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Correlation detection strategies in microbial data
sets vary widely in sensitivity and precision
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Disruption of healthy microbial communities has been linked to numerous diseases, yet microbial
interactions are little understood. This is due in part to the large number of bacteria, and the much
larger number of interactions (easily in the millions), making experimental investigation very difficult
at best and necessitating the nascent field of computational exploration through microbial correlation
networks. We benchmark the performance of eight correlation techniques on simulated and real data
in response to challenges specific to microbiome studies: fractional sampling of ribosomal RNA
sequences, uneven sampling depths, rare microbes and a high proportion of zero counts. Also tested
is the ability to distinguish signals from noise, and detect a range of ecological and time-series
relationships. Finally, we provide specific recommendations for correlation technique usage.
Although some methods perform better than others, there is still considerable need for improvement
in current techniques.
The ISME Journal (2016) 10, 1669–1681; doi:10.1038/ismej.2015.235; published online 23 February 2016

Introduction

Microbes interact with their hosts and their commu-
nities, and these interactions have been implicated

in numerous human health conditions including
obesity and metabolic syndrome (Ley et al., 2005;
Turnbaugh et al., 2009; Vrieze et al., 2012; Ridaura
et al., 2013), cardiovascular disease (Wang et al.,
2011), Clostridium difficile colitis (Gough et al., 2011),
inflammatory bowel diseases (Gevers et al., 2014) and
HIV (Lozupone et al., 2013a). These communities are
influenced by diet, culture, geography, age and
antibiotic use, among other factors (Lozupone et al.,
2013b), and are also very important in other systems,
such as soils, lakes and oceans (Chaffron et al., 2010;
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Beman et al., 2011; Steele et al., 2011). An emerging
approach to their study through sequencing is
‘correlation networks’. Broadly, correlation networks
have individual microbes (operational taxonomic
units (OTUs), or features) as nodes and feature–
feature pairs as edges, where an edge may imply a
biologically or biochemically meaningful relation-
ship between features. For instance, one may expect
that mutualistic microbes, or those that benefit each
other, will positively correlate across samples. In
contrast, microbes with antagonistic relationships
such as competition for the same niche may
negatively correlate. In practice, microbes also may
positively or negatively correlate for indirect rea-
sons, based on their environmental preferences. This
notion is supported by the observation that phylo-
genetically related microbes have a tendency to
positively co-occur (Lozupone et al., 2012). Recent
studies suggest that the microbial relationships
shown in correlation interaction networks can be
used to determine drivers in environmental ecology
(Ruan et al., 2006; Steele et al., 2011; Zhou et al.,
2011; Lima-Mendez et al., 2015) or contribution to
habitat niches or disease (Chaffron et al., 2010;
Arumugam et al., 2011; Faust and Raes 2012; Faust
et al., 2012; Greenblum et al., 2012; Oakley et al.,
2013; Goodrich et al., 2014; Buffie et al., 2015).
Correlation is also a powerful tool to help research-
ers with hypothesis generation, such as determining
which interactions might be biologically relevant in
their system, and should be given further study (for
example, through co-culturing or whole-genome
sequencing).

Unfortunately, measuring correlation networks is
computationally challenging. One such challenge
comes from the complexity of microbial commu-
nities: many microbial data sets easily have 45000
features. As the number of possible two-feature
interactions for a data set with n features is
(n*(n−1))/2, this implies almost 12.5 million
possible two-feature correlations. Also, as microbes
live in communities, there are likely three-feature
interactions, four-feature interactions and more.
An additional challenge is that microbial sequence
data provide relative abundances based on a fixed
total number of sequences rather than absolute
abundances, which introduces the problem of
compositions (Lovell et al., 2010; Friedman and
Alm, 2012). Sparsity of the features and missing data
owing to incomplete sampling further complicates
statistical analysis (Reshef et al., 2011; Friedman and
Alm, 2012). Finally, microbes may display diverse
types of relationships, such as linear, exponential
or periodic, and most tests are not general enough
to detect them all; even those that do are unlikely to
detect different functions with the same efficiency
(Reshef et al., 2011).

