiving the sequence 

)011111110(0 =r  (4.91) 

Applying the same process for 1r  to 7r  gives: 

)000001011(1 =r  (4.92) 

)000000001(2 =r  (4.93) 

001100010)(3 =r  (4.94) 

001000100)(4 =r  (4.95) 

)111111111(5 =r  (4.96) 

)011100110(6 =r  (4.97) 
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)001001100(7 =r  (4.98) 

4.3.4 Using the Viterbi Algorithm for a Fast Correlation Attack 

The following sequence of trellis diagrams (Figure 4.21 to Figure 4.28) depicts the received sequence 

r  being sent through the Viterbi decoder specified by equation (4.81). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.21 Sending r  through the Viterbi decoder given by equation (4.81), 1=t  
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Figure 4.22 Sending r  through the Viterbi decoder given by equation (4.81), 2=t  
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Figure 4.23 Sending r  through the Viterbi decoder given by equation (4.81), 3=t  
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Figure 4.24 Sending r  through the Viterbi decoder given by equation (4.81), 4=t  
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Figure 4.25 Sending r  through the Viterbi decoder given by equation (4.81), 5=t  
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Figure 4.26 Sending r  through the Viterbi decoder given by equation (4.81), 6=t  
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Figure 4.27 Sending r  through the Viterbi decoder given by equation (4.81), 7=t  
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Figure 4.28 Sending r  through the Viterbi decoder given by equation (4.81), 8=t  

The path with the largest metric is used to determine the estimated received sequence, which in this 
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Table 4.4 Determining the estimated LFSR initial condition from Figure 4.28 and Table 4.3 

State Change Estimated Transmitted Sequence Estimated Input 

08 SS →  )000111100('0 =r  00 =a  

00 SS →  )000000000('1 =r  01 =a  

00 SS →  )000000000('2 =r  02 =a  

00 SS →  000000000)('3 =r  03 =a  

00 SS →  000000000)('4 =r  04 =a  

10 SS →  )111111111('5 =r  15 =a  

21 SS →  )001110110('6 =r  06 =a  

52 SS →  )110000100('7 =r  17 =a  

 

Looking at Table 4.4 it is seen that the input )00000101(=a  to the convolutional encoder, which 

produced the estimated transmitted sequence 'r  matches the original initial condition 

)00000101(=IC  of the LFSR used in 4.3.1. The correct initial condition of the LFSR has thus been 

successfully found. 

 

The strength of the Viterbi algorithm can be seen in the fact that during the first few time intervals 

( 0=t  to 5=t ) the correct path is not yet identifiable. It takes time for each path to accumulate 

enough of a history to be able to find the correct one. This initial phase of the algorithm is the most 

vulnerable to failure as it is at this stage that an incorrect path is most likely to have a higher metric 

when intersecting the correct path. 
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4.4 Simulation Results and Discussion 

4.4.1 Summary of Topics to be Investigated Using Simulations 

(1) Investigate the relationship between B (Viterbi decoder size), N (available ciphertext bits) and 

p (BSC error probability) as well as the number of parity equations needed to find the correct 

initial condition 

(2) Investigate whether the number of equations required for breaking a cipher system with a 

certain BSC error probability is constant or also a function of B.  

4.4.2 Approach 

Although this fast correlation attack was used successfully on LFSRs in excess of 40 bits, the memory 

requirements are much larger than for smaller LFSRs as the number of bits required to find sufficient 

parity equations is greater for larger LFSRs and it takes longer to find them (see 4.2.3.3). Because of 

this it was decided to use a LFSR of size 19 with the polynomial as shown below for the investigation.  

1)( 456791012141719 ++++++++++= xxxxxxxxxxxg  (4.99) 

The recurrence relation for )(xg  is given as follows: 

2579101213141519 −−−−−−−−−− +++++++++= nnnnnnnnnnn aaaaaaaaaaa  (4.100) 

Although a LFSR of this size can still be broken by an exhaustive search it however allows one to 

easily investigate convolutional encoder sizes of B = 2 up to B = 11 which provides an adequate 

range to draw conclusions from. If a larger size LFSR is chosen it becomes difficult to find a 

sufficient number of parity equations (as described in section 4.2.3.3) when using small values of B. 

 

A Viterbi decoder is created for the LFSR. A pn-sequence a  is generated using a random initial value 

for the LFSR. This pn-sequence is now corrupted sending it through a BSC of probability p creating 

the ciphertext-stream z  from which the Viterbi decoder determines an estimated initial value. This 

estimation is compared with the actual initial value of the LFSR. The random sequence a  is 

generated 15 times using different random seeding values. If the estimated initial value matches the 

actual initial value 80% of the time (thus allowing 3 incorrect estimates of the initial condition) it is 

assumed the LFSR has been broken for that specific BSC probability p.  
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The graphs in the following section indicate the minimum number of equations that are necessary to 

find the correct initial condition for at least 80% of the time for a specific BSC probability p and 

convolutional encoder size B. 

4.4.3 Results 

The results have been divided into two sections, largely due to the huge difference in the number of 

parity equations required for breaking a system with a BSC probability below 47.0=p  and above 

47.0=p  and the impact this has on the memory requirements for performing these simulations. 

As the parameter p increases towards 0.5 the number of ciphertext bits and parity equations required 

to succeed explode exponentially. Because of this two parameters are used; n originally introduced in 

equation (4.58), repeated below for convenience 

Nn 2log=  (4.101) 

as well as introducing γ defined below in equation (4.102) 

Γ= 2logγ  (4.102) 

 where Γ is the number of parity equations. 
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4.4.3.1 Results for Systems with BSC below 47.0=p  

4.4.3.1.1 The number of bits required for finding the correct initial condition 
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Figure 4.29 No. of ciphertext bits required for a successful attack  

The number of ciphertext bits, N, (where Nn 2log= ), required to find the correct initial condition in 

Figure 4.29 is given in logarithmic form as this relationship grows exponentially as a function of B 

and p.  Exact values used for generating this graph can be found in Table 4.5. 
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Figure 4.30 No of ciphertext bits (n) required to succeed for selected values of p  

Figure 4.30 gives a two-dimensional representation using data from Figure 4.29 of the number of 

ciphertext bits required, N, (where Nn 2log= ), as a function of B for selected constant values of p. 

The number of bits required to find the initial condition falls exponentially as B increases.  

Furthermore it can also be clearly seen that the amount of ciphertext required to break the system 

increases dramatically as p increases. 
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Table 4.5 No. of ciphertext bits required for finding the correct initial condition ( 47.<p ) 

B 
 p 2 3 4 5 6 7 8 9 10 11 

0.1 1491 657 493 242 182 159 159 139 93 42 
0.11 1643 796 493 266 231 166 182 152 93 54 
0.12 1643 1062 517 279 231 174 191 152 111 60 
0.13 1901 1115 657 306 254 200 191 159 116 60 
0.14 1901 1115 796 306 254 200 220 166 127 89 
0.15 1996 1170 876 448 279 210 231 166 133 89 
0.16 2199 1170 876 517 279 242 231 166 152 93 
0.17 2308 1420 964 597 353 254 242 166 159 166 
0.18 2308 1420 1062 597 353 292 254 182 159 166 
0.19 3755 2544 1811 1170 407 292 279 191 242 191 
0.2 3755 2944 1811 1170 796 321 448 353 242 191 

0.21 3755 2944 1811 1170 835 337 470 353 242 191 
0.22 4139 3245 1811 1170 835 657 470 353 292 191 
0.23 4139 3245 1811 1353 835 657 470 353 292 191 
0.24 4139 3245 2308 1353 1062 759 569 353 321 191 
0.25 5029 3245 2308 1353 1115 835 597 407 321 210 
0.26 5029 3577 2544 1491 1115 919 657 407 321 220 
0.27 5280 3577 2544 1565 1115 919 657 427 353 231 
0.28 6417 3942 2804 1565 1289 919 657 427 353 231 
0.29 6417 4345 2804 2199 1289 964 723 470 427 242 
0.3 6417 4345 2804 2199 1289 964 835 493 427 306 

0.31 7426 4562 3091 2308 1289 1170 835 626 470 370 
0.32 7797 5029 3407 2671 1491 1228 876 723 470 388 
0.33 7797 6112 3407 2671 1643 1420 1012 723 517 427 
0.34 10445 6417 4139 2804 2095 1420 1062 759 569 427 
0.35 10445 7426 5029 3091 2423 1643 1170 796 657 470 
0.36 12090 7426 5280 3755 2671 1811 1289 964 723 569 
0.37 13994 9948 6112 4562 3245 2308 1565 1115 796 657 
0.38 16198 9948 6737 4790 3407 2671 1901 1289 919 759 
0.39 17857 12090 8595 5544 3942 3091 2199 1725 1012 876 
0.4 20670 12090 9948 6417 5029 3577 2671 1811 1565 1062 

0.41 27602 18654 12358 8568 5406 3845 3086 2247 1808 1226 
0.42 34289 23172 14280 12298 6246 4442 3832 2999 2244 1415 
0.43 49223 28785 20499 12298 10358 7365 5115 3723 2994 2181 
0.44 65734 41320 29425 20398 14867 8510 6353 4970 3996 2707 
0.45 87784 63766 39294 25338 18468 13131 9801 6634 5735 3614 
0.46 135473 73689 65188 42032 30635 20260 16258 11826 8849 5186 
0.47 241543 175503 100601 74957 54632 38837 26969 22667 14676 12346 
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4.4.3.1.2 The number of equations required for finding the correct initial condition 
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Figure 4.31 No. of parity equations (γ) required for a successful attack  

Figure 4.31 shows the relationship between the number of parity equations, γ, (where Γ= 2logγ ), 

the convolutional encoder size, B, and the BSC error probability p.  The largest error probability of 

p=0.47 shown in this graph, thus requires a convolutional encoder with a rate of up to 296258 for 

success. Exact values used for generating this graph can be found in Table 4.6. 
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Figure 4.32 No. of parity equations (γ) required to succeed for selected values of p 

Figure 4.32 is a two-dimensional representation for selected constant values of p based on data from 

Figure 4.31. The number of parity equations, γ, (where Γ= 2logγ ) are shown as a function of B for 

selected constant values of p. The maximum value of p = 0.45 is the graph situated at the top of the 

figure, while the minimum value of p = 0.25 is the bottommost graph. This result is to be expected, as 

fewer parity equations are required to reconstruct a sequence that has been less corrupted by passing 

through a BSC noise channel with a lower error probability. The number of parity equations required 

to find the correct initial condition for a certain BSC value p decreases only slightly as the 

convolutional encoder size increases.  This is in contrast to Figure 4.30 where the amount of 

ciphertext bits required for success decreases exponentially as the convolutional encoder size B 

increases. 
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Table 4.6 No. of parity equations required for finding the correct initial condition ( 47.0<p ) 

B 
 p 2 3 4 5 6 7 8 9 10 11 

0.1 5 5 5 4 4 4 4 5 6 4 
0.11 7 5 5 5 6 4 5 7 6 8 
0.12 7 8 5 6 6 5 6 7 6 8 
0.13 10 9 7 7 6 7 6 8 7 8 
0.14 10 9 8 7 6 7 10 10 7 12 
0.15 10 9 10 8 8 7 10 10 8 12 
0.16 11 9 10 10 8 9 10 10 12 14 
0.17 14 15 11 11 10 10 11 10 14 45 
0.18 14 15 14 11 10 13 12 12 14 45 
0.19 47 43 47 46 14 13 15 13 47 63 
0.2 47 57 47 46 43 15 44 62 47 63 
0.21 47 57 47 46 47 15 47 62 47 63 
0.22 62 77 47 46 47 46 47 62 70 63 
0.23 62 77 47 60 47 46 47 62 70 63 
0.24 62 77 75 60 68 59 70 62 94 63 
0.25 87 77 75 60 75 74 75 77 94 77 
0.26 87 92 91 73 75 89 92 77 94 82 
0.27 94 92 91 78 75 89 92 87 115 95 
0.28 142 112 111 78 108 89 92 87 115 95 
0.29 142 140 111 135 108 93 111 105 169 106 
0.3 142 140 111 135 108 93 149 120 169 165 
0.31 196 154 141 154 108 149 149 175 206 249 
0.32 222 188 171 201 141 173 169 234 206 263 
0.33 222 268 171 201 171 230 228 234 256 325 
0.34 399 297 252 220 264 230 255 252 303 325 
0.35 399 397 376 279 343 308 322 271 394 395 
0.36 555 397 414 420 418 375 406 426 473 589 
0.37 743 738 557 608 618 605 585 586 563 799 
0.38 991 738 675 679 683 813 851 805 769 1084 
0.39 1193 1099 1093 921 924 1081 1155 1443 940 1432 
0.4 1583 1099 1496 1250 1537 1477 1722 1593 2358 2117 
0.41 2869 2621 2303 2235 1769 1742 2297 2455 3134 2881 
0.42 4388 4082 3113 4615 2393 2340 3555 4342 4861 3874 
0.43 9125 6286 6357 4615 6590 6579 6330 6755 8662 9119 
0.44 16338 12828 13157 12651 13527 8829 9782 11944 15486 13991 
0.45 29248 30756 23244 19496 20837 21099 23464 21302 31627 25215 
0.46 70007 41250 64544 53671 57275 50156 64551 68266 76048 51895 
0.47 222970 235261 154290 170993 181866 183936 177682 250904 209742 296258
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4.4.3.2 Results for Systems with BSC above 47.0=p  

Due to the fact that the memory requirements for the state table used to implement the Viterbi decoder 

is directly proportional to the number of equations and exponentially proportional to B as in the 

relation shown below 

Γ⋅⋅∝ 22B
MemoryM  (4.103) 

the results for finding the correct initial condition for BSC probabilities in excess of 47.0=p  these 

results are only given for 72 ≤≤ B . 

