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Abstract—We examine for the first time the impact of
transmitter-side correlation on the secure transmission with
artificial noise (AN), based on which a new power allocation
strategy for AN is devised for physical layer security enhance-
ment. Specifically, we design a correlation-based power allocation
(CPA) for AN, of which the optimality in terms of achieving the
minimum secrecy outage probability is analytically proved in
the large system regime with the number of transmit antennas
approaching infinity. Our numerical results demonstrate that
the CPA is nearly optimal and can significantly outperform the
widely-used uniform power allocation (UPA) even for a moderate
(finite) number of correlated transmit antennas. Our numerical
results also reveal a fundamental difference between the secrecy
performance of the CPA and that of the UPA. When the number
of correlated transmit antennas increases, we find that the secrecy
outage probability of the CPA always reduces while the secrecy
outage probability of the UPA suffers from a saturation point.

I. INTRODUCTION

A. Background and Motivation

As wireless devices are becoming increasingly ubiquitous,

crucial concerns on the security of wireless communication

are emerging since a large amount of confidential information

is conveyed by the open medium. Besides the traditional

cryptographic techniques, physical layer security has recently

become another key mechanism for safeguarding wireless

communications and thus attracted a high level of research

interest due to its two noticeable advantages [1–3]. First,

physical layer security can guarantee information secrecy re-

gardless of an eavesdropper’s computational capability, which

leads to the fact that perfect secrecy can be achieved on the

physical layer only. Second, physical layer security eliminates

the centralized key distribution and management requested

by cryptographic techniques, thus facilitating the management

and improving the efficiency of wireless communications. In

pioneering studies, e.g., [4, 5], a wiretap channel was proposed

as the fundamental model of physical layer security, in which

an eavesdropper (Eve) wiretaps the wireless communication

from a transmitter (Alice) to an intended receiver (Bob).

Motivated by multiple-input multiple-output (MIMO) tech-

niques, physical layer security in MIMO wiretap channels has

attracted considerable research interest in the past decade (e.g.,

[6–8]). In this context, an increasing amount of research effort

has been devoted to the secure transmission with artificial

noise (AN) due to its robustness and desirable performance

(e.g., [9–15]). The utilization of AN to enhance physical

layer security was proposed in [9], where AN is isotropically

transmitted in the null space of the main channel (i.e., the

channel between Alice and Bob) in order to possibly reduce

the quality of the eavesdropper’s channel (i.e., the channel

between Alice and Eve) without causing interference to Bob.

Following [9] the secure transmission with AN has been

well investigated in uncorrelated fading channels. However,

it is often in practical scenarios that correlation exists among

multiple antennas at one transceiver due to limited separation

between antenna elements or poor scattering conditions. To the

best knowledge of the authors, in the context of physical layer

security the study on antenna correlation is still in its infancy.

The impact of receiver-side correlation at Bob and Eve on

the system performance was examined in [16] and [17], while

the impact of the transmitter-side correlation has never been

examined in the literature. This leaves an important gap in our

understanding on the performance of the secure transmission

with AN, and closing this gap forms the core of this work.

B. Our Contributions

In this work, we first detail the secure transmission with AN

in wiretap channels with transmitter-side correlation, based on

which we determine the optimal power allocation (OPA) for

AN that minimizes the secrecy outage probability as an (Nt−
1)-dimensional numerical search problem (where Nt is the

number of antennas at Alice). Then, focusing on the large

system regime with Nt → ∞ we derive a closed-form solution

to the optimal power allocation, named the correlation-based

power allocation (CPA), in which Alice allocates all the AN

power to one specific direction determined by the transmitter-

side correlation matrix and the channel state information (CSI)

of the main channel. We further analytically prove that the

CPA maximizes the average interference power to Eve for

arbitrary number of correlated transmit antennas. In addition,

based on the conducted analysis we draw useful insights on the

comparison between the proposed CPA and the widely-used

uniform power allocation (UPA), in which AN is isotropically

transmitted in the null space of the main channel [9–15].

We present numerical results to characterize the secrecy

performance of the CPA with UPA as the benchmark. Our

results first demonstrate that a moderate level of antenna

correlation already allows the CPA to achieve the nearly

optimal secrecy performance even with a small number of

transmit antennas. In such a situation, the CPA significantly



Fig. 1. Illustration of the wiretap channel of interest where Alice is equipped
with Nt correlated antennas.

outperforms the UPA. Our results also reveal a fundamental

difference between the CPA and UPA. That is when the

number of correlated transmit antennas (i.e., Nt) increases,

the secrecy outage probability achieved by the CPA always

decreases, while the secrecy outage probability achieved by

the UPA suffers from a saturation point.

