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Abstract

Objective: This meta-analysis was implemented to evaluate the association between hypoxia-inducible factor-1α

(HIF-1α) C1772T/G1790A polymorphisms and susceptibility to head and neck cancer (HNC).

Material and methods: This meta-analysis has been registered on PROSPERO platform (CRD42021257309). The

PubMed, Embase and Web of Science databases were searched to retrieve eligible published papers. STATA

software was used to calculate the pooled odds ratios (ORs) and corresponding 95% confidence intervals (CIs) to

assess the correlation strength.

Results: Our results demonstrated that the HIF-1α C1772T polymorphism was significantly related to an increased

HNC risk (OR = 2.27, 95% CI = 1.17–4.42 for the homozygous model; OR = 11.53, 95% CI = 1.11–120.4 for the

recessive model), especially in Caucasians (OR = 2.16, 95% CI = 1.09–4.27 for the homozygous model; OR = 2.28,

95% CI = 1.15–5.51 for the recessive model). Similarly, a remarkable correlation was discovered between the

G1790A polymorphism and HNC risk (OR = 72.11, 95% CI = 2.08–2502.4 for the homozygous model; OR = 58.05,

95% CI = 1.70–1985.77 for the recessive model). Moreover, in the subgroup analysis by source of controls, a

statistically significant correlation was discovered in the population-based (PB) subgroup (OR = 9.43, 95% CI = 1.20–

73.9 for allelic model; OR = 72.11, 95% CI = 2.08–2502.4 for the homozygous model; OR = 3.22, 95% CI = 1.28–8.08

for the heterozygous model; OR = 7.83, 95% CI = 1.48–41.37 for the dominant model; OR = 58.05, 95% CI = 1.70–

1985.8 for the recessive model) but not in the hospital-based (HB) subgroup.

Conclusion: Our study found that both HIF-1α C1772T and G1790A polymorphisms might be a higher risk of HNC,

especially in the Caucasian group with the C1772T polymorphism.
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Introduction
Head and neck cancer (HNC), which includes oropha-

ryngeal cancer, nasopharyngeal cancer, laryngeal cancer

and tongue cancer, is the eighth most common cancer

according to the latest data reported in the Global

Cancer Statistics 2018 [1, 2]. Based on statistics, more

than 550,000 new cases of HNC occur worldwide each

year, with 300,000 deaths [3]. Although the treatment of

HNC patients is progressing, the age of patients has

gradually decreased in recent years [4], which may be

due to the infection of human papillomavirus (HPV), en-

vironmental pollution and unhealthy living habits [5, 6].

Because tumours have low survival rates and high
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mortality, the quality of life of patients with cancer is

greatly reduced [7]. HNC is caused by multiple factors,

of which smoking and drinking alcohol are recognized

as major risk factors [8–12]. For instance, the study has

shown that tobacco increases mutations in cancer [13].

In addition, infection of HPV can cause a variety of can-

cers, such as cervical cancer and oropharyngeal cancer,

and has recently attracted the attention of scientists as

another important risk factor for HNC [14, 15]. How-

ever, not every individual exposed to the above condi-

tions will have HNC, which indicates that individual

genetic susceptibility is also an important factor in the

occurrence of HNC [6, 16, 17].

Hypoxia initiates a series of cellular responses, such as

angiogenesis, proliferation and glucose and energy me-

tabolism, which might result in the occurrence and de-

velopment of tumours [18]. Hypoxia-inducible factor-1

(HIF-1) can regulate cellular adaptations to hypoxia [19].

Moreover, it has been reported that HIF-1 can activate

numerous genes that play a key role in the critical bio-

logical behaviour of tumours [20, 21]. HIF-1α has the

ability to determine the activity of HIF-1 and can regu-

late the expression level of genes related to angiogenesis

and metastasis. Many researchers have demonstrated

that high HIF-1α expression is found in most human tu-

mours, such as breast carcinoma, hepatocellular cancer,

cervical cancer and colorectal tumours [22–25], and

HIF-1α may also be a prognostic marker in patients with

oral cancer [26]. Moreover, carbonic anhydrase IX, a

hypoxia-induced enzyme, is related to HIF-1α activity, as

its overexpression is associated with poor prognosis in a

variety of tumours, especially neuroblastoma [27]. Under

normal oxygenation conditions, HIF-1α is modified by

the enzyme prolyl hydroxylase (PHD), bound by von

Hippel-Lindau factor (VHL), ubiquitinated and degraded

by the proteasome. Alterations of this system predispose

patients to a higher susceptibility to the development of

tumours caused by mutations inactivating VHL, with a

false signal of hypoxia [28]. In addition, recent studies

have discovered that HIF-1α is related to poor prognosis

in most tumours [29–31].