4.4.3.2.1 The number of bits required for finding the correct initial condition 
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Figure 4.33 No. of ciphertext  bits (n)required for a successful attack  

 Figure 4.33 presents the relationship between the number of bits, N, (where Nn 2log= ), required to 

find the correct initial condition in Figure 4.33 as a function of 72 ≤≤ B  and 484.047.0 ≤≤ p .  

Exact values used for generating this graph can be found in Table 4.7. 
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Figure 4.34 No of ciphertext bits (n) required to succeed for selected values of p  

Figure 4.34 shows the number of ciphertext bits, N, (where Nn 2log= ), as a function of B for 

selected constant values of p, based on the data also used for Figure 4.33. As can be expected, the 

higher the BSC probability p becomes, the more ciphertext bits are required for success. The amount 

of ciphertext bits required falls exponentially as B increases.  

 

Table 4.7 No. of ciphertext bits required for finding the correct initial condition ( 47.0>p ) 

B 
 p 2 3 4 5 6 7 

0.47 241543 175503 116256 74957 54632 36128 
0.471 241543 175503 116256 93117 63133 38837 
0.472 279132 188665 116256 93117 63133 51864 
0.473 300066 218025 134348 100100 63133 51864 
0.474 346762 234376 144424 107607 67867 51864 
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B 
 p 2 3 4 5 6 7 

0.475 372769 234376 166899 124352 78428 59934 
0.476 400726 251954 207337 124352 97430 59934 
0.477 400726 270850 207337 124352 97430 59934 
0.478 430780 336475 207337 133678 104737 59934 
0.479 535155 336475 257573 133678 112592 80039 
0.48 575291 361710 257573 154480 121036 92494 

0.481 618437 449350 297656 191909 130113 99431 
0.482 664819 449350 297656 206302 150361 106888 
0.483 768281 449350 369776 238407 150361 123521 
0.484 768281 600090 369776 256287 200801 123521 
0.485      153448 

 

4.4.3.2.2 The number of equations required for finding the correct initial condition 
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Figure 4.35 No. of parity equations (γ) required for a successful attack  

Figure 4.35 represents the number of parity equations, γ, (where Γ= 2logγ ) required for finding 

the correct initial condition as a function of the BSC noise channel error probability, p, as well 
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as the chosen convolutional encoder size B. The number of parity equations required grows 

exponentially as a function of B and p.  Exact values used for generating this graph can be found in 

Table 4.8. 
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Figure 4.36 No. of parity equations (γ) required to succeed for constant values of p 

Figure 4.36 gives a two-dimensional presentation of the number parity equations, γ, (where 

Γ= 2logγ ) as a function of B for various constant values of p. Exact values used for generating this 

graph can be found in Table 4.8. The maximum value of 484.0=p  is the line situated at the top of 

the graph, while the minimum value of 47.0=p  is the bottommost line in the graph. In contrast to 

Figure 4.34 the number of parity equations required to find the correct initial condition for a certain 

BSC value p does not decrease exponentially as the convolutional encoders size B increases. 

However, looking at the values contained in Table 4.8, it can be seen that increasing B from 2 to 7 can 

lower the amount of parity equations required with up to 30%.  

 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  BBrruuwweerr,,  CC  SS    ((22000055))  



Chapter 4 Fast Correlation Attack

 

Electrical,  Electronic and Computer Engineering 101
 

Table 4.8 No. of parity equations required for finding the correct initial condition ( 47.>p ) 

B 
 p 2 3 4 5 6 7 

0.47 222970 235261 206036 170993 181866 159184 
0.471 222970 235261 206036 264045 242813 183936 
0.472 297406 272053 206036 264045 242813 328299 
0.473 343589 363362 275387 305383 242813 328299 
0.474 458711 419547 318088 353095 280347 328299 
0.475 530267 419547 425320 472048 374349 438298 
0.476 612724 484946 657298 472048 578345 438298 
0.477 612724 560081 657298 472048 578345 438298 
0.478 708049 863900 657298 545572 668597 438298 
0.479 1092476 863900 1013556 545572 773096 781389 
0.48 1262373 998125 1013556 728131 893819 1043558

0.481 1458833 1540588 1352677 1125075 1033094 1205921
0.482 1685983 1540588 1352677 1300193 1379039 1393708
0.483 2252082 1540588 2086818 1736191 1379039 1862100
0.484 2252082 2747188 2086818 2006344 2462071 1862100
0.485      2873370

 

 

4.4.4 Discussion 

It was found that the amount of ciphertext required for finding the correct initial condition drops 

exponentially as the convolutional encoder size increases, as predicted by equation (4.56). 

Furthermore, it was also found that the number of parity equations required to find the correct initial 

condition decreases slightly as the convolutional encoder size B increases, although no definitive 

figures on the actual improvement can be derived from the data obtained. The slight improvement in 

performance when using a larger convolutional encoder is to be expected as larger convolutional 

encoders can correct longer error bursts (as the BSC error probability p increases, the likelihood of 

more successive bits being corrupted also increases) than smaller convolutional encoders. Thus the 

maximum number of parity equations required for a successful attack, occurs when the smallest 

convolutional encoder used, i.e. B = 2. This is the worst case and as long as the number of parity 

equations found for a certain BSC error probability p is equal to this worst case, the system can be 

broken. The relationship showing the maximum number of parity equations required for success is 

presented in Figure 4.37. A table of these values is presented in Appendix E. 
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Figure 4.37 Worst case number of parity equations required for success 

The number of parity equations found, depend on the size of LFSRG  searched through (which amounts 

to the amount of ciphertext required) as well as the size B chosen for the convolutional encoder.  

 

The number of parity equations that are likely to be found grows exponentially with B  (see equation 

(4.50)). Unfortunately, as B grows, the memory requirements ( MemoryM ) and computational 

complexity ( sCompuationN ) also grow exponentially, as can be approximated by equations (4.104) and 

(4.105) below: 

Γ⋅∝ +12B
MemoryM  (4.104) 

Γ⋅∝ +12B
nsComputatioN  (4.105) 
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Finding parity equations within LFSRG  of dimensions Nl ×  grows directly proportional to the square 

of N as shown in below in (4.106). 

)1(
2
1 −⋅⋅∝ NNN nsComputatio  (4.106) 

At a first glance one would guess that searching for equations using more ciphertext should be easier 

and one can thus reduce the size of the convolutional encoder that is constructed. Unfortunately the 

amount of parity equations that can be found is reduced exponentially as B decreases, thus using 

equation (4.56) the above relation can be rewritten as follows. 

Bl
nsComputatioN −⋅Γ∝ 2  (4.107) 

The actual number of computations and memory requirements obviously depend a lot on the 

implementation of the algorithm and the use of more memory can be traded off for fewer operations 

and vice versa.  

 

The procedure for successfully using the fast correlation attack is summarized in the following points 

if the attacker is to be successful, or alternatively for designing a cipher system that is safe from a fast 

correlation attack. 

(1) Using Figure 4.37 the worst case (B = 2) number of parity equations that are required, is 

determined according to the correlation level p of the system. 

(2) Equation (4.104) now establishes the maximum size convolutional encoder that can possibly 

be constructed. 

(3) Using equation (4.107) it can be determined if sufficient parity equations can be found in a 

realistic time while at the same time looking at equation (4.56) it can be determined if 

sufficient ciphertext is available. 
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4.5 Deviations from Method Described by Johansson and Jönsson 

Johansson and Jönsson [3] suggest running the Viterbi decoding process over a number of dummy 

information symbols before coming to the l information symbols to be decoded (One does not need to 

correctly decode the initial state of the LFSR, knowing any state, at a given time, is enough as one can 

derive any previous or future state from this information). Similarly they also suggest running the 

Viterbi over another set of dummy information symbols after the l information symbols to be 

decoded. It was experimentally found that this did not make identifiable difference to directly 

decoding the first l symbols from the received stream nr  generated by equation (4.76).  

 

They further suggests using the metrics ( ) prvP nn −== 1)0()0(  and ( ) 22)()( )1( pprvP i
n

i
n +−==  for 

BlnB 101 +≤≤+ . It was found when trying to decode a LFSR of size 40, transmitted through a 

channel with 4.0≈p , a rate in excess of 310=R was necessary, resulting in the fact that only )0(
nr  

had a different metric while in excess of 10000 ( )()1( m
nn rr L with 310≥m ) bits in the stream where 

assigned the same metric. As only )0(
nr  is weighted differently this is insignificant, added to the fact 

that these metrics complicate the implementation of the Viterbi algorithm it was found that the 

implementation works adequately when using metrics as specified in equation (4.75). 

 

A further specification not implemented was the assigning of initial metrics 

( )( )),,,(log 21 BzzzsP L=  for each state before starting the Viterbi algorithm.  
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CHAPTER 5 DECIMATION ATTACK 

5.1 Introduction 

The same models are used for a decimation attack as for a correlation or fast-correlation attack. The 

ciphertext is obtained by bitwise addition of the plaintext to a running key. A pseudo-random 

generator whose initial state constitutes the secret key produces the running key.  

 

 

 

 

 

 

Figure 5.1 Nonlinear combination generator 

A decimation attack cannot be used on it’s own. The method attempts to reduce the size LFSR being 

attacked by selectively only using every D -th bit of the ciphertext stream. This approach is used 

when the LFSR is too large to directly attack. The LFSR has to be decimated to a size where the 

reduced LFSR can be successfully attacked using a correlation or fast-correlation attack. This method 

reduces the LFSR size to attack but massively increases the amount of ciphertext that is required. 

Thus a tradeoff is made of reduced complexity for increased ciphertext amounts. 
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5.2 Decimation of LFSR Sequences 

Consider a sequence L,, 21 aaa = , produced by a LFSR of length L  whose feedback polynomial is 

irreducible in )2(GF . By now taking every D -th element in a  produces the subsequence 

L,, *
2

*
1

* aaa = . This is equivalent to the D -decimation of the original sequence. This so-called D -

fold clocking of the LFSR causes the original LFSR to behave like a different LFSR called the 

simulated LFSR. When choosing D  correctly the simulated LFSR has properties, which can be 

exploited to ones advantage.  

 

Let L  be the period of the LFSR of size l , thus:  

12 −= lL  (5.1) 

Let *a  be the sequence resulting from the D -th decimation of a , thus 0,* ≥= ⋅ daa di . The 

simulated LFSR has the following properties of interest: 

(1) The period *L  of the simulated LFSR is equal to  

),gcd( LD
L

 (5.2)  

(2) The degree *l  of the simulated LFSR is equal to the multiplicative order of q in *L  

All D  in kC , where  

TkqkqkCk mod},,,,{ 2 L=  (5.3) 

denotes the cyclotomic set of Tk mod results in the same simulated LFSR, except for different initial 

conditions. Every sequence produced by the simulated LFSR is equal to dia ⋅  for some choice of the 

initial contents of the original LFSR. 

 

The goal of this procedure is finding a decimation factor D which process a sequence *L  where the 

degree *l  is lower than the degree l  of the original sequence. The feedback polynomial )(* xP  of the 

simulated LFSR can be obtained by applying either the Berlekamp-Massey LFSR synthesis algorithm 

[24] to the sequence *a , or using the algorithm proposed in section 5.2.2. 
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5.2.1 Example of Finding a Useful Decimation Factor d 

Consider a LFSR of size 18=l . The first step with finding an appropriate decimation factor D is the 

factoring of 18,12 =−= lL l  3.  L  has the following prime factors: 73197333 ⋅⋅⋅⋅⋅=L .  Thus, in 

this case, there is a choice of 32 possible values for D . Example: 

L,3337,337,37,7,333,33,3 ⋅⋅⋅⋅⋅⋅⋅⋅⋅=D . Table 5.2 gives a list of all possible decimation factors 

D 4 (column 02⋅D ) with its associated cyclotomic set. The cyclotomic set is formed by the sequence 

LDLDLD l mod2,,mod2,mod2 10 ⋅⋅⋅ L . 

 

Any cyclotomic set where the sequence repeats before reaching l  elements has a lower degree *l  

than l  and thus a useful decimation factor D . The degree of *l  is the length of a cyclotomic set 

before repeating. Looking at Table 5.2 it can be seen that for 513=D  the degree *l  is equal to 9 . 

Looking at Table 5.2 it can be seen that a size 18 LFSR has the 7  useful decimation factors shown in 

Table 5.1 below. 