There are many different approaches for comput-
ing these correlation networks. In theory,
any method that measures relationships between
features can be used: for example, metrics like

Bray–Curtis (Bray and Curtis, 1957), which measures
abundance similarity; the Pearson correlation coeffi-
cient, which assesses linear relationships; and the
Spearman correlation coefficient, which measures
rank relationships are all potentially applicable
(Spearman, 1904; Pearson, 1909). Software programs
have been developed and optimized specifically to
correct for certain aspects of correlation analysis of
natural populations. For example, CoNet (Faust
et al., 2012) acknowledges that various techniques
have different strengths and weaknesses and/or are
designed to optimally detect different functional
relationships, and thus uses an ensemble method
with the ReBoot procedure for P-value computation
to combine information from several different stan-
dard comparison metrics. Local Similarity Analysis
(LSA) (Ruan et al., 2006; Beman et al., 2011; Steele
et al., 2011; Xia et al., 2013) is optimized to detect
non-linear, time-sensitive relationships and can be
used to build correlation networks from time-series
data. The Maximal Information Coefficient (MIC)
(Reshef et al., 2011) is a non-parametric method
designed to capture a wide range of associations
without limitation to specific function types
(such as linear or exponential) and to give similar
scores to equally noisy relationships of different
types. MENA (Zhou et al., 2011; Deng et al., 2012)
adapts Random Matrix Theory (RMT) from physics
to microbiome data, and attempts to be robust to
noise and to arbitrary significance thresholds.
Finally, SparCC (Friedman and Alm, 2012) is
particularly designed to deal with compositional
data, as it is based on Aitchison’s log-ratio analysis
(Aitchison, 1986).

The performance and limitations of most of these
computational methods for inferring correlation
networks have not been comparatively evaluated
using either real or theoretical data sets, leaving
researchers to guess at important properties of their
networks such as sensitivity, specificity, precision
and—most importantly—ability to provide interpre-
table results. Counts of true positives (TP), false
positives (FP), TN (true negatives), FN (false nega-
tives), and calculations of sensitivity (true positive
rate—TP/(TP+FN)), specificity (true negative rate—
TN/(FP+TN)) and precision (TP/(TP+FP)) are
among standard benchmark measures. Without
an understanding of these important properties,
correlation analysis risks diverting attention from
meaningful interactions and leading to wasteful
pursuit of expensive in vitro or in vivo validations
of mechanisms. One previous effort in this area
tested mainly basic correlation measures for one type
of model system (Berry and Widder, 2014).

Here, we tested the ability of each of these
widely used correlation measures and tools to
detect a variety of dependent relationships in
both simulated and real microbial data
sets. Figure 1a outlines the general workflow.
Supplementary Table 1 and the Methods section
detail how mock data were generated, and all
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code, test-code and documentation is available at
ftp.microbio.me/pub/cooccurrence_files.zip. In brief,
our simulations comprised 91 different data tables
(columns in microbiome data typically represent
samples, whereas microbes/features represent rows)
with the number of microbes per table ranging from
200 to 10 000, and generated from eight different
sample data generation models: distribution/copula
(Trivedi and Zimmer, 2007), experimental, normal-
ization, feature filtering, null/random, linear and
non-linear (Lotka–Volterra) ecological (Volterra,
1926) and time-series. Within some models, we also
introduced the aforementioned compositional and
sparsity challenges.

Materials and methods

Tools

CoNet. For each of five similarity measures ((Bray
and Curtis, 1957), Kullback–Leibler dissimilarity,
Pearson (1909) and Spearman (1904) correlation,
and mutual information), a distribution of all
pair-wise scores was computed (Faust et al., 2012).
Given these distributions, initial thresholds were
selected such that the initial network contained 2000
positive and 2000 negative edges supported by all
five measures. For each measure and edge, 1000
permutation (with renormalization for correlation
measures) and bootstrap scores were generated,
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Figure 1 Overview and motivation of correlation network technique benchmarking. (a) Mathematical properties of microbial
communities naturally present in the environment are simulated in different feature× sample tables. These tables are evaluated for
significant feature correlation networks by different metrics and toolkits. The networks are then assessed for accuracy. (b) Correlation tools
find very different significant pairs on the same data set. A blue (pink) line connects significant positively (negatively) correlated
OTU pairs.

Microbial correlation detection strategies
S Weiss et al

1671

The ISME Journal



following the ReBoot routine. The measure-specific
P-value was then computed as the probability of the
null value (represented by the mean of the null
distribution) under a Gauss curve generated
from the mean and s.d. of the bootstrap distribu-
tion. As a one-sided test was carried out, P-values
close to one were considered indicative of mutual
exclusion and converted into low P-values by
subtraction from one. Next, measure-specific
P-values were merged using Brown’s method
(Volterra, 1926), which takes dependencies
between measures into account. After applying
Benjamini–Hochberg’s (Benjamini and Hochberg,
1995) false discovery rate correction, edges with
merged P-values below 0.05 were kept. Any edge for
which the five measures did not agree on the
interaction type (that is positive or negative) or
whose initial interaction type contradicted the inter-
action type determined with the P-value was also
discarded. Edges with scores outside the 95%
confidence interval defined by the bootstrap distribu-
tion or not supported by all five measures were
discarded as well.

