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" Abstract

Correlation based model wvalidity tests are derived which detect

omitted linear and nonlinear dynamic terms in estimated models.
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Introduction

Model validation should form the final staée of any identifiéation
procedure. If the system under analysis is linear then a number of
well established tests are available for validating the estimated model
[Goring & Unbehauen 1973, Boom & Enden 1973]. It can however easily
be shown [?illings and Voon 1983] that the well known covariance tests
which consist of computing the autocorrelation function of the residuals
and the cross-correlation between the residuals and the input [Box and
Jenkins 1976] which were developed for linear systems provide incorrect
information whenever nonlinear effects [?illings l980] are present in
the data. Application of these tests may therefore mislead the
experimenter into believing his model is adequate when it is not and 1
new tests which overcome these deficiencies are required.

In the present study higher order correlation functions are
introduced to detect the presence of unmodelled linear and nonlinear
terms in the residuals. The results represent an extension of
previous work [Billings and Fakhouri 1982, Billings and Voon 1983],
which developed tests to indicate if the residuals were unpredictable
from all linear and nonlinear combinations of past inputs and outputs.
These tests however can only be applied when a noise model is estimated.
Additional tests are required when instrumental variables or suboptimal
least squares type algorithms EBillings and Voon 1984] are applied which
yield unbiased estimates of the process model without estimating a
noise model. Simple to compute and interpret tests which can be used
in conjunction with these latter algorithms are introduced in the

present study.



Problem Statement

It will be assumed throughout that the system under investigation

is analytic and can be represented by a Volterra series
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Using the operator calculus developed by Brilliant and George

[ﬁillings l980] egn (1) can be expressed as
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where the square brackets indicate that H operates on u(t) and the
parenthesis depict the actual felationship. It is important to
emphasise that the continuous time Volterra series model is chosen as
a convenient representation for a wide class of nonlinear systems.
The fact that all the results are derived for this model does not
constrain the applicability of the results to Volterra models only.
The final results can be applied to all analytic nonlinear systems
whatever form of model is used to characterise the input/output map.

The first stage in the analysis of any data ought to involve some
simple calculations which indicate if the system under test is linear
or nonlinear. There are several simple tests which yield this
information.

Wherever the input u(t)+b, u(t) = 0, b # O is applied to a system

the system cannot be linear if zb(t) # z(t) where zb(t) and z(t) are

the mean levels of the system output for the inputs b (i.e. u(t) = 0)



and u(t)+b respectively. Alternatively, for an input u(t)+b, b # O
where the third order moments of u(t) are zero and all even order
moments exist (a sine wave, gaussian or ternary sequence would for
example satisfy these conditions) then the process is linear iff
[Billings and Voon 1983, Haber 1985]
- -2

¢ (1) = E{(z(t -1)~2) (2(t)-2) F= 0¥ (3)
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If the input u(t) for an excitation u(t)+b, b # O belongs to the

separable class of random processes [?illings and Fakhouri 1982] then

the system under test is linear iff

6.2, (0 = Bl(u(e-1)?(z(0)-2)} =o¥r (a)

Examples of the application of all these tests are available in
the literature.

The application of any of the above structure detection tests
will indicate to the experimenter at an early stage in the analysis if
it is worthwhile fitting a nonlinear model. Once a model of the process
has been estimated, whether linear or nonlinear, model validity tests
are applied to detect if there are any unmodelled terms in the

residuals which if omitted from the model will induce biased estimates.

Model Validity Tests

Linear Systems

If a system is linear zb(t) =z(t), ¢ 2(T) =0or ¢ 5 (1) =0

: zta' uz'
then two simple covariance tests can be applied to detect unmodelled

linear terms in the residuals [Box and Jenkins 1976]. If the process

and the noise model estimates are correct then it can be shown that

(1) § (1)
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where £(t) represents the residual sequence. If the process model
is correct but the noise model is incorrect then the residuals will

be autocorrelated ¢£ (1) # 6(1) but they will be uncorrelated with the

£

input ¢u bt = 0¥z, Alternatively, if the noise model is correct

g

and the process model is biased then the residuals are both auto-

correlated ¢,_,_(T) # 8(1) and correlated with the input ¢UE(T) # 0.