II. SYSTEM MODEL

A. Channel Model

The wiretap channel of interest is illustrated in Fig. 1, where

Alice is equipped with Nt antennas, Bob is equipped with a

single antenna, and Eve is equipped with a single antenna. We

assume that all the wireless channels within our system model

are subject to quasi-static Rayleigh fading, and the average

fading power is normalized to one. Specifically, we adopt the

separable correlation model and thus the 1×Nt main channel

(i.e., the channel between Alice and Bob) vector is given by

h = hsT
1/2, (1)

where hs ∈ C1×Nt has independent and identically distributed

(i.i.d.) circularly-symmetric complex Gaussian entries (i.e.,

the entries are i.i.d circularly symmetric complex Gaussian

random variables with zero-mean and unit-variance), T is

the transmitter-side correlation matrix, and T1/2 denotes the

cholesky square root of T. Without loss of generality, we as-

sume that T is a positive symmetric matrix. Thus, its singular

value decomposition (SVD) can be written as T = UTΛU
†
T ,

where UT is a unitary matrix and Λ = diag[λ1, · · · , λNt
]

is the diagonal matrix with λi as the i-th singular value of

T. Then, we can rewrite (1) as h = hs

√
ΛU

†
T , where each

element of
√
Λ is the square root of the corresponding element

of Λ. In this work, we assume h is perfectly known at all

transceivers.

The eavesdropper’s channel is subject to the same

transmitter-side correlation as the main channel and thus the

1×Nt eavesdropper’s channel vector is given by

g = gsT
1/2 = gs

√
ΛU

†
T , (2)

where gs ∈ C1×Nt has i.i.d circularly-symmetric complex

Gaussian entries. We consider a passive eavesdropping sce-

nario, where Alice does not know g, but knows T due to the

fact that T is determined by Alice’s antenna geometry.

B. Secure Transmission with Artificial Noise

We next detail the secure transmission with AN in the

wiretap channel of interest. In this secure transmission scheme,

Alice transmits an information signal sI in conjunction with an

(Nt − 1)× 1 AN signal vector sN [9–15], where sI and each

entry of sN have unit variance. We denote the total transmit

power of Alice by PA. The fraction of the power allocated to

sI is α (0 < α ≤ 1), and the remaining power (1 − α)PA is

allocated to sN . In order to transmit sI and sN , Alice designs

an Nt ×Nt beamforming matrix V given by

V = [vI VN ] , (3)

where vI ∈ CNt×1 is used to transmit sI and VN ∈
CNt×(Nt−1) is used to transmit sN . The aim of vI is to

maximize the instantaneous SNR of the main channel, and

thus we have vI = h
†

∥h∥ . Meanwhile, VN is to degrade the

quality of the eavesdropper’s channel by transmitting sN while

perfectly avoiding interference to Bob. As such, VN consists

of Nt − 1 orthonomal column vectors in the nullspace of h†.

Then, the Nt×1 transmitted signal vector at Alice, x, is given

by

x = [vI VN ]

[ √
αPA, 0

0,
√

(1−α)PA

Nt−1

√
Ω

]

[

sI
sN

]

=
√

αPAvIsI +

√

(1− α)PA

Nt − 1
VN

√
ΩsN , (4)

where Ω ∈ C(Nt−1)×(Nt−1) is the power allocation matrix for

sN satisfying tr(Ω) = Nt − 1.

Following (4) and noting hVN = 0, the received signal at

Bob is given by

y = hx+ nB =
√

αPAhvIsI + nB , (5)

where nB is the additive white Gaussian noise (AWGN) at Bob

satisfying E

[

nBn
†
B

]

= σ2
B . Based on (5), the instantaneous

SNR at Bob is given by

γB = αγB ∥h∥2 = αγB

Nt
∑

i=1

λi|hs(i)|2, (6)

where γB = PA/σ
2
B . We note that γB is a function of Λ but

not a function of UT .

Following (4), the received signal at Eve is given by

z = gx+ nE

=
√

αPAgvIsI +

√

(1− α)PA

Nt − 1
gVN

√
ΩsN + nE , (7)

where nE is the AWGN at Eve satisfying E

[

nEn
†
E

]

= σ2
E .