RMT. All RMT calculations were implemented
through the Molecular Ecological Network Approach
Pipeline at http://ieg2.ou.edu/MENA (Deng et al.,
2012). Pearson correlation coefficient (r-value) was
calculated between each pair of OTUs and a
symmetric similarity matrix was formed after all
r-values were calculated. Theoretically, the RMT
approach is applicable to any similarity matrix
(Deng et al., 2012), but here it was only used to
automatically detect a reliable cutoff for the Pearson
correlation matrix based on the χ

2-test with Poisson
distribution. The threshold for defining a network is
mathematically determined by calculating the tran-
sition from Gaussian orthogonal ensemble to Poisson
distribution of the nearest-neighbor eigenvalues, and
hence the network is automatically defined based on
the data structure itself. To control the FP rate, the
most stringent thresholds (significance of χ

2
40.05)

were set for the tests.

MIC. MIC was calculated with default parameters
in minerva, an R wrapper for the cmine implemen-
tation of Maximal Information-based Nonpara-
metric Exploration statistics, to quantify the linear
or non-linear association between pairs of OTUs
(Reshef et al., 2011). An empirical approach
was taken for P-value calculation; for example,
with a P-value threshold of 0.001, the MIC thresh-
old that made the top 0.001 (one-thousandths)
of the edges significant was chosen. Bonferroni
multiple hypothesis test correction was applied
(Dunn, 1961).

LSA. The eLSA analysis was run with the
program’s default parameters, that is, with no delay
allowed (delayLimit = 0), P-value calculated by
theoretical approximation (P-valueMethod = theo),

required precision of P-value as 1/1000 (precision=
1000), and data rank-normalized and z-transformed
(normMethod= robustZ) (Ruan et al., 2006; Xia et al.,
2013). Multiple hypothesis correction was done
using q-values (Storey, 2002).

SparCC. SparCC was run with default parameters
and 500 bootstraps (Friedman and Alm, 2012).
Pseudo P-values were calculated as the proportion
of simulated bootstrapped data sets with a correla-
tion at least as extreme as the one computed for the
original data set.

Pearson and Spearman correlations. The Fisher
z-transformation was used to calculate P-values
(Fisher, 1915; Spearman, 1904; Pearson, 1909).
Bonferroni multiple hypothesis test correction was
applied (Dunn, 1961).

Bray–Curtis. An empirical approach was taken for
P-value calculation; for example, with a P-value
threshold of 0.001, a correlation threshold that made
the top 0.001 (one-thousandth) of the edges signifi-
cant was chosen (Bray and Curtis, 1957). Bonferroni
multiple hypothesis test correction was applied
(Dunn, 1961).

Models
Copula. This model enabled generation of random
variables having a specified covariance matrix from a
given distribution (Supplementary Methods) (Trivedi
and Zimmer, 2007).

Null model. This model was used to generate
data tables from null distributions of several types
to support testing the false discovery rates of
various tools. Three methods were implemented.
In method 1, the OTU table was created by randomly
drawing sample vectors from a given distribution
and parameters. In method 2, the OTU table was
created with compositions in mind and therefore the
sum of each sample was constrained. Tables were
either not sum-constrained (raw abundance)
or sum-constrained (providing relative abundances
by dividing each OTU by the total number of
sequences in its sample) and were produced by the
Dirichlet distribution. In method 3, the OTU table
was created with compositional data in mind,
similar to model 2, but with higher sparsity than is
normally created with the Dirichlet procedure by
subtracting the mean value of the table from all
entries (entrieso0= 0).

Ecological
This model helped create tables with simple
(ecologically based) relationships between OTUs
to test if the tools can accurately recapture relation-
ships that are defined by a mechanism rather than
by a high correlation score. We chose this method
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to assess if relationships that exist in biological
contexts can be revealed through correlation
analysis as frequently reported. Amensal, commensal,
mutual, parasitic, competitive and partial-obligate-
syntrophic ecological models were tested. All
interactions were linear and dependent on OTU
abundance.

1. The amensal model depresses the abundance of
OTU2 when OTU1 is present by strength*OTU1;
OTU1 is unaffected by the presence of OTU2.