 

Table 5.1 Useful decimation factors for LFSR of size 18 

D  *l  

513 9 
3591 9 
4161 6 
12483 6 
29127 6 
37449 3 
87381 2 

                                                      
3This obviously implies that if L  is prime for a certain l  the decimation attack will not work.  
4For DDLGCDD =∈ ),( *  
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Table 5.2 Cyclotomic set of all possible decimation factors in )2( 18GF  

 

02⋅D  12⋅D 22⋅D  32⋅D  42⋅D 52⋅D 62⋅D 72⋅D 82⋅D 92⋅D  102⋅D 112⋅D 122⋅D 132⋅D 142⋅D 152⋅D 162⋅D  172⋅D  
3 6 12 24 48 96 192 384 768 1536 3072 6144 12288 24576 49152 98304 196608 131073 
7 14 28 56 112 224 448 896 1792 3584 7168 14336 28672 57344 114688 229376 196609 131075 
9 18 36 72 144 288 576 1152 2304 4608 9216 18432 36864 73728 147456 32769 65538 131076 

19 38 76 152 304 608 1216 2432 4864 9728 19456 38912 77824 155648 49153 98306 196612 131081 
21 42 84 168 336 672 1344 2688 5376 10752 21504 43008 86016 172032 81921 163842 65541 131082 
27 54 108 216 432 864 1728 3456 6912 13824 27648 55296 110592 221184 180225 98307 196614 131085 
57 114 228 456 912 1824 3648 7296 14592 29184 58368 116736 233472 204801 147459 32775 65550 131100 
63 126 252 504 1008 2016 4032 8064 16128 32256 64512 129024 258048 253953 245763 229383 196623 131103 
73 146 292 584 1168 2336 4672 9344 18688 37376 74752 149504 36865 73730 147460 32777 65554 131108 
133 266 532 1064 2128 4256 8512 17024 34048 68096 136192 10241 20482 40964 81928 163856 65569 131138 
171 342 684 1368 2736 5472 10944 21888 43776 87552 175104 88065 176130 90117 180234 98325 196650 131157 
189 378 756 1512 3024 6048 12096 24192 48384 96768 193536 124929 249858 237573 213003 163863 65583 131166 
219 438 876 1752 3504 7008 14016 28032 56064 112128 224256 186369 110595 221190 180237 98331 196662 131181 
399 798 1596 3192 6384 12768 25536 51072 102144 204288 146433 30723 61446 122892 245784 229425 196707 131271 
511 1022 2044 4088 8176 16352 32704 65408 130816 261632 261121 260099 258055 253967 245791 229439 196735 131327 
513 1026 2052 4104 8208 16416 32832 65664 131328 513 1026 2052 4104 8208 16416 32832 65664 131328 
657 1314 2628 5256 10512 21024 42048 84096 168192 74241 148482 34821 69642 139284 16425 32850 65700 131400 
1197 2394 4788 9576 19152 38304 76608 153216 44289 88578 177156 92169 184338 106533 213066 163989 65835 131670 
1387 2774 5548 11096 22192 44384 88768 177536 92929 185858 109573 219146 176149 90155 180310 98477 196954 131765 
1533 3066 6132 12264 24528 49056 98112 196224 130305 260610 259077 256011 249879 237615 213087 164031 65919 131838 
1971 3942 7884 15768 31536 63072 126144 252288 242433 222723 183303 104463 208926 155709 49275 98550 197100 132057 
3591 7182 14364 28728 57456 114912 229824 197505 132867 3591 7182 14364 28728 57456 114912 229824 197505 132867 
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02⋅D  12⋅D 22⋅D  32⋅D  42⋅D 52⋅D 62⋅D 72⋅D 82⋅D 92⋅D  102⋅D 112⋅D 122⋅D 132⋅D 142⋅D 152⋅D 162⋅D  172⋅D  
4161 8322 16644 33288 66576 133152 4161 8322 16644 33288 66576 133152 4161 8322 16644 33288 66576 133152 
4599 9198 18396 36792 73584 147168 32193 64386 128772 257544 252945 243747 225351 188559 114975 229950 197757 133371 
9709 19418 38836 77672 155344 48545 97090 194180 126217 252434 242725 223307 184471 106799 213598 165053 67963 135926 
12483 24966 49932 99864 199728 137313 12483 24966 49932 99864 199728 137313 12483 24966 49932 99864 199728 137313 
13797 27594 55188 110376 220752 179361 96579 193158 124173 248346 234549 206955 151767 41391 82782 165564 68985 137970 
29127 58254 116508 233016 203889 145635 29127 58254 116508 233016 203889 145635 29127 58254 116508 233016 203889 145635 
37449 74898 149796 37449 74898 149796 37449 74898 149796 37449 74898 149796 37449 74898 149796 37449 74898 149796 
87381 174762 87381 174762 87381 174762 87381 174762 87381 174762 87381 174762 87381 174762 87381 174762 87381 174762 
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5.2.2 Determining the Feedback Polynomial of the Simulated LFSR 

The feedback polynomial, )(* xP , can be obtained by using the equivalent block code (see section 

4.2.2) of the LFSR. As the size of the simulated LFSR is already known (refer to section 5.2 point 

(2)), all that remains to be done is the determining of )(* xP . As has already been discussed 

previously, the equivalent block code can be written in the following form: 

[ ]ZIG lLFSR =  (5.4) 

A interesting observation that can be made is that the first column vector after the identity matrix lI  

is always the recurrence relation of the )(xP  from which LFSRG  was formed as shown below.  
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Using this fact every D -th column from LFSRG  is taken, using only the first *l  rows. Because each 

row in LFSRG  was linearly independent one knows that *l  rows in the decimated block matrix *
LFSRG  

are also linearly independent. After performing Gauss-Jordan reduction on *
LFSRG  one is left with a 

matrix in the form [ ]ZIG lLFSR *
* = . 

 

It is known that the first column after the identity matrix is the recurrence relation of the equivalent 

LFSR, thus when transforming this column vector from it’s recurrence relation to the polynomial 

form, )(* xP  has been found. 
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5.2.3 Theoretical Discussion of Decimation Method 

The size of the simulated LFSR can also be found by looking at the order of *L . The order *l of *L is 

the smallest positive integer such that  

1mod2 **

=Ll  (5.6) 

To see how effective the decimation attack can be, a new parameter, d , is introduced, which is equal 

to the degree of D . E.g. 125 ++= xxD  then 5=d . 

It is known that 
D
LL =* , thus  

d

l

L
2

12* −≥  (5.7) 

The smallest possible value for *l  is achieved for  

12
** −= lL  (5.8) 

thus when the simulated LFSR itself is also a maximum length pn-sequence. 

Combining equation (5.7) and (5.8) and making the assumption that 12,12
*

>>>> ll  it is found 

that  

d

l
l

2
22

*

≥  (5.9) 

thus  

dll −≥*  (5.10) 

Looking at equation (5.10) it is found that there is a direct trade-off between the size of the 

decimation factor D  and the size of the resulting simulated LFSR size *l .  

5.2.3.1 Example 

Looking at a LFSR of size 60, it is far too large to break using a correlation attack, and probably too 

large (too memory intensive) to break by using a fast-correlation attack. Concentrating on the fast-

correlation attack, a LFSR of around 40 bits could be broken. Thus, if one could find a decimation 

factor of around 201000000 ≈⇒= dD , one could produce a simulated LFSR of 

402060* =−=l , which can be broken using the fast correlation attack within minutes.  
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The downside of this is if one has a channel probability of 47.0≈p , around 40000 bits are required 

to break the 40-bit simulated LFSR. As only every 1000000-th bit of the original cipher stream is used 

after the decimation process, effectively 35204000000000 ≈  bits of ciphertext are required, a tall 

order. 

5.2.4 Results from Investigation 

Filiol [1] presents a list of LFSR which are impervious to the decimation attack as L  is either prime 

or does not have a decimation factor D  which produces a simulated LFSR with ll <* . The list is 

repeated below. 

 

Table 5.3 LFSR of size l , immune to decimation attack 

 l  

Prime  L  5, 7, 13, 17, 19, 31, 61, 89, 107, 127 

*l  not smaller than l  11, 23, 29, 37, 41, 43, 47, 53, 59, 67, 71, 73, 83, 97, 101, 109, 113, 

131, 139, 149, 151, 157, 163, 167, 173, 178, 179, 181, 191, 193, 

197, 199, 211, 223, 227, 229, 233, 239, 241, 251 

 

 

Further all LFSR sizes for 6418 ≤≤ l  were parsed for useful decimation factors 1231−≤D . What 

has to be remembered is that the total amount of ciphertext bits required when using the decimation 

attack amounts to the product of the decimation factor and the number of bits typically required for 

the attack used after decimating the LFSR for a certain channel probability p .  

 

Appendix F lists all decimation factors smaller than 322  for 6418 ≤≤ l . From this list many more 

values of l  are found which probably can also be considered safe from a decimation attack due to the 

enormous values of D  which would require such a huge amount of ciphertext that a decimation 

attack would be completely unfeasible.  
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A new parameter reql  is introduced as the maximum LFSR size that can be broken without 

decimating. This allows for identifying weaknesses of LFSRs with sizes in excess of 64 bits which are 

not contained in Appendix F. Using equation (5.10) it is found that the degree of the decimation factor 

D  then needs to be at least  

reqlld −=  (5.11) 

When designing a stream cipher system l  must be chosen such that D  (if l  is not contained in Table 

5.3 or Appendix F) is too large to be useful for any known attack that could be successful on a LFSR 

of size reql .  
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CHAPTER 6 CONCLUSION 

Four methods were investigated for breaking stream ciphers based on nonlinear combining generators. 

All four methods are ciphertext-only divide and conquer attacks which attempt to reconstruct the 

initial state of the LFSRs within the running key generator. Three different types of attacks were 

presented: 

• A fast-correlation attack. 

• Two correlation attacks: 

o The binary derivative attack. 

o The Lempel-Ziv attack. 

• A decimation attack.  

 

The investigation of the different type of attacks aims to give an indication whether a cipher system 

could be susceptible to the specified attack and the resources that would be required. This information 

can also be used when designing a new cipher system to choose the parameters so as to ensure that the 

system is not endangered by the attacks described here. 

 

It has to be remembered that all the attacks investigated, attack one of the LFSRs contained in the 

running key generator. This means if one can obtain the initial state of a LFSR of size l  bits, the 

system that is attacked actually has a much larger key, which is the sum of all initial conditions of all 

the component LFSRs contained within the key generator. Thus if the initial condition of a LFSR of 

40 bits can be retrieved (as was successfully shown for the two correlation attacks as well as the fast 

correlation attack), this may not sound very impressive as the key of most cipher systems is much 

larger (128 bits is the magic number currently used for most block ciphers). However, remembering 

that one is only talking about one of the component LFSRs here, this means, depending on the system, 

that keys in excess of 120-bit in strength can be broken (assuming there are at least 3 component 

LFSRs of similar size) and this is an important result. 
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6.1 Correlation Attacks 

The two new correlation attacks that were investigated, i.e. the Lempel-Ziv method and the binary 

derivative method, are robust and easy to implement. These attacks where performed with a system 

based on a Pentium I, 200MHz processor with 112MB of memory on a Linux platform. Both attacks 

succeed even when only a very small measure of correlation occurs between the ciphertext and one of 

the component LFSRs. The Lempel-Ziv method succeeds for a correlation of 482.0=p  and requires 

approximately 62000  cipher-bits. The binary derivative method succeeds for 47.0=p  and requires 

only 24500  bits for this when using 20 derivatives.  

 

In the case of the binary derivative there is always a trade-off between speed and the amount of 

ciphertext required. If no derivative is used, n operations are required. For every additional derivative 

D the number of operations increases linearly with D , i.e. nD ⋅ . Generally speaking, the required 

number of ciphertext bits required grows exponentially as the correlation level p drops. As the amount 

of ciphertext bits increase, so do the memory requirements as well as the computational load. The big 

advantage of the binary derivative method is the fact that a trade-off exists between the number of 

derivatives and ciphertext. Although more derivatives require more processing power, in the process 

the amount of required ciphertext is drastically reduced. This relationship was presented in Figure 3.7. 

 

The Lempel-Ziv attack is simpler than the binary derivative method in the sense that the success of 

this attack depends only on one parameter, which is the amount of ciphertext that is required. This 

relationship was presented in Figure 3.5.  

 

When comparing the two methods using the two figures mentioned it is found that the binary 

derivative method and the Lempel-Ziv method use approximately the same amount of ciphertext, if 

the binary derivative method uses a large number of derivatives. The Lempel-Ziv method gives better 

results at correlation levels 47.0>p  than the binary derivative. However, if sufficient ciphertext is 

available, the binary derivative algorithm is faster than the Lempel-Ziv method when utilizing a small 

number of derivatives. 
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The obvious limitation with both these methods is the fact that they need to perform an exhaustive 

search to find the correct LFSR initial condition. The longer the LFSR that is being attacked, the more 

time it will take. Since this relationship is exponential, the attacks cannot be expected to be practical 

for a LFSR of more than about 40  bits. However, the big advantage with these methods is the fact 

that the amount of ciphertext required is independent of the size of the LFSR and both attacks are 

ideal for execution on parallel processors. 