It is crucial to clarify that although Eve knows h and V,



she cannot eliminate the interference caused by VNsN due

to Nt > 1. Following (7), the instantaneous SINR at Eve is

given by

γE = αgvI

(

1− α

Nt − 1
gVNΩV

†
Ng† +

1

γE

)−1

v
†
Ig

†, (8)

where γE = PA/σ
2
E . We note that γE is a function of Λ

but not of UT (the proof is similar to that of Lemma 2 in

[18] and omitted here). Noting γB is a function of Λ but

not of UT as well, we can conclude that only the singular

values of the correlation matrix T have impact on the secure

communication with AN, while the eigenvectors of T (i.e.,

UT ) have no impact.

C. Secrecy Performance Metric

An important assumption in this work is that the instanta-

neous CSI of the main channel is available at Alice. As such,

the capacity of the main channel, CB = log2(1 + γB), is

known by Alice. On the other hand, Alice does not know the

capacity of the eavesdropper’s channel, CE = log2(1 + γE),
due to the fact that she cannot access the instantaneous CSI of

the eavesdropper’s channel. Therefore, we adopt the secrecy

outage probability as our key performance metric, which is

defined as the probability that the target rate of a secure

transmission is larger than the secrecy capacity. The secrecy

outage probability is given by [19]

Pso(Rs) = Pr(Cs<Rs) = Pr(CB −Rs<CE), (9)

where Rs is the target rate of a secure transmission and Cs =
[CB − CE ]

+
is the secrecy capacity, where [x]+ = max{0, x}.

In order to facilitate the secure transmission design under a

given main channel condition, we study the secrecy outage

probability in (9) for a given CB , and this outage is solely

caused by the uncertainty of CE . We also note that if Rs ≥ CB

the main channel cannot support such a secure transmission

(i.e., the secrecy outage probability is one).

III. POWER ALLOCATION FOR ARTIFICIAL NOISE

In this section, we first present the OPA for AN in the secure

transmission that minimizes the secrecy outage probability in

the wiretap channel with transmitter-side correlation. Then,

focusing on the large system regime with Nt → ∞, we

derive a closed-form solution to the optimal power allocation

based on the correlation matrix, named CPA. In addition, we

discuss the UPA in the wiretap channel with transmitter-side

correlation as a benchmark in this section.

A. Optimal Power Allocation

Utilizing the secrecy outage probability as the objective

function, the optimization problem of power allocation for AN

can be written as

min
Ω

Pso(Rs), s.t. tr(Ω) = Nt − 1. (10)

The optimization problem presented in (10) involves the

determination of (Nt − 1)2 complex entries of the power

allocation matrix Ω (i.e., 2(Nt − 1)2 real numbers), which is

of high complexity. We have the following lemma to simplify

(10) as a (Nt−1)-dimensional numerical search problem. For

the sake of clear presentation, we define a positive definite

Hermitian matrix as

Q = V
†
NTVN , (11)

and its SVD can be written as

Q = WΘW†, (12)

where W is a unitary matrix and Θ = diag[θ1, . . . , θNt−1] is

the diagonal matrix with θm as the m-th singular value of Q

with θ1 ≥ θ2 ≥ · · · ≥ θNt−1. We now present Lemma 1 based

on the SVD of Q.

Lemma 1: The optimization problem presented in (10) can

be simplified as

min
Φ

Pso(Rs),

s.t. Ω = WΦ, tr(Φ) = Nt − 1,

Φ = diag [φ1, φ2, . . . , φNt−1] ,

(13)

where φ1, φ2, . . . , φNt−1 are non-negative real numbers.

Proof: We note that the selection of Ω affects Pso(Rs)
only through gVNΩV

†
Ng† involved in γE given in (8).

Based on the definition of g given in (2), we have V
†
Ng† ∼

CN (0,Q). Then we know that gVNW has i.i.d circularly-

symmetric complex Gaussian entries. As proved in [20],

gVNWΦW†V
†
Ng† is equal in distribution to gVNΩV

†
Ng†

for general Φ and Ω. This completes the proof of Lemma 1.

We note that the optimization problem presented in (13) is

much less complex than that provided in (10). This is due

to the fact that in (10) there are 2(Nt − 1)2 real numbers to

determine for Ω while we only have to determine Nt− 1 real

numbers for Φ in (13). We also note that analytical solution

to (13) is still mathematically intractable. This is mainly due

to the fact that Pso(Rs) cannot be derived in a closed-form

expression for a general Φ. The difficulty lies in the fact

that in the expression of γE given in (8) gVNWΦW†V
†
Ng†

and |gvI |2 are correlated, which leads to that the probability

density function (pdf) of γE is mathematically intractable.