2. The commensal model increases abundance of
OTU2 when OTU1 is present by strength*OTU1;
OTU1 is unaffected by the presence of OTU2.

3. The mutualism relationship increases the abun-
dance of OTU1 and OTU2 when both are present;
the strength of increase in each OTU is propor-
tional to the abundance of the other OTU.

4. The parasitism model increases the abundance of
OTU1 and decreases abundance of OTU2 when
both are present. Thus, OTU1 grows at the
expense of OTU2 with strength proportional to
the abundance of OTU2.

5. The competitive model depresses the abundance
of both OTUs if both OTUs are present. This
simulates OTU competition for some limiting
resource with the strength of each OTU’s decrease
proportional to the abundance of the other OTU.

6. The obligate syntrophy model allows OTU2 only
when OTU1 is present at abundance proportional
to strength. This mimics a relationship where
OTU2 depends on the presence of OTU1 and
cannot exist without it.

7. The partial-obligate-syntrophy model allows
OTU2 only if and only if OTU1 is present. This
is similar to obligate syntrophy except the
presence of OTU1 does not necessarily mean
OTU2 is also present.

Lotka–volterra
These are systems of n differential equations
that model the dependencies and interactions of
the abundances of n species. The most widely
used are simple two-species system of equations
modeling predator-prey (for example, fox and
rabbit) abundances (Supplementary Figures
12a–f), developed by Volterra (1926). The behavior
of the Lotka–Volterra equations is much less
understood for systems larger than two-species;
for example, starting with the three-species
equations, chaotic behavior may occur, the system
dynamics become much more complex (Idema,
2005). For the six-species equations in this
paper, we used small variations of the six-species
systems of equations explored by Idema (2005).
Because of the system complexity, small variations
in the interaction matrix lead to very different
abundance patterns (Supplementary Figures 12g–i).

Time Series
This model creates OTU tables with simple time-
series relationships. All signals take the form of:
y_shift+alpha*signal_function(phi(theta+omega))
+noise, where alpha is the amplitude, phi is the
frequency, and omega is the phase shift. Options to
subsample the waves at even/randomly selected
indices, or add sparsity are included.

Table Sets
Details of table set construction and filtering
are provided in Supplementary Table 1 and
Supplementary Methods.

Results

Tools infer significantly different numbers of edges in
most data sets
Different tools consistently produce very different
numbers and types of significant edges for the
same data (Figure 1b, Supplementary Figure 1). As a
corollary, tools are generally dissimilar in which edges
they detect; demonstrating an average of 31.5% shared
edge inference for all pair-wise combinations of tools,
and for all data sets/models tested. This discordance
further underscores the need for benchmarking, and
suggests that the techniques may have differing
strengths and weaknesses in response to the diverse
challenges presented by microbiome data.

Sampling significantly alters edge inferences
Compositions can be troublesome to sequencing data
interpretation because if the abundance of one
species increases, and the others do not change,
there is less room in the fixed sample sum for the
other species to be counted, thus inducing spurious
correlations (Pearson, 1897; Lovell et al., 2010;
Friedman and Alm, 2012). Theory suggests that
lower numbers of species types should increase
compositional effects (Friedman and Alm, 2012). We
used a set of five copula tables with decreasing
numbers of effective species (a measure of microbial
diversity) to test how compositional data impacts each
of the correlation measures (Figure 2, Supplementary
Figure 4). We also tested different normalization
approaches, which are applied to tables of OTU
sequence counts (OTU tables) to correct for differences
in sampling efforts (McMurdie and Holmes, 2014).
Rarefying, or drawing without replacement from each
sample’s distribution until all samples have the same
total number of sequences, metagenomeSeq’s cumu-
lative sum scaling (Paulson et al., 2013) and DESeq’s
log-ratio-based variance stabilizing transformation
(Anders and Huber, 2010) were examined.