EE
It is possible using these simple correlations therefore to distinguish
between deficiencies in the process and the noise models.

The situation is not quite so straightforward when the system is

nonlinear.

Nonlinear Systems

In nonlinear systems the noise may enter the system internally and
cannot always be translated to be additive at the output ELeontaritis
and Billings 1985]. The general situation, where noise e(t) possibly

nonlinear, enters a nonlinear system internally can be represented by
u ue er X
z(t) = 6 [ut)] + 6 [ult),e(t)] + 6" [(t)] (6)

where Gu[u(t)], 6 [e(t)] are fmétions of u(t) and e(t) only and
Gue[ﬁ(t),e{t)] represents all cross-product terms. Since we have
very little control over the form of the input signals and the residuals
at the model validation stage we must derive tests which work under the
worst possible combinations of signal properties. We will assume
therefore that u(t) and e(t) are independent zero mean processes, all
odd order moments are zero and e(+¢) is white and u(:) may be white.
Previous work has shown [ﬁillings and Voon 1983] that every
isolated term in egn (6) if omitted from the model can be detected by

three correlation tests. Specifically the residuals £(t) will be



unpredictable from all linear and nonlinear combinations of past inputs

and outputs iff

bep (1) = 8(1)
¢U—E(T) = 0¥t
bep(D = E[E®)E(E-1-Dut-1-D] =0 T >0 (7)

Notice that the traditional tests used for linear systems egn (6) are
not sufficient.

The tests in egn (7) can however only be applied if a noise model
is fitted as part of—the estimation procedure so that g(t) is reduced
to an unpredictable sequence. When instrumental variables (IV) or
suboptimal least squares (SOLS) routines are used EBillings and Voon
1984] estimates of the process model Gu[p(t)] only are obtained and
alternative model validity tests need to be derived.

Estimates of the process model parameters using an IV or SOLS
routine will only be unbiased if the noise is additive at the output

[?illings and Voon 1984]. These algorithms can therefore only be

applied if the model of egqn (6) can be expressed as
z(t) = ¢ [u(t)] + c®[e(t)] (8)

Model validity tests must be designed therefore to detect the presence
of GuEu(t)] and Gue[ﬁ{t),e(t)] terms in the residuals and not Ge[e{t)]
since E(t) = Ge[e(t)] when no noise model is estimated. If
Gue[u(t),e(t)] is detected this will indicate that the noise is not
additive at the output and consequently application of IV or SOLS

will yield biased estimates. The advantage of considering IV or SOLS
algorithms rather than a érediction error routine [Billings and Voon

1985] is that the former two methods involve a considerably reduced



parameter set because unbiased estimates can be obtained without
fitting a noise model providing the noise is additive at the sys.tem
output.

The cross-correlation ¢ X 2(1') detects all terms in Gu[u(t)]

u
and G'° [u(t) ,E(t)] except G° [e(t)] and is defined as

Il

¢ 51 5 (1) E{ [:1-12(t)—u2 (t}] I:Gu [u(t+'r)]+Gue [u(t+'r) ,e(t+T):| 6" [e (t+'r):|]2}
u &

B{u” (&) (P futt+n]) 24u? (1) (@ [ult+r) e (t+1) ]) 2

+u” (1) (& [e (b)) 2 12mu? (£)6" [u(e+1) 6" [ult+n),
e(trn) J+a” (06 fu(trn) 6% [e (trm +u | ()¢ [e(t+D) ]

G Clult+n) ;e (t+1) ]} (9)

Expanding equation (9) and analysing each term:-
(1) Blu® (0 (@ T+ 1%} # 0¥ [uw)]
(11)  Blu? (0 (€ [u(t+n) e (t+0) ) 2) # 0¥ 6™ [uct) e ()]
(111) Bl (8) (& [et+n %} = o¥ ¢ [e(t)]