Therefore, the optimization problem given in (13) can only

be solved through numerical simulations, which is of high

complexity and time-consuming for large Nt. As such, in the

following we develop a sub-optimal but much simpler power

allocation, and analytically prove its optimality in the large

system regime with Nt → ∞.

B. Correlation-Based Power Allocation

Now, we propose the CPA, which is optimal in terms of

minimizing Pso(Rs) in the large system regime with Nt → ∞,

in the following theorem.

Theorem 1: As Nt → ∞, the optimal solution to Ω that

minimizes Pso(Rs) is given by

Ω∗ = (Nt − 1)wI , (14)



where wI is the principal eigenvector corresponding to the

largest singular value of Q (i.e., Ω∗ = WΦ∗ and Φ∗ =
diag [Nt − 1, 0, . . . , 0]).

Proof: Due to the distance concentration phenomenon

[21], when Nt → ∞ both |gvI |2 and ∥gVNW
√
Φ∥2

involved in γE approach their mean values. As such, γE
approaches its mean and its variance approaches zero as Nt →
∞. It follows that the minimization of the secrecy outage prob-

ability Pso(Rs) is equivalent to minimizing the mean of γE .

We note that Φ only varies the value of ∥gVNW
√
Φ∥2 (i.e.,

|gvI |2 is not a function of Φ). Therefore, Φ is to maximize

the mean of ∥gVNW
√
Φ∥2 in order to minimize Pso(Rs)

as per the expression of γE given in (8). As mentioned in the

proof of Lemma 1, gVNW has i.i.d entries, and thus we have

∥gVNW
√
Φ∥2 =

Nt−1
∑

m=1

φmθm|gI(m)|2, (15)

where gI = gVNW
(√

Θ
)−1

has i.i.d circularly-symmetric

complex Gaussian entries with unit variance. Then, the mean

of ∥gVNW
√
Φ∥2 is given by

E

[

∥gVNW
√
Φ∥2

]

=

Nt−1
∑

m=1

φmθm. (16)

Noting θ1 ≥ θ2 ≥ · · · ≥ θNt−1, in order to maximize

E[∥gVNW
√
Ω∥2] subject to tr(Φ) = Nt − 1 (i.e., φ1 +φ2 +

· · ·+φNt−1 = Nt−1), we have to set φ∗
1 = Nt−1 and φ∗

k = 0
for k = 2, 3, . . . , Nt − 1 (i.e., Φ∗ = diag [Nt − 1, 0, . . . , 0]).
We note that for Φ∗ = diag [Nt − 1, 0, . . . , 0] we have

Ω∗ = WΦ∗ = (Nt − 1)wI . This completes the proof of

Theorem 1.

We note that the CPA allocates all the AN power to the

direction corresponding to the largest singular value of Q,

which is similar to the beamforming strategy based on Q. The

intuitive meaning of the CPA is that Alice first maps the Nt-

dimensional eavesdropper’s channel vector into the (Nt − 1)-
dimensional nullspace of the main channel by applying VN

and then transmits AN along the average strongest direction

of the effective eavesdropper’s channel vector gVN . This is

due to the fact that Q = V
†
NTVN is the covariance matrix

of gVN and thus wI corresponds to the average strongest

direction of gVN .

The following corollary states another important property

of the CPA.

Corollary 1: The CPA (i.e., Ω∗ = (Nt−1)wI ) achieves the

maximum average interference to Eve for all values of Nt,

which is given by

E

[

|gVN

√
Ω∗|2

]

= (Nt − 1)θ1. (17)

Proof: Based on Lemma 1, we know that

E

[

∥gVN

√
Ω∥2

]

= E

[

∥gVNW
√
Φ∥2

]

. Then, based

on the discussion after (16) in the proof of Theorem 1 we can

conclude that the CPA maximizes the average interference to

Eve (i.e., maximizes E

[

∥gVN

√
Ω∥2

]

). Finally, substituting

Ω∗ = WΦ∗ = (Nt−1)wI into (16) we achieve the result

given in (17).