Although the correlations do well on the ‘Abun-
dance’ tables, we see a marked shift in the number of
correct edges for most tools as soon as the total sum
of counts is constrained, which worsens with smaller
neff. Many edge pairs vary between the same data set
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at different neff (Figure 2a), and deviate from the edge
predictions based on absolute environmental OTU
abundances (Figure 2b). Rank-based measures such
as MIC and Spearman, as well as Bray–Curtis,
are less affected by compositional data but still
not immune. SparCC maintain high precision
compared with predictions on ‘Abundance’ tables
with low neff. However, if network overlap is
measured, no technique does well (Supplementary
Figure 9). We do not recommend DESeq normal-
ization for correlations owing to the negative values
it produces. Normalization is discussed more in the
Supplementary Note, and Supplementary Figures
2 and 3. In general, across all tools and normalization
techniques, the slope of the function describing the
number of total edges for a given neff (Supplementary
Figure 4) changes particularly quickly at low neff

(Inverse Simpson neffo13), suggesting that the
smaller the number of effective species, the larger

the impact on edge inference results. Given these
findings, promising work has been done on addres-
sing compositional data as a significant challenge to
co-occurrence network inference, but the problem is
still not solved.

The number of FP in null data is within expectations but
differs by tool/technique and in some cases distribution
Control of the number of FP is well established in
traditional statistical analysis (Dunn, 1961; Hochberg
and Benjamini, 1990; Storey and Tibshirani, 2003)
but has not been standardized for correlation
inference. RMT allows the method itself to set the
correlation threshold, rather than employing an
arbitrary user-imposed threshold. LSA, CoNet
and SparCC calculate the P-value through
permutation-based approaches, and q-value (Storey
and Tibshirani, 2003) and Benjamini–Hochberg
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Figure 2 The impact of compositional data and normalization strategy on reconstructing actual microbial interactions. Five tables with
varying neff (36, 25, 19, 10, 4) were created by multiplication of the abundances of one OTU pair by a constant; all other OTU abundances
remained the same for all tables. These ‘Abundance’ tables represent the actual OTU abundances in the environment. SparCC assumes the
data table is compositional, and hence is not shown. Then, the ‘Abundance’ tables were sampled without replacement (rarefied),
constraining the sum and inducing compositionality, mimicking the experimental sampling process. The rarefied (2000 library size) tables
were then either rarefied further (rarefy 1000 library size), CSS normalized or DESeq normalized. From left to right: (a) The five circles
within each normalization technique represent: of all the edges found in the five neff tables, the number of edges found 1 (red)—5 (blue)
times. A technique less affected by the compositional nature of the data has a larger circle at point 5, as most tools do in the ‘Abundance’
tables. (b) Precision of a tool’s estimates on the compositional normalized tables as compared with the same tool’s predictions on the
‘Abundance’ tables for a given neff. A larger circle represents better reconstruction of the true ‘Abundance’ OTU correlations.
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multiple hypothesis testing correction. MIC and
Bray–Curtis calculate the P-value through distribu-
tional approaches, Pearson and Spearman calculate
the P-value with Fisher z-transformation, and all
apply stricter Bonferroni multiple hypothesis testing
correction. Note that as the correlation techniques
use different approaches for generating P-values and
multiple hypothesis testing correction, they are not
quite comparable. The impact of this is beyond the
scope of the paper, but to lessen its effects we
evaluate the techniques at multiple P-value
thresholds.

To enable assessment of the relative performance
of these methods, we created two ‘null’ data tables,
one containing random draws from six different
zero-heavy distributions and the other from
a Dirichlet distribution modeled on real data.
(The former simulates differently distributed
non-compositional data in which vectors are
independent and identically distributed within a
distribution, whereas the latter simulates composi-
tional data, which are not independent and identi-
cally distributed, but for which no correlation matrix
is specified. Both of these data tables should have no
true associations between features.) The performance
of the tested tools on these data is generally excellent
(Supplementary Figure 10), despite differences in
P-value calculation and multiple hypothesis testing.
RMT and CoNet have the lowest rate of FP. However,
although the false-positive rates (FP/(FP+TN)) are
in-line with specified P-values for tools that rely on
them, the false discovery rates (FP/(FP+TP)) are not,
as TP=0 for these tables. This suggests extremely
low precision (below 0.2) for all tools.

All tools are sensitive to several distribution
shapes, except for LSA, MIC, Spearman and SparCC.
For example, RMT and CoNet demonstrate an
unexpected tendency to preferentially select edges
from certain distributions. RMT shows a preference
for χ

2-distributed OTUs, and CoNet prefers OTUs
from the χ

2-, Nakagami and lognormal distributions
(Supplementary Figure 11). Bray–Curtis almost
exclusively selects edges from the uniform distribu-
tions, whereas Pearson finds three times fewer edges
from the uniform distribution compared with the
other distributions. This means that these tools may
preferentially select as correlated the OTUs exhibit-
ing these distributions. For example, if uniform or
χ
2-distributed OTU correlations are preferred,
parasitic relationships, where one species benefits
and the other is harmed, may go undetected.