 

6.2 Fast-Correlation Attacks 

The fast-correlation attack using the Viterbi algorithm is fairly complex in comparison with the 

correlation attacks although the extra complexity is worthwhile. All simulations for this method where 

performed on a Pentium IV, 2GHz processor with 256MB memory on a Windows 2000 platform. The 

fast correlation method was tested for correlation levels as low p = 0.485, using a 7-bit (128-state) 

convolutional encoder and enough ciphertext to provide 2873370 parity equations; in this case, when 

attacking a 19-bit LFSR, 153448 bits of ciphertext were required to succeed. The memory required for 

this was about 160MB.  

 

There are two distinct stages in this algorithm: Firstly, the finding of parity equations in the LFSR 

structure, and thereafter using the convolutional encoder (constructed using the parity equations) for 

the extraction of the targeted pn-sequence from the ciphertext. To break a system of a certain 

correlation level p, sufficient parity equations to construct the convolutional encoder have to be 

found. The relationship between the correlation level p and the number of required parity equations 

was shown in Figure 4.37 and is repeated here in Figure 6.1 because of its importance.  
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Figure 6.1 No. of parity equations (γ) required for success 

The number of computations ( nsComputatioN ) required for finding a certain number of parity equations, 

Γ, was given by equation (4.107) and is repeated below. 

Bl
nsComputatioN −⋅Γ∝ 2  (6.1) 

An attacker can thus see from equation (6.1) whether it is feasible to find a sufficient number of parity 

equations within the LFSR structure. Note that this has to be done only once for any given cipher 

system, since finding parity equations is independent of the specific session key being attacked. 

Therefore extensive resources can be allocated for this task.  
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From equation (6.1) it can be seen that sufficient parity equations could always be found by 

increasing the size B of the convolutional encoder. Unfortunately, there are two important restraints 

on the size of the encoder when using it to extract the targeted LFSR output. The larger it becomes, 

the more operations are required for the decoding process and the larger the memory requirement 

( MemoryM ) becomes. This relationship was originally presented in equations (4.104) and (4.105), 

repeated below.  

Γ⋅∝ +12B
nsComputatioN  (6.2) 

Γ⋅∝ +12B
MemoryM  (6.3) 

The extraction of the targeted LFSR output has to be performed each time a new session key is being 

attacked. For this reason it should always be attempted to utilize as many resources as possible to find 

parity equations in such a way as to minimize B. 

 

The big advantage of the fast correlation attack is the fact that it does not perform an exhaustive 

search for the initial condition of the targeted LFSR. However, the initial condition derived by the fast 

correlation attack is not necessarily correct. The values of the minimum number of parity equations 

required for success are average values and should succeed in at least 80% of the time. The results 

however still need to be verified and for this, the correlation attack methods should be very effective, 

as it’s complexity is not dependant on l if the intention is only to verify a LFSR initial condition. 

Therefore a correlation attack can complement a fast correlation attack and is not obsoleted by it. 

6.3 Decimation Attack 

The decimation attack differs from the other two types in the sense that it is not a stand-alone attack 

and still needs a secondary method to find the correct initial state. The purpose of the decimation 

attack is to reduce the effective size of a LFSR targeted within the key generator by using only every 

D-th bit of the cipher stream. In equation (5.10), repeated here for convenience, the best possible 

result that can be achieved was shown. In the equation, *l  represents the size of the reduced LFSR, l, 

represents the size of the targeted LFSR and d represents the magnitude of the decimation factor D, 

thus 122 +<≤ dd D . 

dll −≥*  (6.4) 
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When applying this attack only every D-th bit within the ciphertext is used for the secondary attack on 

the decimated LFSR. To reduce a LFSR by any significant amount the equation above shows that D 

must be large. A list of decimation factors of 312<D  for 6418 ≤≤ l  is presented in Appendix F. If 

it is intended to use any of the previously discussed attacks for the secondary attack, it has already 

been seen that several tens of thousand of bits are required to attack a cipher system which has low 

correlation levels between the ciphertext and the targeted LFSR. Because of this, the amount of 

ciphertext required is huge. Added to this it was found that the attack can only be considered if one is 

lucky enough that the system to be attacked has a LFSR of size l for which a decimation factor D even 

exists. Table 5.3 gives a list of for all the sizes l of a LFSR for which no decimation factors exist. 

 

However, the decimation attack is still attractive since there is no processing or memory penalty when 

using this method. If a decimation factor D exists, it can be used for attacking smaller LFSRs, which 

automatically require smaller decimation factors to reduce.   

 

6.4 Future Work on Fast Correlation Attack 

Since the Viterbi decoding process is not started with the all-0 state, it is likely that the decoding 

process may fail at the first stage of the trellis. This could result in the failure of all further decoding 

stages. It is vital to starting with the correct initial path, so as to exploit the full power of the Viterbi 

decoding algorithm. Hence it is worthwhile to investigate the adaptation of the Viterbi algorithm to 

keep all paths (tree code) for the first two or three stages within the trellis diagram. This would allow 

a longer history of the partial path metrics, which would give a better indication of the wrong paths 

that may be discarded and also of the correct paths that are kept after completion of the first three 

stages. 

This would increase the memory requirement for this section by at least 23 = 8 times. However, this 

would not influence the remaining memory usage, but is one of the reasons why it was not further 

investigated in this dissertation as memory was the prime limitation. 
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A LEMPEL-ZIV COMPLEXITY FOR RANDOM BINARY 
SEQUENCES  

 

m  ][ mxE  mσ  m  ][ mxE  mσ  m  ][ mxE  mσ  
10 23.73 1.50 3 340 33 387.36 29.80 6 670 73 308.27 42.12 
20 61.64 2.20 3 350 33 501.71 29.84 6 680 73 432.58 42.15 
30 106.36 2.74 3 360 33 616.10 29.89 6 690 73 556.92 42.18 
40 155.67 3.19 3 370 33 730.53 29.93 6 700 73 681.27 42.21 
50 208.44 3.58 3 380 33 845.01 29.98 6 710 73 805.64 42.24 
60 264.01 3.93 3 390 33 959.53 30.02 6 720 73 930.04 42.27 
70 321.92 4.26 3 400 34 074.09 30.07 6 730 74 054.46 42.31 
80 381.84 4.56 3 410 34 188.69 30.11 6 740 74 178.90 42.34 
90 443.52 4.84 3 420 34 303.34 30.15 6 750 74 303.36 42.37 
100 506.77 5.11 3 430 34 418.03 30.20 6 760 74 427.84 42.40 
110 571.44 5.36 3 440 34 532.76 30.24 6 770 74 552.34 42.43 
120 637.40 5.61 3 450 34 647.53 30.29 6 780 74 676.87 42.46 
130 704.54 5.84 3 460 34 762.34 30.33 6 790 74 801.42 42.49 
140 772.78 6.06 3 470 34 877.20 30.37 6 800 74 925.98 42.52 
150 842.04 6.28 3 480 34 992.09 30.42 6 810 75 050.57 42.56 
160 912.24 6.49 3 490 35 107.03 30.46 6 820 75 175.18 42.59 
170 983.34 6.69 3 500 35 222.01 30.50 6 830 75 299.81 42.62 
180 1 055.27 6.88 3 510 35 337.03 30.55 6 840 75 424.46 42.65 
190 1 128.00 7.07 3 520 35 452.09 30.59 6 850 75 549.14 42.68 
200 1 201.48 7.26 3 530 35 567.20 30.63 6 860 75 673.83 42.71 
210 1 275.67 7.44 3 540 35 682.34 30.68 6 870 75 798.55 42.74 
220 1 350.55 7.62 3 550 35 797.52 30.72 6 880 75 923.28 42.77 
230 1 426.07 7.79 3 560 35 912.75 30.76 6 890 76 048.04 42.81 
240 1 502.22 7.96 3 570 36 028.01 30.81 6 900 76 172.82 42.84 
250 1 578.96 8.12 3 580 36 143.32 30.85 6 910 76 297.62 42.87 
260 1 656.28 8.29 3 590 36 258.67 30.89 6 920 76 422.44 42.90 
270 1 734.14 8.44 3 600 36 374.05 30.94 6 930 76 547.28 42.93 
280 1 812.54 8.60 3 610 36 489.48 30.98 6 940 76 672.14 42.96 
290 1 891.45 8.75 3 620 36 604.95 31.02 6 950 76 797.02 42.99 
300 1 970.85 8.90 3 630 36 720.45 31.07 6 960 76 921.92 43.02 
310 2 050.73 9.05 3 640 36 836.00 31.11 6 970 77 046.85 43.05 
320 2 131.08 9.20 3 650 36 951.58 31.15 6 980 77 171.79 43.08 
330 2 211.87 9.34 3 660 37 067.21 31.19 6 990 77 296.76 43.11 
340 2 293.09 9.48 3 670 37 182.87 31.24 7 000 77 421.74 43.15 
350 2 374.74 9.62 3 680 37 298.58 31.28 7 010 77 546.75 43.18 
360 2 456.80 9.76 3 690 37 414.32 31.32 7 020 77 671.78 43.21 
370 2 539.26 9.90 3 700 37 530.10 31.36 7 030 77 796.82 43.24 
380 2 622.10 10.03 3 710 37 645.92 31.41 7 040 77 921.89 43.27 
390 2 705.32 10.16 3 720 37 761.78 31.45 7 050 78 046.98 43.30 
400 2 788.91 10.29 3 730 37 877.68 31.49 7 060 78 172.09 43.33 
410 2 872.86 10.42 3 740 37 993.62 31.53 7 070 78 297.22 43.36 
420 2 957.16 10.55 3 750 38 109.59 31.58 7 080 78 422.37 43.39 
430 3 041.80 10.67 3 760 38 225.61 31.62 7 090 78 547.54 43.42 
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m  ][ mxE  mσ  m  ][ mxE  mσ  m  ][ mxE  mσ  
440 3 126.78 10.80 3 770 38 341.66 31.66 7 100 78 672.73 43.45 
450 3 212.08 10.92 3 780 38 457.75 31.70 7 110 78 797.94 43.48 
460 3 297.70 11.04 3 790 38 573.88 31.74 7 120 78 923.17 43.51 
470 3 383.63 11.16 3 800 38 690.05 31.79 7 130 79 048.42 43.54 
480 3 469.87 11.28 3 810 38 806.25 31.83 7 140 79 173.69 43.58 
490 3 556.41 11.39 3 820 38 922.49 31.87 7 150 79 298.98 43.61 
500 3 643.24 11.51 3 830 39 038.77 31.91 7 160 79 424.30 43.64 
510 3 730.36 11.63 3 840 39 155.09 31.95 7 170 79 549.63 43.67 
520 3 817.76 11.74 3 850 39 271.45 31.99 7 180 79 674.98 43.70 
530 3 905.43 11.85 3 860 39 387.84 32.04 7 190 79 800.35 43.73 
540 3 993.38 11.96 3 870 39 504.27 32.08 7 200 79 925.75 43.76 
550 4 081.60 12.07 3 880 39 620.74 32.12 7 210 80 051.16 43.79 
560 4 170.07 12.18 3 890 39 737.24 32.16 7 220 80 176.59 43.82 
570 4 258.81 12.29 3 900 39 853.79 32.20 7 230 80 302.04 43.85 
580 4 347.79 12.40 3 910 39 970.36 32.24 7 240 80 427.51 43.88 
590 4 437.02 12.51 3 920 40 086.98 32.28 7 250 80 553.01 43.91 
600 4 526.50 12.61 3 930 40 203.63 32.32 7 260 80 678.52 43.94 
610 4 616.21 12.72 3 940 40 320.32 32.37 7 270 80 804.05 43.97 
620 4 706.17 12.82 3 950 40 437.05 32.41 7 280 80 929.60 44.00 
630 4 796.35 12.93 3 960 40 553.81 32.45 7 290 81 055.17 44.03 
640 4 886.76 13.03 3 970 40 670.61 32.49 7 300 81 180.77 44.06 
650 4 977.40 13.13 3 980 40 787.44 32.53 7 310 81 306.38 44.09 
660 5 068.26 13.23 3 990 40 904.32 32.57 7 320 81 432.01 44.12 
670 5 159.33 13.33 4 000 41 021.22 32.61 7 330 81 557.66 44.15 
680 5 250.62 13.43 4 010 41 138.17 32.65 7 340 81 683.33 44.18 
690 5 342.12 13.53 4 020 41 255.15 32.69 7 350 81 809.02 44.21 
700 5 433.83 13.63 4 030 41 372.16 32.73 7 360 81 934.73 44.24 
710 5 525.75 13.72 4 040 41 489.21 32.77 7 370 82 060.46 44.27 
720 5 617.87 13.82 4 050 41 606.30 32.81 7 380 82 186.21 44.30 
730 5 710.19 13.92 4 060 41 723.42 32.86 7 390 82 311.97 44.33 
740 5 802.70 14.01 4 070 41 840.58 32.90 7 400 82 437.76 44.36 
750 5 895.41 14.11 4 080 41 957.77 32.94 7 410 82 563.57 44.39 
760 5 988.32 14.20 4 090 42 075.00 32.98 7 420 82 689.40 44.42 
770 6 081.41 14.29 4 100 42 192.27 33.02 7 430 82 815.24 44.45 
780 6 174.68 14.39 4 110 42 309.57 33.06 7 440 82 941.11 44.48 
790 6 268.15 14.48 4 120 42 426.90 33.10 7 450 83 066.99 44.51 
800 6 361.79 14.57 4 130 42 544.27 33.14 7 460 83 192.90 44.54 
810 6 455.62 14.66 4 140 42 661.67 33.18 7 470 83 318.82 44.57 
820 6 549.62 14.75 4 150 42 779.11 33.22 7 480 83 444.76 44.60 
830 6 643.80 14.84 4 160 42 896.59 33.26 7 490 83 570.73 44.63 
840 6 738.15 14.93 4 170 43 014.10 33.30 7 500 83 696.71 44.66 
850 6 832.67 15.02 4 180 43 131.64 33.34 7 510 83 822.71 44.69 
860 6 927.36 15.11 4 190 43 249.22 33.38 7 520 83 948.73 44.72 
870 7 022.22 15.20 4 200 43 366.83 33.42 7 530 84 074.77 44.75 
880 7 117.25 15.28 4 210 43 484.47 33.46 7 540 84 200.82 44.78 
890 7 212.44 15.37 4 220 43 602.15 33.50 7 550 84 326.90 44.81 
900 7 307.79 15.46 4 230 43 719.87 33.54 7 560 84 453.00 44.84 
910 7 403.30 15.54 4 240 43 837.62 33.58 7 570 84 579.11 44.87 
920 7 498.96 15.63 4 250 43 955.40 33.62 7 580 84 705.25 44.90 
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m  ][ mxE  mσ  m  ][ mxE  mσ  m  ][ mxE  mσ  
930 7 594.79 15.71 4 260 44 073.22 33.65 7 590 84 831.40 44.93 
940 7 690.77 15.80 4 270 44 191.07 33.69 7 600 84 957.58 44.96 
950 7 786.90 15.88 4 280 44 308.95 33.73 7 610 85 083.77 44.99 
960 7 883.18 15.96 4 290 44 426.87 33.77 7 620 85 209.98 45.02 
970 7 979.62 16.05 4 300 44 544.82 33.81 7 630 85 336.21 45.05 
980 8 076.20 16.13 4 310 44 662.81 33.85 7 640 85 462.46 45.08 
990 8 172.93 16.21 4 320 44 780.83 33.89 7 650 85 588.72 45.10 