HIF-1 gene polymorphisms mediate genetic predispos-

ition to cancer, of which C1772T and G1790A are two

common single nucleotide polymorphisms (SNPs) of the

HIF-1 gene [32]. Both polymorphisms have been re-

ported to result in increased HIF-1α transcription activ-

ity under hypoxic conditions [33, 34]. Additionally, it

has been reported that both are related to increased can-

cer microvessel density, and they are crucial in the pro-

gression of different cancers [23, 24, 34, 35].

In recent years, several researchers have reported the

potential relationship between HIF-1α polymorphisms

and susceptibility to HNC, but the results have been

conflicting [32, 34, 36–40]. Thus, it is essential to

conduct a comprehensive meta-analysis with high statis-

tical power to study the role of HIF-1α C1772T and

G1790A polymorphisms in the progression of HNC.

Methods
Selection of relevant studies

The meta-analysis was guided in strict accordance with

the recommendations of the Preferred Reporting Items

for Systematic Reviews and Meta-Analyses statement

[41] (Additional file 1). The meta-analysis has been reg-

istered on PROSPERO platform (https://www.crd.york.

ac.uk/prospero/display_record.php?ID=CRD420212573

09) with the registration number CRD42021257309. We

used the "PICOs" strategy to guide the development of

the research question (P: HNC patients; I: T(C1772T)

and A(G1790A); C: C(C1772T) and G(G1790A); O: the

risk of HNC; S: case–control study). The computerized

literature retrieval was conducted using the PubMed,

Embase and Web of Science databases to identify quali-

fied studies with the following terms: ‘hif-1α’, or ‘hyp-

oxia-inducible factor-1α’, or ‘hif-1’, or ‘hypoxia-inducible

factor-1’, or ‘rs11549465’, or ‘C1772T’, or ‘P582S’, or

‘rs11549467’, or ‘G1790A’, or ‘A588T’ And ‘mutation’, or

‘mutations’, or ‘variants’, or ‘variant’, or ‘polymorphism’,

or ‘polymorphisms’ And ‘carcinoma’, or ‘neoplasm’, or

‘tumour’, or ‘cancer’, or ‘carcinogenesis’ And ‘head and

neck’, or ‘HNC’, or ‘oral’, or ‘oral cavity’, or ‘pharyngeal’,

or ‘laryngeal’, or ‘laryngopharyngeal’, or ‘hypopharyn-

geal’, or ‘nasopharyngeal’, or ‘oropharyngeal’. The re-

trieval time was from database establishment to 5

November, 2020. Finally, all the included studies were

carefully reviewed by the researchers (WT and BBT) to

determine eligible studies, and another researcher (LL)

discussed any differences.

Inclusion and exclusion criteria

Literature that satisfied the following criteria was in-

cluded: (1) case-controlled, (2) described the correlation

between the polymorphisms of HIF-1α C1772T and

G1790A and HNC risk, and (3) data provided by the

study were available. Literature that conformed to the

following criteria were not enrolled: (1) nonhuman stud-

ies, reviews, editorials, commentaries and case reports;

(2) full text could not be found; and (3) no sufficient in-

formation was provided.

Data extraction and quality assessment

The following data were retrieved: first author, publica-

tion year, country, ethnicity, genotyping methods,

sources of controls, counts of case group and control

group, genotype and allele frequencies for cases and

controls, cancer site and P value of Hardy-Weinberg

equilibrium (HWE) in controls. The Newcastle-Ottawa

Scale (NOS) was selected for literature quality
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assessment, including population selection, comparabil-

ity between groups, and exposure factors [42]. The Of-

fice of Health Assessment and Translation (OHAT) risk

of bias rating tool was applied to evaluate the bias risk of

the included articles [43–45]. Data extraction and quality

assessment were conducted independently by two re-

searchers (WT and BBT), and disagreements were dis-

cussed with a third researcher (LL).