A subset of common linear ecological relationships is
detectable by some tools
Correctly detecting ecologically meaningful relation-
ships such as competition and mutualism is essential
for a correlation tool. To test tools’ capacity to identify
these relationships, we developed simple linear models
of the amensal, commensal, competitive, mutual,
obligate, parasitic and partial-obligate-syntrophic

ecological relationships (Materials and methods).
These ecological relationships manifest as a depen-
dency between the species abundances for a given
ecological relationship type. We built tables where
the type, strength and number of OTUs in a linear
relationship varied, and introduced compositions,
sparsity or both. Mutualism and commensalism
are well detected by most tools (Figure 3a,
Supplementary Note), whereas amensalism and
partial-obligate-syntrophy are undetectable. All tools
detect parasitism as a co-presence rather than as
mutual exclusion, but three tools (SparCC, Spearman
and LSA) correctly identify competitive relation-
ships as mutual exclusions. As expected, tool
performance generally improves with increasing
strength of a relationship (that is, increasing signal/
noise ratio). Literature suggests that many biological
interactions are mediated by more than two-species
interactions (Shade et al., 2012). In tests of data with
more than two members, detection profiles were
similar to two-species relationships, but consider-
ably attenuated (Figure 3b). SparCC and LSA are
unique among the tested tools for their ability to
correctly infer a competitive three-member relation-
ship as having components of both co-presence and
mutual exclusion. Nonetheless, our results suggest
that microbial relationships having greater than three
members are likely impossible to detect with current
approaches.

The features in these data sets were independent
and identically distributed unless part of an
engineered correlation, which allowed us to accu-
rately assess tool sensitivity and specificity. ROC
curves of the ecological data confirm that increasing
the complexity of the ecological relationships by
mixing three-species relationships with simpler
two-species relationships (Supplementary Figure
12a) significantly decreases tool specificity and
sensitivity. Although tool performance improves on
only two-species ecological data even with the
addition of compositional effects (Supplementary
Figure 12b), increasing sparsity (Supplementary
Figure 12c) to levels commonly seen in microbiome
data sets drastically reduces tool performance to
little better than random guessing.

In agreement with the above null data, precision of
the tools is also extremely poor (close to or at zero)
under realistic conditions (Figures 4a–c). We place
more importance on precision and sensitivity,
because although it is easy to create a large network,
it is much more important to predict interactions
that are true and can be investigated further.
Tool performance above the 45-degree line, which
represents random guessing, is useful. LSA, and at a
few times, MIC and Spearman rise above the
45-degree line; however, not far above the line,
which indicates large room for future improvement.
Performance does improve for stronger ecological
relationships (Supplementary Fig 13), but only
slightly. In light of how drastically performance
decreases with increasing OTU sparsity (Figure 4,
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Figure 3 Types of linear ecological relationships detected by each correlation technique. The columns represent the seven types of
engineered ecological relationships, and the rows indicate the eight tools tested. Each cell contains three histograms with increasing
‘strength’ of relationship from left to right. The fill in each bar represents the fraction of engineered edges detected as significant when the
relationships were composed of (a) pairs of features or (b) triples or more.

Figure 4 Tool precision is extremely low under realistic microbiome data set conditions. Precision vs recall (sensitivity) curves for linear
ecological relationships (a–c) and non-linear/Lotka–Volterra ecological relationships (d–h). All tables were ~40% sparse, except (c) and (h),
which were 70% sparse. The CoNet ROC curve does not extend from the bottom left corner to the top right corner of the ROC curves because
of the filtering procedure CoNet uses prior to inferring any correlations. RMT is only a single point since the algorithm sets the P-value,
instead of the user imposing a P-value. Although the dots are connected by interpolation, only the dots themselves have been measured.
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Supplementary Figures 12 and 13a–c), we suggest
removing rare OTU predictions from the network.
Plots of TP and FP predictions show that the ratio of
TP to FP decreases markedly at ~ 50% OTU sparsity
(Supplementary Figure 14). This 50% threshold
could be adjusted depending on the technique, data
set, and user preferences. Although OTU removal
destroys network structure, we found that a high rate
of FP is likely more destructive.