1 000 8 269.81 16.29 4 330 44 898.88 33.93 7 660 85 715.01 45.13 
1 010 8 366.82 16.38 4 340 45 016.96 33.97 7 670 85 841.31 45.16 
1 020 8 463.99 16.46 4 350 45 135.08 34.01 7 680 85 967.64 45.19 
1 030 8 561.29 16.54 4 360 45 253.23 34.05 7 690 86 093.98 45.22 
1 040 8 658.73 16.62 4 370 45 371.42 34.09 7 700 86 220.34 45.25 
1 050 8 756.31 16.70 4 380 45 489.64 34.13 7 710 86 346.72 45.28 
1 060 8 854.03 16.78 4 390 45 607.89 34.16 7 720 86 473.12 45.31 
1 070 8 951.88 16.86 4 400 45 726.17 34.20 7 730 86 599.54 45.34 
1 080 9 049.87 16.93 4 410 45 844.49 34.24 7 740 86 725.97 45.37 
1 090 9 147.99 17.01 4 420 45 962.84 34.28 7 750 86 852.43 45.40 
1 100 9 246.25 17.09 4 430 46 081.22 34.32 7 760 86 978.90 45.43 
1 110 9 344.63 17.17 4 440 46 199.63 34.36 7 770 87 105.39 45.46 
1 120 9 443.15 17.25 4 450 46 318.08 34.40 7 780 87 231.90 45.49 
1 130 9 541.79 17.32 4 460 46 436.56 34.44 7 790 87 358.43 45.52 
1 140 9 640.56 17.40 4 470 46 555.07 34.47 7 800 87 484.98 45.54 
1 150 9 739.46 17.48 4 480 46 673.61 34.51 7 810 87 611.55 45.57 
1 160 9 838.48 17.55 4 490 46 792.19 34.55 7 820 87 738.13 45.60 
1 170 9 937.63 17.63 4 500 46 910.80 34.59 7 830 87 864.73 45.63 
1 180 10 036.90 17.70 4 510 47 029.44 34.63 7 840 87 991.36 45.66 
1 190 10 136.29 17.78 4 520 47 148.11 34.67 7 850 88 118.00 45.69 
1 200 10 235.80 17.85 4 530 47 266.81 34.71 7 860 88 244.65 45.72 
1 210 10 335.43 17.93 4 540 47 385.55 34.74 7 870 88 371.33 45.75 
1 220 10 435.19 18.00 4 550 47 504.32 34.78 7 880 88 498.02 45.78 
1 230 10 535.05 18.07 4 560 47 623.12 34.82 7 890 88 624.74 45.81 
1 240 10 635.04 18.15 4 570 47 741.95 34.86 7 900 88 751.47 45.84 
1 250 10 735.14 18.22 4 580 47 860.81 34.90 7 910 88 878.22 45.86 
1 260 10 835.36 18.29 4 590 47 979.70 34.93 7 920 89 004.99 45.89 
1 270 10 935.70 18.37 4 600 48 098.63 34.97 7 930 89 131.77 45.92 
1 280 11 036.14 18.44 4 610 48 217.58 35.01 7 940 89 258.58 45.95 
1 290 11 136.70 18.51 4 620 48 336.57 35.05 7 950 89 385.40 45.98 
1 300 11 237.37 18.58 4 630 48 455.59 35.09 7 960 89 512.24 46.01 
1 310 11 338.15 18.65 4 640 48 574.64 35.12 7 970 89 639.10 46.04 
1 320 11 439.04 18.72 4 650 48 693.72 35.16 7 980 89 765.98 46.07 
1 330 11 540.04 18.80 4 660 48 812.84 35.20 7 990 89 892.87 46.10 
1 340 11 641.15 18.87 4 670 48 931.98 35.24 8 000 90 019.78 46.12 
1 350 11 742.37 18.94 4 680 49 051.15 35.28 8 010 90 146.71 46.15 
1 360 11 843.69 19.01 4 690 49 170.36 35.31 8 020 90 273.66 46.18 
1 370 11 945.12 19.08 4 700 49 289.59 35.35 8 030 90 400.63 46.21 
1 380 12 046.65 19.15 4 710 49 408.86 35.39 8 040 90 527.62 46.24 
1 390 12 148.29 19.22 4 720 49 528.16 35.43 8 050 90 654.62 46.27 
1 400 12 250.03 19.28 4 730 49 647.48 35.46 8 060 90 781.64 46.30 
1 410 12 351.87 19.35 4 740 49 766.84 35.50 8 070 90 908.68 46.33 
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m  ][ mxE  mσ  m  ][ mxE  mσ  m  ][ mxE  mσ  
1 420 12 453.82 19.42 4 750 49 886.23 35.54 8 080 91 035.73 46.36 
1 430 12 555.87 19.49 4 760 50 005.65 35.58 8 090 91 162.81 46.38 
1 440 12 658.02 19.56 4 770 50 125.10 35.61 8 100 91 289.90 46.41 
1 450 12 760.27 19.63 4 780 50 244.58 35.65 8 110 91 417.01 46.44 
1 460 12 862.62 19.69 4 790 50 364.09 35.69 8 120 91 544.14 46.47 
1 470 12 965.06 19.76 4 800 50 483.63 35.73 8 130 91 671.28 46.50 
1 480 13 067.61 19.83 4 810 50 603.20 35.76 8 140 91 798.45 46.53 
1 490 13 170.25 19.90 4 820 50 722.80 35.80 8 150 91 925.63 46.56 
1 500 13 272.99 19.96 4 830 50 842.43 35.84 8 160 92 052.83 46.58 
1 510 13 375.82 20.03 4 840 50 962.09 35.87 8 170 92 180.04 46.61 
1 520 13 478.75 20.10 4 850 51 081.78 35.91 8 180 92 307.28 46.64 
1 530 13 581.78 20.16 4 860 51 201.49 35.95 8 190 92 434.53 46.67 
1 540 13 684.90 20.23 4 870 51 321.24 35.98 8 200 92 561.80 46.70 
1 550 13 788.11 20.29 4 880 51 441.02 36.02 8 210 92 689.09 46.73 
1 560 13 891.42 20.36 4 890 51 560.83 36.06 8 220 92 816.39 46.75 
1 570 13 994.82 20.42 4 900 51 680.67 36.10 8 230 92 943.71 46.78 
1 580 14 098.31 20.49 4 910 51 800.53 36.13 8 240 93 071.05 46.81 
1 590 14 201.89 20.55 4 920 51 920.43 36.17 8 250 93 198.41 46.84 
1 600 14 305.56 20.62 4 930 52 040.36 36.21 8 260 93 325.78 46.87 
1 610 14 409.32 20.68 4 940 52 160.31 36.24 8 270 93 453.18 46.90 
1 620 14 513.17 20.75 4 950 52 280.29 36.28 8 280 93 580.59 46.93 
1 630 14 617.11 20.81 4 960 52 400.31 36.32 8 290 93 708.01 46.95 
1 640 14 721.14 20.87 4 970 52 520.35 36.35 8 300 93 835.46 46.98 
1 650 14 825.26 20.94 4 980 52 640.42 36.39 8 310 93 962.92 47.01 
1 660 14 929.46 21.00 4 990 52 760.52 36.43 8 320 94 090.40 47.04 
1 670 15 033.75 21.06 5 000 52 880.65 36.46 8 330 94 217.89 47.07 
1 680 15 138.13 21.13 5 010 53 000.81 36.50 8 340 94 345.41 47.10 
1 690 15 242.59 21.19 5 020 53 120.99 36.53 8 350 94 472.94 47.12 
1 700 15 347.14 21.25 5 030 53 241.21 36.57 8 360 94 600.49 47.15 
1 710 15 451.78 21.32 5 040 53 361.45 36.61 8 370 94 728.05 47.18 
1 720 15 556.49 21.38 5 050 53 481.73 36.64 8 380 94 855.63 47.21 
1 730 15 661.29 21.44 5 060 53 602.03 36.68 8 390 94 983.23 47.24 
1 740 15 766.18 21.50 5 070 53 722.36 36.72 8 400 95 110.85 47.26 
1 750 15 871.15 21.56 5 080 53 842.71 36.75 8 410 95 238.49 47.29 
1 760 15 976.19 21.63 5 090 53 963.10 36.79 8 420 95 366.14 47.32 
1 770 16 081.33 21.69 5 100 54 083.52 36.83 8 430 95 493.81 47.35 
1 780 16 186.54 21.75 5 110 54 203.96 36.86 8 440 95 621.49 47.38 
1 790 16 291.83 21.81 5 120 54 324.43 36.90 8 450 95 749.19 47.40 
1 800 16 397.21 21.87 5 130 54 444.93 36.93 8 460 95 876.91 47.43 
1 810 16 502.66 21.93 5 140 54 565.46 36.97 8 470 96 004.65 47.46 
1 820 16 608.19 21.99 5 150 54 686.01 37.01 8 480 96 132.40 47.49 
1 830 16 713.81 22.05 5 160 54 806.60 37.04 8 490 96 260.18 47.52 
1 840 16 819.50 22.11 5 170 54 927.21 37.08 8 500 96 387.96 47.54 
1 850 16 925.27 22.17 5 180 55 047.85 37.11 8 510 96 515.77 47.57 
1 860 17 031.12 22.23 5 190 55 168.52 37.15 8 520 96 643.59 47.60 
1 870 17 137.04 22.29 5 200 55 289.21 37.18 8 530 96 771.43 47.63 
1 880 17 243.05 22.35 5 210 55 409.93 37.22 8 540 96 899.28 47.66 
1 890 17 349.13 22.41 5 220 55 530.68 37.26 8 550 97 027.16 47.68 
1 900 17 455.28 22.47 5 230 55 651.46 37.29 8 560 97 155.05 47.71 
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m  ][ mxE  mσ  m  ][ mxE  mσ  m  ][ mxE  mσ  
1 910 17 561.51 22.53 5 240 55 772.27 37.33 8 570 97 282.95 47.74 
1 920 17 667.82 22.59 5 250 55 893.10 37.36 8 580 97 410.88 47.77 
1 930 17 774.20 22.65 5 260 56 013.96 37.40 8 590 97 538.82 47.80 
1 940 17 880.66 22.71 5 270 56 134.85 37.43 8 600 97 666.77 47.82 
1 950 17 987.19 22.76 5 280 56 255.77 37.47 8 610 97 794.75 47.85 
1 960 18 093.79 22.82 5 290 56 376.71 37.51 8 620 97 922.74 47.88 
1 970 18 200.47 22.88 5 300 56 497.68 37.54 8 630 98 050.74 47.91 
1 980 18 307.22 22.94 5 310 56 618.68 37.58 8 640 98 178.77 47.93 
1 990 18 414.05 23.00 5 320 56 739.70 37.61 8 650 98 306.81 47.96 
2 000 18 520.94 23.05 5 330 56 860.75 37.65 8 660 98 434.86 47.99 
2 010 18 627.91 23.11 5 340 56 981.83 37.68 8 670 98 562.94 48.02 
2 020 18 734.95 23.17 5 350 57 102.94 37.72 8 680 98 691.03 48.05 
2 030 18 842.07 23.23 5 360 57 224.07 37.75 8 690 98 819.14 48.07 
2 040 18 949.25 23.28 5 370 57 345.23 37.79 8 700 98 947.26 48.10 
2 050 19 056.50 23.34 5 380 57 466.41 37.82 8 710 99 075.40 48.13 
2 060 19 163.83 23.40 5 390 57 587.63 37.86 8 720 99 203.56 48.16 
2 070 19 271.22 23.45 5 400 57 708.87 37.89 8 730 99 331.73 48.18 
2 080 19 378.68 23.51 5 410 57 830.13 37.93 8 740 99 459.92 48.21 
2 090 19 486.22 23.57 5 420 57 951.43 37.96 8 750 99 588.13 48.24 
2 100 19 593.82 23.62 5 430 58 072.75 38.00 8 760 99 716.35 48.27 
2 110 19 701.49 23.68 5 440 58 194.09 38.03 8 770 99 844.59 48.29 
2 120 19 809.23 23.74 5 450 58 315.47 38.07 8 780 99 972.84 48.32 
2 130 19 917.03 23.79 5 460 58 436.87 38.10 8 790 100 101.11 48.35 
2 140 20 024.91 23.85 5 470 58 558.29 38.14 8 800 100 229.40 48.38 
2 150 20 132.85 23.90 5 480 58 679.74 38.17 8 810 100 357.71 48.40 
2 160 20 240.86 23.96 5 490 58 801.22 38.21 8 820 100 486.03 48.43 
2 170 20 348.93 24.01 5 500 58 922.73 38.24 8 830 100 614.37 48.46 