(iv) E{u2|{t)Gu[u(t+T)]Gue I:u(t+'r) ,e(t+'r):|} = 0 if for Gue [umen] :

n = odd and odd order momentsof e(t) are zero
2!
(v) E{u (t)Gu[u(t+T)JGe [e(t+1')]} =0 if for Gu[um] and Ge[en],

m or n = odd and odd order moments of e(t) and or u(t) are zero

2

(vi) Efu '(t) Ge [e(t+T)]Gue[:u(t+'r) ,e(t+1’):[} = 0 if Gue umen] , m = odd

and odd order moments of u(t) are zero

Notice that ¢ ,, ,(7) detects all terms of equation (6) except @ [e(t)]
u

3
and therefore ¢ o 2(1’) = O indicates that Gu[u(t)] is correctly modelled
u_¢€

e[u(t) ,e(t):l is zero.

and Gu



Ideally, it would be desirable if either even or odd polynomial

terms could be detected in Gu[h(t)] when ¢ o1 2(T) # 0. This would
u £

greatly aid the decision of which polynomial terms should be included

in the model. The function ¢u (1) detects odd terms in Gu[ﬁ(t)]

3
whenever odd moments of u(t) are zero. Conversely ¢ o (1) detects
all even terms in Gu[u(t)] (all odd terms make no contril%ution) again
providing the odd order moments of u(t) are zero. Notice however,
that both ¢ug(r) and ¢u2,€(1) do not indicate the presence of Ge[é(t)]
terms in the residuals.

A nonlinear model estimated using IV or SOLS will therefore only

be unbiased providing

¢ 51 (1) =0 ¥r1 )
u £
¢ 5 (1) =0 %7 g (10)
u £
=0 ¥
¢u€m 0¥ J

Sometimes u2 (t) and Ez(t) are small and the correlation ¢ o 2(1) may

3

also be small even though £(t) is correlated with u(t). It is advisable

therefore to include ¢ ,, (1) and ¢ug
u &

The model validity tests in egqn (10) can indicate which terms

(1) in the model validity checks.

have been omitted from the model. An indication of how to interpret

the results is summarised in Table 1.



'¢ 21
u

2(T)

Comment

Process model unbiased.
Noise additive at the output

Internal noise term auk(t)eg{t)
where k = even or odd, 2 odd
omitted from the model if odd
order moments of e(t) are zero

Internal noise and/or wrong
model structure

Even power of u(t) and/or
internal noise

k L
ou (t)e (t) k,L = even omitted
from the model if odd order
moments of u(t) are zero

0dd power of u(t) and/or
internal noise

k

u (t)eg(t) k = odd, & = even
omitted from the model if odd
order moments of u(t) are zero

Practical experience in applying

Table 1

the tests developed above has shown

that if the tests in both egn's (7) and (10) are used in conjunction

with a prediction error estimation routine this often provides the

experimenter with a great deal of information about the system under

test and can indicate which terms should be included in the model to

improve the fit [Billings and Voon 1985].
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Computation Aspects

All the tests above are based on single dimensional correlation
functions which for sampled input and output signals are calculated
accordingly to the formulae

1 Nk _ _
=) (x(£)-x) (y (t+k) -y)

~ N —
o, (k) = —=t (11)

lel ‘
J@x.x.<0)¢y.y.(o>

and similarly &K,y(k) B ¢x|yﬁk) with y set to zero. The normalisation

of the correlation functions as in egn (11) ensures that they lie in

the range
~1 < ¢X,y,(k) < 1 and
-1 < ¢, (k) < 1.
- Tx'y -

Confidence intervals plotted on the graphs indicate if the
correlation between variables is significant or not. If N is large

the standard deviation of the correlation estimate is l//ﬁ; the 95%

confidence limits are therefore approximately ¥1.96/VN.

Simulation Results

The algorithms described above have been tested on both simulated
systems and industrial plant data.

An implicit nonlinear model was simulated with additive coloured

noise
y(t) = 0.5y (t-1) + 0.3y (t-1)u(t-1) + 0.2u(t-1)
+ O.6u2(t—l) + 0.05y2(t—l) (12)
glL) = ¥iE) + e(tHﬂ“5e2(t) + O.5e3(t)

u(t) = u'(t)+b, b = 0.2 and e(t) a discrete white sequence A(0,0.1).
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The mean levels of equation (12), E;'= 0.1623 and z = 1.249

indicate that the process is nonlinear and this is confirmed by

$ 2(T) and ¢ (1) in figure 1.