As per Theorem 1, the instantaneous SINR at Eve of the

CPA for a given α is given by

γc
E =

αγE |gvI |2
(1− α)γE |gVNwI |2 + 1

. (18)

C. Uniform Power Allocation

In this subsection, we present the UPA as a benchmark to

clarify the benefits of our proposed CPA. In the UPA, Alice

isotropically allocates the transmit power for the AN among

all entries of sN , i.e., Ω = INt−1. Following (8), the SINR at

Eve of the UPA for a given α is given by [14]

γu
E =

αγE |gvI |2
(1−α)γE

Nt−1 ∥gVN∥2 + 1
. (19)

Following a similar procedure for obtaining (15), we have

∥gVN∥2 =

Nt−1
∑

m=1

θm|gI(m)|2. (20)

Then, the average interference to Eve achieved by the UPA is

given by

E
[

∥gVN∥2
]

=

Nt−1
∑

m=1

θm. (21)

We note that the UPA is widely adopted in the literature

in wiretap channels without correlation. This is due to the

fact that Alice cannot access the instantaneous CSI of the

eavesdropper’s channel and has no information on g other

than its distribution. With regard to the comparison between

the UPA and CPA, we have the following remarks.

• The UPA maximizes the average interference to

Eve in wiretap channels without correlation (i.e.,

E
[

∥gVN∥2
]

≥ E

[

gVNΩV
†
Ng†

]

when T = INt
). We

note that our proposed CPA achieves the same average

interference to Eve as the UPA when T = INt
(i.e.,

(Nt − 1)θ1 =
∑Nt−1

m=1 θm when T = INt
due to

θ1 = θ2 = · · · = θNt−1 for T = INt
).

• Comparing (17) and (21) we can see that the CPA leads

to a larger average interference to Eve than the UPA in

wiretap channels with transmitter-side correlation. This is

due to θ1 ≥ θ2 ≥ · · · ≥ θNt−1, which leads to (Nt −
1)θ1 ≥ ∑Nt−1

m=1 θm.

• Following the proof of Theorem 1, we know that as Nt →
∞ these average interferences to Eve of the CPA and

UPA as given in (17) and (21), respectively, determine

the secrecy outage probabilities of the CPA and UPA,

respectively. As such, we can conclude that in the large

system regime with Nt → ∞ the CPA leads to a lower

Pso(Rs) relative to the UPA in wiretap channels with

transmitter-side correlation.

• The gap between θ1 and 1
Nt−1

∑Nt−1
m=1 θm increases as the

correlation becomes more severe. As such, our proposed

CPA is more desirable in wiretap channels with high

transmitter-side correlation.
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Fig. 2. Secrecy outage probabilities of the OPA, CPA, and UPA ver-
sus different values of α for Nt = 4, Rs = 2, γB = 5 dB,
Λ = diag[2.8, 0.7, 0.3, 0.2], and hs = [0.1104− 0.6619i,−0.6677 +
1.2432i, 0.7588 + 0.9201i, 1.0196 + 0.4098i].

IV. NUMERICAL RESULTS

In this section, we first provide numerical comparison

among the OPA, CPA, and UPA. Based on the comparison we

draw useful insights on the CPA and the impact of transmitter-

side correlation on the secure transmission with AN.

In Fig. 2 we plot the secrecy outage probabilities of the

secure transmission with OPA, CPA, and UPA. Surprisingly,

we first observe that our proposed CPA achieves almost

identical secrecy outage probabilities with the OPA, which

demonstrates that the proposed CPA is nearly optimal in

terms of minimizing the secrecy outage probability under the

adopted specific simulation settings (which are detailed in the

caption of this figure1). Noting Nt = 4 for Fig. 2, we can

conclude that our proposed CPA is nearly optimal even for a

finite number of transmit antennas with moderate correlation.

We note that as we have proved in Theorem 1 the CPA is

optimal in the large system regime with Nt → ∞. In this

figure, we also observe that the proposed CPA achieves much

lower secrecy outage probabilities than the UPA, which shows

one advantage of the CPA relative to the UPA. Finally, we note

that the optimal value of α that minimizes the secrecy outage

probability for the CPA is different from that for the UPA.

In Fig. 3 we plot the minimum secrecy outage probabilities

of the OPA, CPA, and UPA, which are obtained through

setting α as its optimal values that minimizing the secrecy

outage probabilities of the OPA, CPA, and UPA, respectively.