Non-linear ecological relationships are harder to detect
than linear ecological relationships
Lotka–Volterra models are a set of classic ecological
models for interacting species based on coupled
first-order differential equations (Volterra, 1926) that
are applicable in a wide range of macro-scale
ecological relationships (Shade et al., 2012). Evi-
dence is emerging for their applicability at the micro
scale as well—for example, in describing the micro-
bial dynamics in a cheese model community
(Mounier et al., 2008) and within individuals
(Gerber 2014), as well as their shifts in response to
environmental perturbations (Pepper and Rosenfeld,
2012). Previous investigation in this area mostly
tested standard correlation metrics not developed
for microbiome data (Berry and Widder, 2014).
We created two- and six-species Lotka–Volterra
interactions (Supplementary Figure 15) and tested
whether tools accurately capture these relationships
when they are embedded in random noisy signals.

The irregularity of the Lotka–Volterra equations
proves difficult for all measures, with an average
10% drop in sensitivity compared with the linear
ecological relationships. For the two-species edges,
MIC, SparCC, LSA, CoNet and Spearman all perform
strongly for both count and compositional tables
(Figures 4d and e, Supplementary Figure 12d and e,
Supplementary Table 2), whereas SparCC consis-
tently performs well on the six-species Lotka–
Volterra tables (Figures 4f and g). Pearson also
performs well on the six-species tables because some
of the dissipative relationships display linear corre-
lations. However, again under realistic conditions,
when sparsity is boosted from 40 to 70%, perfor-
mance drops to little better (or even worse) than
random guessing (Supplementary Figure 12h).
The same is true for precision (Figure 4h).

Time-dependent relationships vary based on signal,
sampling frequency and time shift
Correlations in time-series data are well studied in
other fields, but microbiological studies are just
beginning to show predictable shifts in microbial
communities over time (Caporaso et al., 2011;
Gonzalez et al., 2012; Shade et al., 2013). For
example, in Caporaso et al., the fluctuations appear
sinusoidal (Caporaso et al., 2011). Generally,
detected edges varied depending upon at which
point in time/how many samples were taken of

the fluctuating OTUs (Figure 5). More details can
be found in the Supplementary Note, and
Supplementary Figures 16 and 17. Together, the
time-series results indicate an important area of
future research, as researchers take discrete samples,
and therefore cannot know the abundance of each
OTU at every point in time.

Ensemble approaches boost precision and the F1 score
Because tools detect different edges in the same data,
we hypothesized that combining tools for detection
purposes might improve precision. We treat the
CoNet approach (Materials and methods), which is
an ensemble approach of the standard metrics in
itself and implements renormalization and permuta-
tion (ReBoot) for P-value calculation (Faust et al.,
2012), as one tool. The ensemble approach tested
included the toolkits, for example, SparCC, and
simply calculated the intersection of the edges below
a certain P-value, here 0.001, yielded by each
technique (Figure 6a). In our tests on the linearly
ecologically modeled data where engineered correla-
tions are known, the increase in precision for the
ensemble approach is marked compared with most
tools alone—with many combinations finding zero
FP—at a cost to sensitivity (Supplementary Table 3).
Although the ensemble shows little gain against MIC
or LSA (Figure 6b) in theoretical data, the gains
become larger when sparsity is increased from 40%
to a more realistic 70%, although all tools still suffer
from drastically decreased sensitivity or hit rate.
Our results suggest that an ensemble approach
including CoNet, SparCC, Spearman and Pearson,
should be used when precision is required, for

Figure 5 The time, or point in the feature signal cycle, at which a
sample is taken introduces variability in detected correlations. The
number of samples is also a large influence in reconstructing the
correct signal, and therefore correlation. The number of co-
occurring feature pairs found in 26, 50 and 76 points randomly
sampled from a 100 time point time-series of features composed of
signals with varying noise, amplitude offset, phase shift, frequency
and coupling. These mixture model tables had signals composed
of sine, cosine, sawtooth and logarithmic patterns.
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example, for developing biological hypotheses on
species interactions to test with co-culturing. If low
FP rates are not critically important, and the OTU
table is over half zeroes, we recommend using an
ensemble of CoNet and Pearson for increased F1
score. For Lotka–Volterra 70% sparse ecological
relationships, LSA also has high precision/F1 score
(Supplementary Table 2).