2 180 20 457.07 24.07 5 510 59 044.26 38.28 8 840 100 742.72 48.49 
2 190 20 565.28 24.13 5 520 59 165.82 38.31 8 850 100 871.09 48.51 
2 200 20 673.56 24.18 5 530 59 287.40 38.35 8 860 100 999.48 48.54 
2 210 20 781.89 24.24 5 540 59 409.01 38.38 8 870 101 127.88 48.57 
2 220 20 890.30 24.29 5 550 59 530.64 38.42 8 880 101 256.30 48.60 
2 230 20 998.77 24.34 5 560 59 652.31 38.45 8 890 101 384.73 48.62 
2 240 21 107.30 24.40 5 570 59 773.99 38.49 8 900 101 513.19 48.65 
2 250 21 215.90 24.45 5 580 59 895.71 38.52 8 910 101 641.65 48.68 
2 260 21 324.56 24.51 5 590 60 017.45 38.55 8 920 101 770.14 48.71 
2 270 21 433.29 24.56 5 600 60 139.21 38.59 8 930 101 898.64 48.73 
2 280 21 542.08 24.62 5 610 60 261.00 38.62 8 940 102 027.15 48.76 
2 290 21 650.93 24.67 5 620 60 382.82 38.66 8 950 102 155.69 48.79 
2 300 21 759.85 24.72 5 630 60 504.66 38.69 8 960 102 284.24 48.81 
2 310 21 868.83 24.78 5 640 60 626.53 38.73 8 970 102 412.80 48.84 
2 320 21 977.87 24.83 5 650 60 748.42 38.76 8 980 102 541.38 48.87 
2 330 22 086.97 24.89 5 660 60 870.34 38.80 8 990 102 669.98 48.90 
2 340 22 196.14 24.94 5 670 60 992.28 38.83 9 000 102 798.59 48.92 
2 350 22 305.36 24.99 5 680 61 114.25 38.86 9 010 102 927.22 48.95 
2 360 22 414.65 25.04 5 690 61 236.25 38.90 9 020 103 055.86 48.98 
2 370 22 524.00 25.10 5 700 61 358.27 38.93 9 030 103 184.52 49.00 
2 380 22 633.41 25.15 5 710 61 480.31 38.97 9 040 103 313.20 49.03 
2 390 22 742.88 25.20 5 720 61 602.38 39.00 9 050 103 441.89 49.06 
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m  ][ mxE  mσ  m  ][ mxE  mσ  m  ][ mxE  mσ  
2 400 22 852.41 25.26 5 730 61 724.48 39.03 9 060 103 570.60 49.09 
2 410 22 962.00 25.31 5 740 61 846.60 39.07 9 070 103 699.33 49.11 
2 420 23 071.65 25.36 5 750 61 968.75 39.10 9 080 103 828.07 49.14 
2 430 23 181.36 25.41 5 760 62 090.92 39.14 9 090 103 956.82 49.17 
2 440 23 291.13 25.47 5 770 62 213.12 39.17 9 100 104 085.60 49.19 
2 450 23 400.96 25.52 5 780 62 335.34 39.20 9 110 104 214.39 49.22 
2 460 23 510.85 25.57 5 790 62 457.58 39.24 9 120 104 343.19 49.25 
2 470 23 620.79 25.62 5 800 62 579.86 39.27 9 130 104 472.01 49.28 
2 480 23 730.80 25.67 5 810 62 702.15 39.31 9 140 104 600.84 49.30 
2 490 23 840.86 25.73 5 820 62 824.47 39.34 9 150 104 729.70 49.33 
2 500 23 950.98 25.78 5 830 62 946.82 39.37 9 160 104 858.56 49.36 
2 510 24 061.16 25.83 5 840 63 069.19 39.41 9 170 104 987.45 49.38 
2 520 24 171.39 25.88 5 850 63 191.59 39.44 9 180 105 116.34 49.41 
2 530 24 281.68 25.93 5 860 63 314.01 39.48 9 190 105 245.26 49.44 
2 540 24 392.03 25.98 5 870 63 436.45 39.51 9 200 105 374.19 49.46 
2 550 24 502.44 26.03 5 880 63 558.92 39.54 9 210 105 503.13 49.49 
2 560 24 612.90 26.09 5 890 63 681.41 39.58 9 220 105 632.10 49.52 
2 570 24 723.42 26.14 5 900 63 803.93 39.61 9 230 105 761.07 49.54 
2 580 24 834.00 26.19 5 910 63 926.47 39.64 9 240 105 890.07 49.57 
2 590 24 944.63 26.24 5 920 64 049.04 39.68 9 250 106 019.07 49.60 
2 600 25 055.32 26.29 5 930 64 171.63 39.71 9 260 106 148.10 49.62 
2 610 25 166.06 26.34 5 940 64 294.25 39.74 9 270 106 277.14 49.65 
2 620 25 276.86 26.39 5 950 64 416.89 39.78 9 280 106 406.19 49.68 
2 630 25 387.71 26.44 5 960 64 539.55 39.81 9 290 106 535.26 49.71 
2 640 25 498.62 26.49 5 970 64 662.24 39.84 9 300 106 664.35 49.73 
2 650 25 609.58 26.54 5 980 64 784.95 39.88 9 310 106 793.45 49.76 
2 660 25 720.59 26.59 5 990 64 907.69 39.91 9 320 106 922.57 49.79 
2 670 25 831.66 26.64 6 000 65 030.45 39.94 9 330 107 051.70 49.81 
2 680 25 942.79 26.69 6 010 65 153.23 39.98 9 340 107 180.85 49.84 
2 690 26 053.97 26.74 6 020 65 276.04 40.01 9 350 107 310.01 49.87 
2 700 26 165.20 26.79 6 030 65 398.88 40.04 9 360 107 439.19 49.89 
2 710 26 276.48 26.84 6 040 65 521.73 40.08 9 370 107 568.38 49.92 
2 720 26 387.82 26.89 6 050 65 644.61 40.11 9 380 107 697.59 49.95 
2 730 26 499.21 26.94 6 060 65 767.52 40.14 9 390 107 826.82 49.97 
2 740 26 610.66 26.99 6 070 65 890.45 40.18 9 400 107 956.06 50.00 
2 750 26 722.16 27.04 6 080 66 013.40 40.21 9 410 108 085.31 50.03 
2 760 26 833.70 27.09 6 090 66 136.37 40.24 9 420 108 214.59 50.05 
2 770 26 945.31 27.14 6 100 66 259.37 40.28 9 430 108 343.87 50.08 
2 780 27 056.96 27.18 6 110 66 382.40 40.31 9 440 108 473.17 50.10 
2 790 27 168.67 27.23 6 120 66 505.44 40.34 9 450 108 602.49 50.13 
2 800 27 280.42 27.28 6 130 66 628.51 40.37 9 460 108 731.82 50.16 
2 810 27 392.23 27.33 6 140 66 751.61 40.41 9 470 108 861.17 50.18 
2 820 27 504.09 27.38 6 150 66 874.72 40.44 9 480 108 990.53 50.21 
2 830 27 616.00 27.43 6 160 66 997.86 40.47 9 490 109 119.91 50.24 
2 840 27 727.96 27.48 6 170 67 121.03 40.51 9 500 109 249.30 50.26 
2 850 27 839.98 27.52 6 180 67 244.22 40.54 9 510 109 378.71 50.29 
2 860 27 952.04 27.57 6 190 67 367.43 40.57 9 520 109 508.14 50.32 
2 870 28 064.15 27.62 6 200 67 490.66 40.60 9 530 109 637.57 50.34 
2 880 28 176.32 27.67 6 210 67 613.92 40.64 9 540 109 767.03 50.37 
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m  ][ mxE  mσ  m  ][ mxE  mσ  m  ][ mxE  mσ  
2 890 28 288.53 27.72 6 220 67 737.20 40.67 9 550 109 896.50 50.40 
2 900 28 400.80 27.77 6 230 67 860.50 40.70 9 560 110 025.98 50.42 
2 910 28 513.11 27.81 6 240 67 983.83 40.74 9 570 110 155.48 50.45 
2 920 28 625.47 27.86 6 250 68 107.18 40.77 9 580 110 284.99 50.48 
2 930 28 737.89 27.91 6 260 68 230.55 40.80 9 590 110 414.52 50.50 
2 940 28 850.35 27.96 6 270 68 353.95 40.83 9 600 110 544.07 50.53 
2 950 28 962.86 28.00 6 280 68 477.37 40.87 9 610 110 673.63 50.55 
2 960 29 075.42 28.05 6 290 68 600.81 40.90 9 620 110 803.20 50.58 
2 970 29 188.03 28.10 6 300 68 724.27 40.93 9 630 110 932.79 50.61 
2 980 29 300.68 28.15 6 310 68 847.76 40.96 9 640 111 062.39 50.63 
2 990 29 413.39 28.19 6 320 68 971.27 41.00 9 650 111 192.01 50.66 
3 000 29 526.14 28.24 6 330 69 094.81 41.03 9 660 111 321.65 50.69 
3 010 29 638.94 28.29 6 340 69 218.36 41.06 9 670 111 451.30 50.71 
3 020 29 751.79 28.33 6 350 69 341.94 41.09 9 680 111 580.96 50.74 
3 030 29 864.69 28.38 6 360 69 465.54 41.13 9 690 111 710.64 50.76 
3 040 29 977.63 28.43 6 370 69 589.17 41.16 9 700 111 840.33 50.79 
3 050 30 090.63 28.47 6 380 69 712.81 41.19 9 710 111 970.04 50.82 
3 060 30 203.67 28.52 6 390 69 836.48 41.22 9 720 112 099.76 50.84 
3 070 30 316.75 28.57 6 400 69 960.18 41.25 9 730 112 229.50 50.87 
3 080 30 429.89 28.61 6 410 70 083.89 41.29 9 740 112 359.26 50.90 
3 090 30 543.07 28.66 6 420 70 207.63 41.32 9 750 112 489.02 50.92 
3 100 30 656.29 28.71 6 430 70 331.39 41.35 9 760 112 618.81 50.95 
3 110 30 769.57 28.75 6 440 70 455.17 41.38 9 770 112 748.60 50.97 
3 120 30 882.89 28.80 6 450 70 578.98 41.42 9 780 112 878.42 51.00 
3 130 30 996.25 28.85 6 460 70 702.80 41.45 9 790 113 008.24 51.03 
3 140 31 109.67 28.89 6 470 70 826.65 41.48 9 800 113 138.09 51.05 
3 150 31 223.12 28.94 6 480 70 950.52 41.51 9 810 113 267.94 51.08 
3 160 31 336.63 28.98 6 490 71 074.42 41.54 9 820 113 397.81 51.10 
3 170 31 450.18 29.03 6 500 71 198.33 41.58 9 830 113 527.70 51.13 
3 180 31 563.77 29.08 6 510 71 322.27 41.61 9 840 113 657.60 51.16 
3 190 31 677.41 29.12 6 520 71 446.23 41.64 9 850 113 787.51 51.18 
3 200 31 791.10 29.17 6 530 71 570.21 41.67 9 860 113 917.44 51.21 
3 210 31 904.83 29.21 6 540 71 694.22 41.70 9 870 114 047.39 51.23 
3 220 32 018.60 29.26 6 550 71 818.25 41.74 9 880 114 177.35 51.26 
3 230 32 132.42 29.30 6 560 71 942.29 41.77 9 890 114 307.32 51.29 
3 240 32 246.29 29.35 6 570 72 066.37 41.80 9 900 114 437.31 51.31 
3 250 32 360.20 29.39 6 580 72 190.46 41.83 9 910 114 567.31 51.34 
3 260 32 474.15 29.44 6 590 72 314.57 41.86 9 920 114 697.33 51.36 
3 270 32 588.15 29.48 6 600 72 438.71 41.89 9 930 114 827.36 51.39 
3 280 32 702.19 29.53 6 610 72 562.87 41.93 9 940 114 957.41 51.42 
3 290 32 816.28 29.57 6 620 72 687.05 41.96 9 950 115 087.47 51.44 
3 300 32 930.41 29.62 6 630 72 811.25 41.99 9 960 115 217.55 51.47 
3 310 33 044.58 29.66 6 640 72 935.47 42.02 9 970 115 347.64 51.49 
3 320 33 158.80 29.71 6 650 73 059.72 42.05 9 980 115 477.74 51.52 
3 330 33 273.06 29.75 6 660 73 183.99 42.08 9 990 115 607.86 51.54 