| |
Z Z Zbe

A suboptimal least squares algorithm was used to estimate the

2

parameters in equation (12). To illustrate the effectiveness of the
model validity tests derived for this type of system the term

0.3y (t-1)u(t-1l) was deliberately omitted from the model and the
parameters were estimated using suboptimal least squares to yield

the model

z(t) = 0.05975z(t-1) + 0.3303u(t-1) + 0.1213z2 (t-1)
+ 1.198u” (t-1) (13)

The correlation functions ¢uE(T)' ¢ X (1) and ¢ o1 2(T) in figure 2
u u

£ £
indicate that the model (equation 13) is biased. However including
all the terms in the model yields final estimates as

z(t) = 0.5135z(t-1) + 0.1932u(t-1) + 0.04377z> (t-1)

+ 9811 3% E=1) (k-1 & O.5969u2(t—l) (14)

The model wvalidity tests indicate that this model is adequate as
illustrated in figure 3 and shown by comparison of equation (12) and
(14) .

A heat exchanger consisting of a radiator through which heated
water is passed and a fan which blows air across the radiator was
studied [ﬁillings and Fadzil 1985]. The system is a two input (heater
and fan controls), two output (drop in temperature across the radiator,
air flow rate) system. Models have been fitted to all the loops only

one of which is nonlinear. Only the nonlinear fan/air flow loop will



w10 =

be considered here. Initially a linear model was estimated using
a prediction error routine to yield the best linear model
z'(t) = 0.851lz'(t-1) - 0.157lzﬂ(t—2)
+ 0.265u' (t-1) = 0.333u' (t-2) + e(t)
- 0.089%e(t-1) + 0.33% (t-2) + 0.227e(t-3)
+ 0.,0813e(t-4) (15)
Computing the residuals for this model and applying the model validity
tests of both egns (7) and (10) gave the results illustrated in Fig.4.

Because ¢E (t) = 8§(1) and ¢uE(T) = O¥rT in Fig.4 a normal linear

€
analysis would terminate at this point, and the poor prediction
accuracy of the model would probably be assumed to be caused by a
poor S/N ratio. Inspection of Fig.4 however clearly shows that
$ 5 (1) and ¢ o (1) are well outside the 95% confidence bands

u & u

indicating that nonlinear terms should be included in the model.

The input excitation for the heat exchanger was a Gaussian white signal

so that from Table 1, the combination of ¢uE(T) =0, ¢ g {(T) # 0

u £
and ¢ o 2(T) # O strongly suggests that even terms (e.q. uz(-)) and/or
u £
L
internal noise terms of the form uk(t)s (t) £,k even should be added
to the model. Since ¢€EU(T) is within the confidence bands this

indicates that there are no terms of the form uq(t—m)s{t—n)ifnqm,
odd g in the residuals. The effects of introducing these nonlinear
terms in the model was therefore investigated.

A prediction erxror estimator combined with a stepwise regression
algorithm was used to determine which nonlinear terms to include in the
model and to optimise the_parameter estimates. The use of this

algorithm in combination with the model validity tests of egns (7) and
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(10) produced the final nonlinear model [Billings and Fadzil 19851

z(t) = 2.301+0.9173z (t-1)+0.44%u(t-1)+0.04577u (t-2)
2
-0.01889z (t—l)—0.00999u2(k*l)—0.00209922(t~l)u(t—l)
—0.00243u3(t—l)+5(t)—0.004€(t—1)+0.038€(t—2)

+0.2745¢ (£-3)+0.1037e (t-4) (16)

The structure of egn (16) was obtained by combining the information
from the stepwise regression/prediction error algorithm with the
results of the model validity tests egn's (7), (10) in an iterative
manner. Full details are given elsewhere. The model validity tests
for the model of egn (16) which are illustrated in Fig.5 are all
within the confidence bands indicating that the residuals are
unpredictable from all linear and nonlinear combinations of past

inputs and outputs.

Conclusions

Model validity tests for nonlinear systems have been developed.
It has been shown that the traditional covariance tests developed for
linear systems provide incorrect information when applied to nonlinear
systems and new tests based on higher order correlation functions have
been derived. The application and interpretation of these tests to

both simulated and real data has been demonstrated.
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Fig.4. Validity tests - best linear model
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