Discussion

Correlation detection is an emerging analytical
technique that can select biochemically or ecologi-
cally relevant feature pairs in microbial sequencing
data. At the highest level, there is much disagree-
ment between inferred networks generated from

different tools on the same data (Figure 1b,
Supplementary Figure 1), necessitating benchmark-
ing. Although the potential of this approach is clear,
our work shows that current tools have significant
limitations that must be accounted for when per-
forming correlation analyses. More specifically, the
usual corrected P-value threshold of 0.05 is too
lenient to allow high-precision detection with almost
all tools; a threshold such as 0.001 is more useful.
Also, processing choices such as sequencing tech-
nology type and normalization (Supplementary
Notes) have a great impact on which network edges
are detected. New strategies must be explored and
validated to mitigate the impact of preprocessing on
network topology. It is noteworthy that the RMT
approach, which in this study is paired with Pearson
correlation, significantly improves the precision and

Sensitivity

P
re

c
is

io
n

Figure 6 Ensemble approach increases precision and the harmonic mean of precision and sensitivity. (a) Simple two-tool explanation of
ensemble approach. Edges in green are found to be significant by tool one in left network and tool two in middle network. Blue edges in
the right network are those edges found by both tool one and tool two. The ensemble approach tested all 28 possible one to eight member
combinations. (b) The top three ensemble approaches ranked by F1 score (harmonic mean of precision and sensitivity, Supplementary
Table 4) on each linear ecological table type (tables 1.6, 1.7—two- and three-species abundance tables—45% sparse, table 2.16
compositional—40% sparse, table 2.17 counts—70% sparsity, table 2.18 compositional—70% sparse) compared with the tools alone. LSA
is hidden beneath the ensemble approaches for the tables 1.6 and 1.7.
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F1 score of Pearson correlation alone. Hence, future
investigation of RMT paired with other correlation
measures, such as Spearman, is promising. Our
results confirm that progress, as measured by
precision, has been made on addressing previously
published compositional effects in the context of low
numbers of effective species (Friedman and Alm,
2012) (meaning that when a few microbes are
highly abundant, fluctuations in these dominant
abundances changed the resulting correlation
networks dramatically owing to the sum constraint
on the total number of sequences per sample).

Encouragingly, all tools have reasonable false-
positive rates. However, detection of ecological
relationships (manifested as abundance dependen-
cies) is poor for relationships other than
commensalism and mutualism (Figure 3), and
sparsity is perhaps the most significant unaddressed
challenge of all (Figures 4c and h). Hence, we
recommend filtering out extremely rare OTUs prior
to network construction. Tool performance degraded
significantly for OTUs containing 450% zeroes.
Nonetheless, the best options depending upon input

data set characteristics are summarized in Figure 7
and Table 1, and tool computational time in the
Supplementary Note. If associations between sparse
OTUs are to be predicted, a reality in many data sets,
an ensemble approach is best for high-precision
detection of linear relationships in, for example,
situations where explicit tests of all hypothesized
interactions are prohibitively inefficient. For
sparse Lotka–Volterra relationships, LSA alone
yields the highest precision (0.2). Also, tools robust
to noise (for example, assessed by multiple rarefac-
tions on experimental data—see Supplementary
Figures 2 and 3)—are likely to perform better
on real-world data sets. Finally, although the tools
may accurately identify certain overall biological
relationships, researchers should be aware of
which relationships a given tool is actually capable
of detecting: for instance, concluding that a parti-
cular microbial community shows no signs of
amensal interactions on the basis of a correlation
analysis is likely incorrect, as none of the tested
tools could accurately identify engineered amensal
correlations.

Table 1 Summary of strengths and weaknesses for each correlation technique

Bray–Curtis CoNet LSA MIC Pearson RMT SparCC Spearman

Sequencing technology x
Compositions x x xx
Sparsity x
Rarefaction iteration number xx xx x x x
Distributional preferences xx xx x x
Three-species linear ecological relationships–40% sparsity xx x x x
Two-species linear ecological relationships–40% sparsity x x xx x x xx xx
amensal partial-obligate-syntrophy
Linear ecological relationships–70% sparsity
Lotka–Volterra relationships–40% sparsity x xx x x x x
Lotka–Volterra relationships–70% sparsity xx
Useful in improved precision ensemble approach–70% sparsity xx xx x xx x

x—moderate
performance

xx—
the best performance

of the tools

Figure 7 Workflow diagram summary indicating the best correlation technique depending upon data set characteristics and desired
ecological relationship discovery.
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Thus, we have identified the strengths and weak-
nesses of the main microbial correlation analysis
techniques, and provided many recommendations
for future study and toolkit use.

Despite their weaknesses, the correlation techni-
ques have proved useful in a number of biological and
experimental settings, as mentioned in the introduc-
tion. Study of correlation network analysis will likely
continue to grow, given its significance. Supplemen-
tation of the data sets utilized here with new data sets
containing experimentally verified microbial interac-
tions would be invaluable to progress in this area.
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