Statistical analysis

STATA 11.0 (College Station, TX 77845, USA) was used

for our meta-analysis. The strength of the correlation

between HNC risk and HIF-1α C1772T/G1790A poly-

morphisms was assessed by ORs along with the corre-

sponding 95% CIs. In our meta-analysis, we examined

the relationship using allelic, homozygous, heterozygous,

dominant and recessive genetic models. The genotyping

method, ethnicity, source of control group and tumour

site were used to perform subgroup analysis to deter-

mine whether certain factors were correlated with the

overall ORs. Cochran's Q test and I
2 test were used for

heterogeneity analysis. When P < 0.10 or I
2 > 50%, we

believed that there was heterogeneity among the studies,

and the DerSimonian and Laird random effects model

was used for analysis; otherwise, the Mantel-Haenszel

fixed effect model was used for analysis. Publication bias

was evaluated by Begg's test and Egger's test, and the

stability of the results was evaluated by sensitivity ana-

lysis. A Z test was conducted to analyse the statistically

significant results, and a P value less than 0.05 was

regarded as statistically significant.

Results
Literature search and characteristics of studies

After excluding animal studies, reviews, repeated studies,

conference studies and reading the full text, 7 original

Fig. 1 The process of study selection

Wu et al. World Journal of Surgical Oncology          (2021) 19:210 Page 3 of 10



studies [32, 34, 36–40] were ultimately included. The

article selection process is shown in Fig. 1.

Among the 7 enrolled studies, 7 studies were ultim-

ately correlated with the C1772T polymorphism [32, 34,

36–40], and 6 studies were related to the G1790A poly-

morphism [30, 32, 37–40]. Overall, the meta-analysis in-

cluded five articles conducted on oral cancer (OC), one

article on glottic laryngeal cancer (GLC), and one on

HNC. Of the 7 studies on the C1772T polymorphism,

the genotype distributions in the controls in 4 articles

complied with HWE, and 3 studies did not [32, 38, 40].

All studies related to the HIF-1α G1790A polymorphism

showed that the genotype distribution of the control was

in line with HWE. The main characteristics of the en-

rolled studies are shown in Table 1. The results of the

researchers' scoring of the included studies according to

the NOS scale are shown in Additional file 2, Table S1.

The results of risk of bias assessment according to the

OHAT risk of bias rating tool are shown in Additional

file 2, Table S2.

Quantitative synthesis

The results of the meta-analysis, namely, the relationship

between HIF-1α C1772T and G1790A polymorphisms

and HNC, are shown in Table 2.

HIF-1α C1772T polymorphism analysis

For the HIF-1α C1772T polymorphism, a random-

effects model was adopted due to the obvious heterogen-

eity among the studies. We evaluated the association of

the C1772T polymorphism with HNC risk in all genetic

models except allelic and recessive models. The overall

results demonstrated that the C1772T polymorphism

was significantly related to a higher HNC risk under the

homozygous and recessive genetic models (OR = 2.27,

95% CI = 1.17–4.42 for the homozygous model; OR =

11.53, 95% CI = 1.11–120.4 for the recessive model, Fig.

2) but not under other genetic models (P > 0.05). In the

subgroup analyses, we found that the C1772T poly-

morphism could significantly increase HNC risk in the

polymerase chain reaction–restriction fragment length

polymorphism (PCR-RFLP) genotyping method sub-

group (OR = 2.27, 95% CI = 1.17–4.42 for the homozy-

gous model; OR = 11.53, 95% CI = 1.11–120.4 for the

recessive model). Moreover, a significant relationship

was discovered between the C1772T polymorphism and

an increased HNC risk for Caucasians (OR = 2.16, 95%

CI = 1.09–4.27 for the homozygous model; OR = 2.28,

95% CI = 1.15–5.51 for the recessive model).

HIF-1α G1790A polymorphism analysis

For the HIF-1α G1790A polymorphism, we still applied

a random effects model to count all the genetic models.