Although our analysis is valid for an arbitrary correlation

matrix, in this figure and the following figure we adopt an

exponential correlation model, in which the (i, j)-th entry of

1As we mentioned in Section II-B, UT does not affect the performance of
the secure transmission with AN. Thus, we only presented the adopted Λ for
this figure.
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Fig. 3. Minimum secrecy outage probabilities of OPA, CPA, and UPA versus
different values of ρr for Nt = 3, L = 0.5m, Rs = 1, γB = 10 dB, γE →
∞, and (a) hs = [−0.1470+0.1876i,−0.3905+1.0675i,−0.5091−0.8150i],
(b) hs = [−0.0845 + 0.5064i, 0.1612 + 0.0330i,−0.7529 + 0.0282i].

T is given by tij = ρ
δij
r , where ρr ∈ [0, 1] is the correlation

parameter specified by system settings (e.g., signal frequency)

and δij is the distance between the i-th and j-th antennas at

Alice. We note that a larger ρr indicates a larger correlation

for a fixed δij , where ρr = 0 serves as the uncorrelated

case and ρr = 1 represents the fully correlated case. We also

adopt the uniform linear array as Alice’s antenna configuration

and the array length is denoted as L in this figure and the

following figures. In Fig. 3 (a) for the specific adopted hs

we observe that all the minimum secrecy outage probabilities

increase as ρr increases. This is due to the fact that as ρr → 1
the null space of the main channel disappears and Alice

cannot create interference to Eve while perfectly avoiding the

interference to Bob. In Fig. 3 (b) for the specific adopted hs we

observe that the minimum secrecy outage probability of the

CPA first decreases and then increases as ρr increases. The

decrease can be explained by the fact that the initial increase

in the correlation (i.e., ρr) offers useful information of the

eavesdropper’s channel while does not significantly affect the

null space of the specific hs, which leads to the reduction

in the secrecy outage probability. The following increase in

the minimum secrecy outage probability of the CPA can be

explained by the fact that the offered information on the

eavesdropper’s channel by the increase in ρr cannot counteract

the decay of the null space caused by the increase in ρr. We

conducted hundreds of simulations for different realizations

of hs and all the results are similar to either Fig. 3 (a) or

Fig. 3 (b). In both Fig. 3 (a) and Fig. 3 (b) we observe that

the CPA outperforms the UPA when ρr is larger than some

specific value, which only corresponds to a small correlation.

As we mentioned in Section II-C, we have focused on

the secrecy outage probability for a given value of CB in
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Fig. 4. Average minimum secrecy outage probabilities of CPA and UPA
versus different values of Nt for L = 0.5m, Rs = 1, γB = 10 dB, and
γE → ∞.

order to study the AN power allocation design based on a

given main channel realization. Now, we also present the

secrecy outage probability averaged over all main channel

realizations. In Fig. 4, we plot the average minimum secrecy

outage probabilities of the CPA and UPA (denoted by P c∗
so (Rs)

and Pu∗
so (Rs), respectively) versus different values of Nt for

fixed array length L, which are obtained through averaging

the minimum secrecy outage probabilities of the CPA and

UPA over h, respectively. In this figure, we first observe that

Pu∗
so (Rs) first decreases and then keeps nearly constant as

Nt increases. This indicates that Nt suffers from a saturation

point in improving the secrecy performance of the UPA, which

can be explained by the fact that as Nt increases for a fixed

L the correlation among these transmit antennas becomes

stronger. On the contrary, we observe that P s∗
so (Rs) contin-

uously decreases as Nt increases without such a saturation

point. This demonstrates another advantage of our proposed

CPA relative to the UPA, which is that when Nt is large

the CPA outperforms the UPA even in the wiretap channel

with very low transmitter-side correlation. This advantage is

confirmed by the observation that P c∗
so (Rs) becomes lower

than Pu∗
so (Rs) for ρr = 0.05 when Nt is larger than 21. Also,

this observation can be explained by our Theorem 1, in which

we have proved that the CPA is optimal in the large system-

regime. Finally, we observe that the gap between P c∗
so (Rs) and

Pu∗
so (Rs) increases as Nt increases. This is caused by the fact

that Pu∗
so (Rs) suffers from a saturation point as Nt increases,

but P s∗
so (Rs) does not.

V. CONCLUSION

In this work, we devised the CPA for AN in the wire-

tap channel with transmitter-side correlation and theoretically

proved its optimality in terms of achieving the minimum

secrecy outage probability in the large system regime with

Nt → ∞. Our analysis showed that the proposed CPA

maximizes the average interference to Eve for arbitrary Nt.

The conducted numerical results demonstrated that the CPA

is nearly optimal and significantly outperforms the UPA even

for finite Nt.
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