      10 000 115 737.99 51.57 
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B AMOUNT OF CIPHERTEXT BITS REQUIRED FOR LEMPEL-ZIV 
ATTACK TO BE SUCCESSFUL 

p  Min Bits p  Min Bits p  Min Bits
0.4 637 0.43 4097 0.46 13701 

0.401 765 0.431 4166 0.461 14076 
0.402 919 0.432 4272 0.462 15512 
0.403 1022 0.433 4410 0.463 15881 
0.404 1180 0.434 4586 0.464 16815 
0.405 1236 0.435 4752 0.465 17312 
0.406 1345 0.436 4924 0.466 18552 
0.407 1568 0.437 5167 0.467 19379 
0.408 1619 0.438 5356 0.468 21096 
0.409 1723 0.439 5435 0.469 22184 
0.41 1856 0.44 5592 0.47 23565 
0.411 2013 0.441 5671 0.471 25403 
0.412 2104 0.442 6067 0.472 27807 
0.413 2196 0.443 6332 0.473 30103 
0.414 2299 0.444 6725 0.474 31780 
0.415 2359 0.445 6783 0.475 35825 
0.416 2459 0.446 7009 0.476 39424 
0.417 2602 0.447 7530 0.477 42338 
0.418 2711 0.448 7794 0.478 45450 
0.419 2755 0.449 8082 0.479 50134 
0.42 2959 0.45 8333 0.48 53265 
0.421 3079 0.451 8566 0.481 57489 
0.422 3145 0.452 8841 0.482 62496 
0.423 3203 0.453 9641   
0.424 3251 0.454 10589   
0.425 3334 0.455 11028   
0.426 3445 0.456 11462   
0.427 3524 0.457 11831   
0.428 3899 0.458 12427   
0.429 3997 0.459 13087   
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C NUMBER OF DERIVATIVES FOR BINARY DERIVATIVE ATTACK 
TO SUCCEED 

 

p  
 
 

No Bits 

0.
4 

0.
40

5 

0.
41

 

0.
41

5 

0.
42

 

0.
42

5 

0.
43

 

0.
43

5 

0.
44

 

0.
44

5 

0.
45

 

0.
45

5 

0.
46

 

0.
46

5 

0.
47

 

 3 072 8 x x x x x x x x x x x x x x 
 6 144 3 6 8 8 11 20 17 19 18 17 x x x x x 
 9 216 2 3 4 4 5 10 12 12 16 15 19 x x x x 

 12 288 1 1 2 3 3 5 6 7 11 10 15 22 20 22 x 
 15 360 0 1 1 2 2 3 4 5 9 9 12 19 17 22 x 
 18 432 0 0 1 1 2 3 3 4 8 8 11 16 14 20 x 
 21 504 0 0 0 1 1 2 3 3 6 6 9 12 13 20 x 
 24 576 0 0 0 0 1 2 2 3 5 5 8 11 11 17 20 
 27 648 0 0 0 0 0 1 2 3 4 5 7 9 11 16 17 
 30 720 0 0 0 0 0 1 2 2 4 5 6 9 10 12 17 
 33 792 0 0 0 0 0 0 1 2 4 4 6 8 9 12 15 
 36 864 0 0 0 0 0 0 1 2 3 4 5 8 9 11 15 
 39 936 0 0 0 0 0 0 1 2 3 4 5 7 8 10 15 
 43 008 0 0 0 0 0 0 0 2 2 3 5 7 8 10 13 
 46 080 0 0 0 0 0 0 0 2 2 3 4 6 7 9 13 
 49 152 0 0 0 0 0 0 0 2 2 3 4 5 7 9 13 
 52 224 0 0 0 0 0 0 0 2 2 3 4 5 6 9 12 
 55 296 0 0 0 0 0 0 0 2 1 3 4 5 6 9 12 
 58 368 0 0 0 0 0 0 0 1 1 2 4 5 6 8 11 
 61 440 0 0 0 0 0 0 0 1 1 2 3 4 5 8 10 
 64 512 0 0 0 0 0 0 0 1 1 2 3 4 5 7 9 
 67 584 0 0 0 0 0 0 0 1 0 2 3 3 5 7 9 
 70 656 0 0 0 0 0 0 0 1 0 2 3 3 5 6 9 
 73 728 0 0 0 0 0 0 0 1 0 2 3 3 5 6 8 
 76 800 0 0 0 0 0 0 0 0 0 1 3 4 5 6 8 
 79 872 0 0 0 0 0 0 0 0 0 1 2 3 4 6 8 
 82 944 0 0 0 0 0 0 0 0 0 0 2 3 4 6 8 
 86 016 0 0 0 0 0 0 0 0 0 0 2 3 4 6 8 
 89 088 0 0 0 0 0 0 0 0 0 0 2 3 4 6 8 
 92 160 0 0 0 0 0 0 0 0 0 0 2 3 4 5 8 
 95 232 0 0 0 0 0 0 0 0 0 0 2 3 4 5 8 
 98 304 0 0 0 0 0 0 0 0 0 0 1 3 4 5 8 

 101 376 0 0 0 0 0 0 0 0 0 0 1 3 4 5 8 
 104 448 0 0 0 0 0 0 0 0 0 0 1 3 4 5 8 
 107 520 0 0 0 0 0 0 0 0 0 0 1 3 4 5 8 
 110 592 0 0 0 0 0 0 0 0 0 0 1 3 4 5 8 
 113 664 0 0 0 0 0 0 0 0 0 0 1 3 3 5 7 
 116 736 0 0 0 0 0 0 0 0 0 0 1 2 3 4 7 
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p  
 
 

No Bits 

0.
4 

0.
40

5 

0.
41

 

0.
41

5 

0.
42

 

0.
42

5 

0.
43

 

0.
43

5 

0.
44

 

0.
44

5 

0.
45

 

0.
45

5 

0.
46

 

0.
46

5 

0.
47

 

 119 808 0 0 0 0 0 0 0 0 0 0 1 2 3 4 7 
 122 880 0 0 0 0 0 0 0 0 0 0 1 2 3 4 7 
 125 952 0 0 0 0 0 0 0 0 0 0 1 2 3 4 6 
 129 024 0 0 0 0 0 0 0 0 0 0 1 2 3 4 6 
 132 096 0 0 0 0 0 0 0 0 0 0 1 2 3 4 7 
 135 168 0 0 0 0 0 0 0 0 0 0 1 2 3 4 6 
 138 240 0 0 0 0 0 0 0 0 0 0 1 2 3 4 6 
 141 312 0 0 0 0 0 0 0 0 0 0 1 2 3 4 6 
 144 384 0 0 0 0 0 0 0 0 0 0 1 2 3 4 6 
 147 456 0 0 0 0 0 0 0 0 0 0 0 1 3 4 6 
 150 528 0 0 0 0 0 0 0 0 0 0 0 1 3 4 6 
 153 600 0 0 0 0 0 0 0 0 0 0 0 1 3 4 6 
 156 672 0 0 0 0 0 0 0 0 0 0 0 1 2 4 6 
 159 744 0 0 0 0 0 0 0 0 0 0 0 1 2 4 6 
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D EXPECTED NUMBER OF PARITY EQUATIONS  

 

Choosing Ble −=  the tables (Table 6.1 to Table 1.4) below represent the amount of equations one 

can expect to find for 492 ≤≤ e . For the instance of 49=e , to find any equations, one needs to 

search at least 262=N  columns, which amounts to 512≈  operations, a figure close to impossible. 

The search for parity equations can however be performed in parallel, potentially allowing this 

amount of columns to be searched. The values where calculated using (4.56), repeated below. 

BlNNequE −⋅−⋅⋅=
2

1)1(
2
1][  (1.1) 

 

 

Table 6.1 Expected no. equations in 121 2...2=N for Blee −== |22...2  

N 
e 21 22 23 24 25 26 27 28 29 210 211 212 

2 0 1 7 30 124 504 2032 8160 32704 130944 524032 2096640
3 0 0 3 15 62 252 1016 4080 16352 65472 262016 1048320
4 0 0 1 7 31 126 508 2040 8176 32736 131008 524160 
5 0 0 0 3 15 63 254 1020 4088 16368 65504 262080 
6 0 0 0 1 7 31 127 510 2044 8184 32752 131040 
7 0 0 0 0 3 15 63 255 1022 4092 16376 65520 
8 0 0 0 0 1 7 31 127 511 2046 8188 32760 
9 0 0 0 0 0 3 15 63 255 1023 4094 16380 
10 0 0 0 0 0 1 7 31 127 511 2047 8190 
11 0 0 0 0 0 0 3 15 63 255 1023 4095 
12 0 0 0 0 0 0 1 7 31 127 511 2047 
13 0 0 0 0 0 0 0 3 15 63 255 1023 
14 0 0 0 0 0 0 0 1 7 31 127 511 
15 0 0 0 0 0 0 0 0 3 15 63 255 
16 0 0 0 0 0 0 0 0 1 7 31 127 
17 0 0 0 0 0 0 0 0 0 3 15 63 
18 0 0 0 0 0 0 0 0 0 1 7 31 
19 0 0 0 0 0 0 0 0 0 0 3 15 
20 0 0 0 0 0 0 0 0 0 0 1 7 
21 0 0 0 0 0 0 0 0 0 0 0 3 
22 0 0 0 0 0 0 0 0 0 0 0 1 
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Table 1.2 Expected no. equations in 2413 2...2=N  for Blee −== |22...2  

N 
e 213 214 215 216 217 218 219 220 221 222 223 

2 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
3 4193792 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
4 2096896 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
5 1048448 4194048 n/a n/a n/a n/a n/a n/a n/a n/a n/a 
6 524224 2097024 n/a n/a n/a n/a n/a n/a n/a n/a n/a 
7 262112 1048512 4194176 n/a n/a n/a n/a n/a n/a n/a n/a 
8 131056 524256 2097088 n/a n/a n/a n/a n/a n/a n/a n/a 
9 65528 262128 1048544 4194240 n/a n/a n/a n/a n/a n/a n/a 
10 32764 131064 524272 2097120 n/a n/a n/a n/a n/a n/a n/a 
11 16382 65532 262136 1048560 4194272 n/a n/a n/a n/a n/a n/a 
12 8191 32766 131068 524280 2097136 n/a n/a n/a n/a n/a n/a 
13 4095 16383 65534 262140 1048568 4194288 n/a n/a n/a n/a n/a 
14 2047 8191 32767 131070 524284 2097144 n/a n/a n/a n/a n/a 
15 1023 4095 16383 65535 262142 1048572 4194296 n/a n/a n/a n/a 
16 511 2047 8191 32767 131071 524286 2097148 n/a n/a n/a n/a 
17 255 1023 4095 16383 65535 262143 1048574 4194300 n/a n/a n/a 
18 127 511 2047 8191 32767 131071 524287 2097150 n/a n/a n/a 
19 63 255 1023 4095 16383 65535 262143 1048575 4194302 n/a n/a 
20 31 127 511 2047 8191 32767 131071 524287 2097151 n/a n/a 
21 15 63 255 1023 4095 16383 65535 262143 1048575 4194303 n/a 
22 7 31 127 511 2047 8191 32767 131071 524287 2097151 n/a 

 

Table 1.3 Expected no. equations in 2413 2...2=N  for Blee −== |49...23  

N 
e 213 214 215 216 217 218 219 220 221 222 223 224 

23 3 15 63 255 1023 4095 16383 65535 262143 1048575 4194303 n/a 
24 1 7 31 127 511 2047 8191 32767 131071 524287 2097151 n/a 
25 0 3 15 63 255 1023 4095 16383 65535 262143 1048575 4194303
26 0 1 7 31 127 511 2047 8191 32767 131071 524287 2097151
27 0 0 3 15 63 255 1023 4095 16383 65535 262143 1048575
28 0 0 1 7 31 127 511 2047 8191 32767 131071 524287 
29 0 0 0 3 15 63 255 1023 4095 16383 65535 262143 
30 0 0 0 1 7 31 127 511 2047 8191 32767 131071 
31 0 0 0 0 3 15 63 255 1023 4095 16383 65535 
32 0 0 0 0 1 7 31 127 511 2047 8191 32767 
33 0 0 0 0 0 3 15 63 255 1023 4095 16383 
34 0 0 0 0 0 1 7 31 127 511 2047 8191 
35 0 0 0 0 0 0 3 15 63 255 1023 4095 
36 0 0 0 0 0 0 1 7 31 127 511 2047 
37 0 0 0 0 0 0 0 3 15 63 255 1023 
38 0 0 0 0 0 0 0 1 7 31 127 511 
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N 
e 213 214 215 216 217 218 219 220 221 222 223 224 