Table 1 Detailed information of the included articles

First author Year Country Ethnicity Genotyping
method

SC Case–
control

Cases Controls Cancer type HWE

C1772T CC CT TT CC CT TT

Prasad J 2018 India Asian Sequencing HB 50/50 43 7 0 42 8 0 OSCC 0.539

Alves LR 2012 Brazil Brazilian PCR-RFLP PB 40/88 0 1 39 0 85 3 OSCC <
0.001

Mera-
Menendez F

2012 Spain Caucasian PCR-RFLP HB 118/148 85 18 15 113 27 8 Glottic laryngeal
cancer

0.001

Shieh TM 2010 China Asian Sequencing HB 305/96 282 23 0 89 7 0 OSCC 0.711

Chen MK 2009 China Asian PCR-RFLP PB 174/347 163 10 1 334 13 0 OC 0.722

Munoz-Guerra
MF

2009 Spain Caucasian PCR-RFLP PB 70/148 57 6 7 113 27 8 OSCC 0.001

Tanimoto K 2003 Japan Asian Sequencing PB 55/110 45 10 0 98 12 0 HNSCC 0.545

G1790A AA AG GG AA AG GG

Alves LR 2012 Brazil Brazilian PCR-RFLP PB 40/88 37 1 2 0 7 81 OSCC 0.698

Mera-
Menendez F

2012 Spain Caucasian PCR-RFLP HB 111/139 0 4 107 0 9 130 Glottic laryngeal
cancer

0.693

Shieh TM 2010 China Asian Sequencing HB 305/96 0 24 281 0 7 89 OSCC 0.711

Chen MK 2009 China Asian PCR-RFLP PB 174/347 1 20 153 0 14 333 OC 0.701

Munoz-Guerra
MF

2009 Spain Caucasian PCR-RFLP PB 64/139 3 21 40 0 9 130 OSCC 0.693

Tanimoto K 2003 Japan Asian Sequencing PB 55/110 0 4 51 0 9 101 HNSCC 0.655

SC, source of control; OC, oral cancer; NC, nasopharyngeal carcinoma; HNC, head and neck cancer; HB, hospital-based study; PB, population-based study; HWE,

Hardy-Weinberg equilibrium; PCR-RFLP, polymerase chain reaction–restriction fragment length polymorphism; PCR, polymerase chain reaction
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We noticed a substantial relationship between the

G1790A polymorphism and the increased risk of

HNC for the homozygous and recessive genetic

models (OR = 72.11, 95% CI = 2.08–2502.4 for the

homozygous model; OR = 58.05, 95% CI = 1.70–

1985.8 for the recessive model). In the stratified ana-

lyses, a substantial relationship was observed for the

PCR-RFLP genotyping method subgroup (OR = 72.11,

95% CI = 2.08–2502.4 for the homozygous model;

OR = 7.00, 95% CI = 1.18–41.68 for the dominant

model; OR = 58.05, 95% CI = 1.70–1985.8 for the re-

cessive model), population-based study subgroup (OR

= 9.43, 95% CI = 1.20–73.9 for allelic model, Fig. 3;

OR = 72.11, 95% CI = 2.08–2502.4 for the homozy-

gous model; OR = 3.22, 95% CI = 1.28–8.08 for the

heterozygous model; OR = 7.83, 95% CI = 1.48–41.37

for the dominant model; OR = 58.05, 95% CI = 1.70–

1985.8 for the recessive model) and OC (P < 0.05

under all genetic models).

Sensitivity analysis and publication bias

After omitting one article at a time, no significant

change was observed in the pooled ORs in the sensitivity

analysis (Fig. 4, TT vs. CC of HIF-1α C1772T). Egger

tests and Begg’s funnel plots were used to assess publica-

tion bias. The P value in the Egger test demonstrated

statistical evidence for no substantial publication under

all genetic models (P = 0.188 for T vs. C; P = 0.539 for

TT vs. CC; P = 0.934 for TC vs. CC; P = 0.979 for TT +

TC vs. CC; P = 0.329 for TT vs. TC + CC; P = 0.871 for

A vs. G; P = 0.785 for AA vs. GG; P = 0.643 for AG vs.

GG; P = 0.700 for AA + AG vs. GG; P = 0.606 for AA

vs. AG + GG). In addition, the shape of Begg’s funnel

plot appeared to be symmetric (Fig. 5, TT + TC vs. CC

of HIF-1α C1772T), which indicated low risk of publica-

tion bias.

Discussion
HIF-1 acts as a vital component in the progression and

metastasis of cancer by activating numerous genes

Table 2 Results of overall and subgroup analyses for C1772T and G1790A polymorphisms

No. T versus C TT versus CC TC versus CC TT + TC versus CC TT versus TC + CC

OR 95% CI P(Z) OR (95% CI) P(z) OR (95% CI) P(z) OR (95% CI) P(z) OR (95% CI) P(z)

C1772T

Overall 7 1.66 0.92–2.99 0.095 2.27 1.17–4.42 0.016 0.98 0.70–1.38 0.914 1.16 0.85–1.59 0.355 11.53 1.11–120.4 0.041

PCR-RFLP 4 2.44 0.90–6.64 0.081 2.27 1.17–4.42 0.016 0.86 0.55–1.34 0.506 1.14 0.78–1.67 0.503 11.53 1.11–120.4 0.041

Sequencing
3 1.20 0.70–2.03 0.506 – – – 1.20 0.69–2.09 0.514 1.20 0.69–2.09 0.514 – – –

Caucasian 2 1.26 0.84–1.90 0.270 2.16 1.09–4.27 0.028 0.69 0.40–1.17 0.168 1.02 0.66–1.57 0.926 2.28 1.15–5.51 0.018

Asian 4 1.37 0.88–2.13 0.159 – – – 1.30 0.82–2.07 0.269 1.34 0.85–2.12 0.213 – – –

HB 3 1.31 0.90–1.90 0.162 – – – 0.92 0.57–1.48 0.736 1.13 0.73–1.74 0.582 – – –

PB 4 2.87 0.82–10.0 0.099 2.01 0.75–5.41 0.168 1.05 0.64–1.73 0.843 1.20 0.76–1.89 0.442 22.82 0.28–
1887.8

0.165

OC 5 1.95 0.70–5.43 0.201 2.01 0.75–5.41 0.168 0.89 0.57–1.40 0.612 1.01 0.66–1.54 0.957 22.82 0.28–
1887.8

0.165

G1790A No. A versus G AA versus GG AG versus GG AA + AG versus GG AA versus AG + GG

OR 95% CI P
(Z) OR (95% CI) P

(z) OR (95% CI) P
(z) OR (95% CI) P

(z) OR (95% CI) P
(z)

Overall 6 4.11 0.84–
20.15

0.081 72.11 2.08–
2502.4

0.018 1.94 0.83–4.55 0.128 3.57 0.97–
13.14

0.055 58.05 1.70–
1985.8

0.024

PCR-RFLP 4 8.39 0.98–72.1 0.053 72.11 2.08–
2502.4

0.018 2.81 0.91–8.72 0.074 7.00 1.18–
41.68

0.032 58.05 1.70–
1985.8

0.024

Sequencing
2 1.01 0.50–2.03 0.975 – – – 1.01 0.50–2.06 0.975 1.01 0.50–2.06 0.975 – – –

Caucasian 2 2.18 0.16–
30.19

0.562 – – – 2.10 0.16–
28.19

0.577 2.24 0.15–
34.32

0.563 – – –

Asian 3 1.59 0.67–3.78 0.294 – – – 1.57 0.69–3.58 0.283 1.59 0.67–3.76 0.290 – – –

HB 2 0.86 0.43–1.72 0.667 0.85 0.42–1.73 0.660 0.85 0.42–1.73 0.660 – – –

PB 4 9.43 1.20–73.9 0.033 72.11 2.08–
2502.4

0.018 3.22 1.28–8.08 0.013 7.83 1.48–
41.37

0.015 58.05 1.70–
1985.8

0.024

OC 4 9.66 1.31–
71.15

0.026 72.11 2.08–
2502.4

0.018 3.17 1.26–7.92 0.014 7.92 1.58–
39.64

0.012 58.05 1.70–
1985.8

0.024

OC, oral cancer; HB, hospital-based study; PB, population-based study; PCR-RFLP, polymerase chain reaction–restriction fragment length polymorphism
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associated with angiogenesis regulation, energy metabol-

ism and cell survival [34, 35]. Moreover, high HIF-1α ex-

pression has been demonstrated in various tumours

[22–25]. Certain polymorphisms in the HIF-1α gene

have been linked to an individual's predisposition to

cancers [46]. Among them, HIF-1α C1772T and

G1790A polymorphisms were recently confirmed. The

potential correlation between HIF-1α C1772T/G1790A

polymorphisms and HNC susceptibility has been re-

ported by some investigators, but the results were

Fig. 2 Forest plot for the association of the HIF-1α C1772T polymorphism and HNC risk under a recessive genetic model

Fig. 3 Forest plot for the association of the HIF-1α G1790 polymorphism and HNC risk under the allele genetic model stratified by source

of control
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inconclusive [32, 34, 36–40]. This might be because of

the limitations of these studies, such as ethnic differ-

ences, control source differences, small sample sizes and

different methodologies. Meta-analysis, as a powerful

tool, could bridge these difficulties and provide a more

precise and reliable conclusion than a single article.