39 0 0 0 0 0 0 0 0 3 15 63 255 
40 0 0 0 0 0 0 0 0 1 7 31 127 
41 0 0 0 0 0 0 0 0 0 3 15 63 
42 0 0 0 0 0 0 0 0 0 1 7 31 
43 0 0 0 0 0 0 0 0 0 0 3 15 
44 0 0 0 0 0 0 0 0 0 0 1 7 
45 0 0 0 0 0 0 0 0 0 0 0 3 
46 0 0 0 0 0 0 0 0 0 0 0 1 
47 0 0 0 0 0 0 0 0 0 0 0 0 
48 0 0 0 0 0 0 0 0 0 0 0 0 
49 0 0 0 0 0 0 0 0 0 0 0 0 

 

Table 1.4 Expected no. equations in 3025 2...2=N  for Blee −== |49...23  

N 
e 225 226 227 228 229 230 

23 n/a n/a n/a n/a n/a n/a 
24 n/a n/a n/a n/a n/a n/a 
25 n/a n/a n/a n/a n/a n/a 
26 n/a n/a n/a n/a n/a n/a 
27 4194303 n/a n/a n/a n/a n/a 
28 2097151 n/a n/a n/a n/a n/a 
29 1048575 4194303 n/a n/a n/a n/a 
30 524287 2097151 n/a n/a n/a n/a 
31 262143 1048575 4194303 n/a n/a n/a 
32 131071 524287 2097151 n/a n/a n/a 
33 65535 262143 1048575 4194303 n/a n/a 
34 32767 131071 524287 2097151 n/a n/a 
35 16383 65535 262143 1048575 4194303 n/a 
36 8191 32767 131071 524287 2097151 n/a 
37 4095 16383 65535 262143 1048575 4194303 
38 2047 8191 32767 131071 524287 2097151 
39 1023 4095 16383 65535 262143 1048575 
40 511 2047 8191 32767 131071 524287 
41 255 1023 4095 16383 65535 262143 
42 127 511 2047 8191 32767 131071 
43 63 255 1023 4095 16383 65535 
44 31 127 511 2047 8191 32767 
45 15 63 255 1023 4095 16383 
46 7 31 127 511 2047 8191 
47 3 15 63 255 1023 4095 
48 1 7 31 127 511 2047 
49 0 3 15 63 255 1023 
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Table 1.5 Expected no. equations in 3631 2...2=N  for Blee −== |49...23  

N 
e 231 232 233 234 235 236 

23 n/a n/a n/a n/a n/a n/a 
24 n/a n/a n/a n/a n/a n/a 
25 n/a n/a n/a n/a n/a n/a 
26 n/a n/a n/a n/a n/a n/a 
27 n/a n/a n/a n/a n/a n/a 
28 n/a n/a n/a n/a n/a n/a 
29 n/a n/a n/a n/a n/a n/a 
30 n/a n/a n/a n/a n/a n/a 
31 n/a n/a n/a n/a n/a n/a 
32 n/a n/a n/a n/a n/a n/a 
33 n/a n/a n/a n/a n/a n/a 
34 n/a n/a n/a n/a n/a n/a 
35 n/a n/a n/a n/a n/a n/a 
36 n/a n/a n/a n/a n/a n/a 
37 n/a n/a n/a n/a n/a n/a 
38 n/a n/a n/a n/a n/a n/a 
39 4194303 n/a n/a n/a n/a n/a 
40 2097151 n/a n/a n/a n/a n/a 
41 1048575 4194303 n/a n/a n/a n/a 
42 524287 2097151 n/a n/a n/a n/a 
43 262143 1048575 4194303 n/a n/a n/a 
44 131071 524287 2097151 n/a n/a n/a 
45 65535 262143 1048575 4194303 n/a n/a 
46 32767 131071 524287 2097151 n/a n/a 
47 16383 65535 262143 1048575 4194303 n/a 
48 8191 32767 131071 524287 2097151 n/a 
49 4095 16383 65535 262143 1048575 4194303 
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E AVERAGE NUMBER OF PARITY EQUATIONS REQUIRED BY 
FAST CORRELATION ATTACK 

 

Table 1.6 The number of required parity equations as a function of channel probability for B=2 

p  Equ  p  Equ  p  Equ  
0.1 5 0.3 142 0.473 343589 
0.11 7 0.31 196 0.474 458711 
0.12 7 0.32 222 0.475 530267 
0.13 10 0.33 222 0.476 612724 
0.14 10 0.34 399 0.477 612724 
0.15 10 0.35 399 0.478 708049 
0.16 11 0.36 555 0.479 1092476
0.17 14 0.37 743 0.48 1262373
0.18 14 0.38 991 0.481 1458833
0.19 47 0.39 1193 0.482 1685983
0.2 47 0.4 1583 0.483 2252082
0.21 47 0.41 2869 0.484 2252082
0.22 62 0.42 4388   
0.23 62 0.43 9125   
0.24 62 0.44 16338   
0.25 87 0.45 29248   
0.26 87 0.46 70007   
0.27 94 0.47 222970   
0.28 142 0.471 222970   
0.29 142 0.472 297406   
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F SELECTED DECIMATION FACTORS 

 

Table 1.7  Decimation factors for LFSRs smaller than 64 bits 

LFSR SIZE 
L  

Factors of 
12 −L  

Decimation Factor 
D  

Decimated LFSR Size 
*L  

18 3 513 9 
 3 3591 9 
 3 4161 6 
 7 12483 6 
 19 29127 6 
 73 37449 3 
  87381 2 

19 prime   
20 3 1025 10 
 5 3075 10 
 5 11275 10 
 11 31775 10 
 31 95325 10 
 41 33825 5 
  69905 4 
  209715 4 
  349525 2 

21  16513 7 
  299593 3 

22 3 2049 11 
 23 47127 11 
 89 182361 11 
 683 1398101 2 

23 47 None  
 178481   

24 3 4097 12 
 3 12291 12 
 5 20485 12 
 7 28679 12 
 13 36873 12 
 17 53261 12 
 241 61455 12 
  86037 12 
  143395 12 
  159783 12 
  184365 12 
  258111 12 
  372827 12 
  430185 12 
  479349 12 
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LFSR SIZE 
L  

Factors of 
12 −L  

Decimation Factor 
D  

Decimated LFSR Size 
*L  

  1290555 12 
  65793 8 
  197379 8 
  328965 8 
  986895 8 
  266305 6 
  798915 6 
  1864135 6 
  1118481 4 
  3355443 4 
  2396745 3 
  5592405 2 

25 31 1082401 5 
 601   
 1801   

26 8191 8193 13 
 3 22369621 2 
 2731   

27 7 262657 9 
 73 1838599 9 
 262657 19173961 3 
  134217727 1 

28 3 16385 14 
 43 49155 14 
 127 704555 14 
 5 2080895 14 
 29 6242685 14 
 113 2113665 7 
  17895697 4 
  53687091 4 
  89478485 2 

29 233 None  
 1103   
 2089   

30 3 32769 15 
 3 229383 15 
 7 1015839 15 
 11 4948119 15 
 31 7110873 15 
 151 1049601 10 
 331 3148803 10 
  11545611 10 
  32537631 10 
  97612893 10 
  17043521 6 
  51130563 6 
  119304647 6 
  34636833 5 
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LFSR SIZE 
L  

Factors of 
12 −L  

Decimation Factor 
D  

Decimated LFSR Size 
*L  

  153391689 3 
  357913941 2 

31 prime   
32 3 65537 16 
 5 196611 16 
 17 327685 16 
 257 983055 16 
 65537 1114129 16 
  3342387 16 
  5570645 16 
  16711935 16 
  16843009 8 
  50529027 8 
  84215045 8 
  252645135 8 
  286331153 4 
  858993459 4 
  1431655765 2 

33 7 4196353 11 
 23 96516119 11 
 89 373475417 11 
 599479 1227133513 3 

34 3 131073 17 
 43691   
 131071   

35 31 270549121 7 
 71 1108378657 5 
 127   
 122921   

36 3 262145 18 
 3 786435 18 
 3 1835015 18 
 5 2359305 18 
 7 4980755 18 
 13 5505045 18 
 19 7077915 18 
 37 14942265 18 
 73 16515135 18 
 109 19136585 18 
  34865285 18 
  44826795 18 
  57409755 18 
  104595855 18 
  133956095 18 
  172229265 18 
  313787565 18 
  363595115 18 
  401868285 18 
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LFSR SIZE 
L  

Factors of 
12 −L  

Decimation Factor 
D  

Decimated LFSR Size 
*L  

  516687795 18 
  1205604855 18 
  16781313 12 
  16781313 12 
  50343939 12 
  83906565 12 
  117469191 12 
  151031817 12 
  218157069 12 
  251719695 12 
  352407573 12 
  587345955 12 
  654471207 12 
  755159085 12 
  1057222719 12 
  1527099483 12 
  1762037865 12 
  1963413621 12 
  134480385 9 
  941362695 9 
  1090785345 6 

37 223 None  
 616318177   

38 3 524289 19 
 174763   
 524287   

39 7 67117057 13 
 79   
 8191   
 121369   

40 3 1048577 20 
 5 3145731 20 
 5 5242885 20 
 11 5242885 20 
 31 11534347 20 
 41 15728655 20 
 17 26214425 20 
 61681 32505887 20 
  34603041 20 
  42991657 20 
  57671735 20 
  78643275 20 
  97517661 20 
  128974971 20 
  162529435 20 
  173015205 20 
  214958285 20 
  288358675 20 
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LFSR SIZE 
L  

Factors of 
12 −L  

Decimation Factor 
D  

Decimated LFSR Size 
*L  

  357564757 20 
  472908227 20 
  487588305 20 
  644874855 20 
  812647175 20 
  865076025 20 
  1072694271 20 
  1332741367 20 
  1418724681 20 
  1787823785 20 
  1074791425 10 

41 13367 None  
 164511353   

42 3 2097153 21 
 3 14680071 21 
 7 102760497 21 
 7 266338431 21 
 43 706740561 21 
 127 1864369017 21 
 337 268451841 14 
 5419 805355523 14 

43 431 None  
 9719   
 2099863   

44 3 4194305 22 
 5 12582915 22 
 23 96469015 22 
 89 289407045 22 
 397 373293145 22 
 683 1119879435 22 
 2113   

45 7 1073774593 15 
 31   
 73   
 151   
 631   
 23311   

46 3 8388609 23 
 47 394264623 23 
 178481   
 2796203   

47 2351 None  
 4513   
 13264529   

48 3 16777217 24 
 3 50331651 24 
 5 83886085 24 
 7 117440519 24 
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LFSR SIZE 
L  

Factors of 
12 −L  

Decimation Factor 
D  

Decimated LFSR Size 
*L  

 13 150994953 24 
 17 218103821 24 
 241 251658255 24 
 97 285212689 24 
 257 352321557 24 
 673 587202595 24 
  654311463 24 
  754974765 24 
  855638067 24 
  1056964671 24 
  1090519105 24 
  1426063445 24 
  1526726747 24 
  1761607785 24 
  1962934389 24 
  1996488823 24 

49 127 None below 2^31  
 270549121   

50 3 33554433 25 
 11 1040187423 25 
 31   
 251   
 601   
 1801   
 4051   

51 7 None below 2^31  
 103   
 2143   
 11119   
 131071   

52 3 67108865 26 
 5 201326595 26 
 53   
 157   
 1613   
 2731   
 8191   

53 6361 None below 2^31  
 69431   
 20394401   

54 3 134217729 27 
 3 939524103 27 
 3   
 3   
 7   
 19   
 73   
 87211   
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LFSR SIZE 
L  

Factors of 
12 −L  

Decimation Factor 
D  

Decimated LFSR Size 
*L  

 262657   
55 23 None below 2^31  
 31   
 89   
 881   
 3191   
 201961   

56 3 268435457 28 
 5 805306371 28 
 17 1342177285 28 
 29   
 43   
 113   
 127   
 15790321   

57 7 None below 2^31  
 32377   
 524287   
 1212847   

58 3 536870913 29 
 59   
 233   
 1103   
 2089   
 3033169   

59 179951 None below 2^31  

 
320343178033

7   
60 3 1073741825 30 
 3   
 5   
 5   
 7   
 11   
 13   
 31   
 41   
 61   
 151   
 331   
 1321   

61 prime   
    
    

62 3 None below 2^31  
 715827883   
 2147483647   

63 7 None below 2^31  
 7   
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LFSR SIZE 
L  

Factors of 
12 −L  

Decimation Factor 
D  

Decimated LFSR Size 
*L  

 73   
 127   
 337   
 92737   
 649657   

64 3 None below 2^31  
 5   
 17   
 257   
 641   
 65537   
 6700417   
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