To the best of our knowledge, no studies have evalu-

ated HIF-1αC1772T in the progression of HNC. In this

meta-analysis, seven studies were ultimately enrolled for

the C1772T polymorphism [32, 34, 36–40], and six stud-

ies were included for the G1790A polymorphism [32, 34,

37–40]. Overall, the results demonstrated that the HIF-

1α C1772T polymorphism is an important factor in de-

termining the increased risk of HNC (OR = 2.27, 95% CI

= 1.17–4.42 for the homozygous model; OR = 11.53,

95% CI = 1.11–120.4 for the recessive model). In

Fig. 4 Sensitivity analysis of the pooled OR coefficients on the association of the HIF-1α C1772T polymorphism with HNC risk under a

homozygous model

Fig. 5 Funnel plot of publication bias for the HIF-1α C1772T polymorphism in HNC under the dominant model
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addition, a statistically significant correlation between

the HIF-1α G1790A polymorphism and a higher risk of

HNC was discovered for the homozygous and recessive

genetic models (OR = 72.11, 95% CI = 2.08–2502.4 for

the homozygous model; OR = 58.05, 95% CI = 1.70–

1985.8 for the recessive model). These results indicated

that these two polymorphisms play an important role in

the progression and development of HNC.

In the stratification analysis of the C1772T poly-

morphism by the genotyping method, the relevance of

the PCR-RFLP genotyping subgroup in the homozygous

and recessive models was statistically significant. Regard-

ing the stratification analysis by ethnicity, under homo-

zygous and recessive genetic models, the association

between the HIF-1α C1772T polymorphism and in-

creased risk of HNC in the Caucasian population was

very significant, but not in the Asian population, which

demonstrated genetic diversity among different ethnic

groups. This could be explained by the following rea-

sons. First, different ethnic populations live a variety of

lifestyles. Second, various environmental factors may be

correlated with different ethnicities. Third, various eth-

nic populations carry different genetic traits.

In the subgroup analysis of the HIF-1α G1790A poly-

morphism by the genotyping method, we found that

there was a statistically significant correlation between

PCR-RFLP genotyping method subgroups in the homo-

zygote, dominant and recessive genetic models. This

might be because the relationship can be influenced by

various genotyping methods, indicating that it is neces-

sary to identify a genotyping method with high specifi-

city and sensitivity to raise the reliability of results. In

the subgroup analysis according to the source of con-

trols, a statistically significant correlation was discovered

in the PB subgroup but not in the HB subgroup. The

reasons for the inconsistent results in HNC risk remain

unknown. We supposed that certain selection bias could

exist in the HB subgroup because patients without HNC

were included, and they might be less representative of

the general population than the populations in the PB

subgroup. The location of HNC includes the oral cavity,

pharynx, cheek and larynx, and different locations have

different characteristics; thus, further subgroup analysis

was carried out according to tumour types. Regarding

the subgroup analysis by tumour type, the HIF-1α

G1790A polymorphism was substantially related to a

higher risk of OC in the five genetic models. This could

be due to different tumour sites being exposed to differ-

ent microenvironments. HIF-1α expression profiles

could be regulated or influenced by the different micro-

environments, and the same polymorphism might there-

fore play different roles in different sites [47].

However, there were some inevitable limitations in this

meta-analysis. First, the size of the sample in some

subgroups was small, and the results from certain sub-

group analyses therefore did not have sufficient power

to confirm the relationship. Second, there may have

been publication bias because some qualified unpub-

lished articles were not included in our study. Third,

subgroup analyses by age, gender, alcohol, smoking or

other variables were not performed because of informa-

tion limitations. Therefore, it is necessary to study the

role of HIF-1α C1772T and G1790A polymorphisms in

HNC risk with more data and a larger sample size.

Despite these shortcomings, our study has several ad-

vantages. First, the latest data were contained in the ana-

lysis to evaluate the correlation between C1772T and

G1790A polymorphisms in HIF-1α and HNC susceptibil-

ity. Second, no publication bias was observed, and evi-

dence for the overall robustness of the results was

provided by sensitivity analysis. Additionally, to our know-

ledge, this is the first meta-analysis to summarize the role

of HIF-1α C1772T polymorphisms in HNC susceptibility.

However, a previous meta-analysis [48] evaluated the rela-

tionship between the G1790A polymorphism and HNC.

However, our research has advantages in the following as-

pects. Our study included five genetic models, and sub-

group analyses by genotyping methods and cancer type

were performed. Moreover, in this study, we conducted

publication bias analysis and sensitivity analysis, which

showed that our conclusion was reliable.

Conclusions
In conclusion, the HIF-1α C1772T and G1790A polymor-

phisms were significantly related to susceptibility to HNC.

Moreover, we found for the first time that the C1772T

polymorphism could statistically increase HNC risk

among Caucasians. In addition, the HIF-1α G1790A poly-

morphism was strongly related to a higher risk of HNC,

especially OC. However, further well-designed papers with

larger sample sizes are needed to confirm our results.
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