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Reports in the literature have indicated potential value of the correlation integral and dimension for
prediction of epileptic seizures up to several minutes before electrographic onset. We apply these
measures to over 2000 total hours of continuous electrocortiogram, taken from 20 patients with
epilepsy, examine their sensitivity to quantifiable properties such as the signal amplitude and auto-
correlation, and investigate the influence of embedding and filtering strategies on their performance.
The results are compared against those obtained from surrogate time series. Our conclusion is that
neither the correlation dimension nor the correlation integral has predictive power for seizures.
© 2005 American Institute of Physics.
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Recent years have witnessed an increasing use of
nonlinear-dynamics based measures in biomedical signal
analysis. In the area of epilepsy, where an important goal
is to predict seizures, the use of such measures as the
correlation dimension, the correlation integral, and
Lyapunov exponents has been practiced by various re-
search groups for about 15 years, with claims that sei-
zures can be predicted minutes or even hours in advance.
Considering the enormous implication of such claims in
terms of improving the quality of life for patients with
epilepsy (in the United States, approximately 1% of the
population are influenced by this disease), it is of para-
mount interest to perform systematic and extensive vali-
dation tests based on clinical data to generate evidence
either for or against these claims. The aim of this paper is
to present results of validation tests for the correlation
dimension and integral using extensive recordings of elec-
trocortiogram over 2000 hours from 20 patients with in-
tractable epilepsy. In order to carry out the required
tests, it is necessary to develop efficient algorithms for
computing the correlation dimension and integral in an
automated manner. We will present our new algorithms
that allow us to accomplish this task. In addition, we will
address technical issues such as signal amplitude normal-
ization, use of autocorrelation, effects of filtering and em-
bedding, and surrogate tests. To our knowledge, previous

studies of the correlation dimension and integral used
very limited numbers of cases and, in fact, no prior ef-
forts were attempted to conduct validation tests to the
extent that we have accomplished. The results of our tests
suggest strongly that the correlation dimension and inte-
gral have no predictive power for epileptic seizures.

I. INTRODUCTION

Nonlinear dynamical measures such as the correlation
integral and dimension, and Lyapunov exponents are com-
monly used in medical signal analysis for purposes of char-
acterization, prediction, and system control.1 In the context
of epilepsy, these techniques have been utilized to analyze
the electroencephalogram �EEG� or electrocortiogram
�ECoG�2–19 with various claims that seizures can be pre-
dicted up to several minutes in advance.6,8,10,13,16 Reliable
seizure prediction would reduce morbidity and greatly im-
prove the quality of life for subjects with epilepsy, approxi-
mately 1% of the population of the United States.

Because ECoG is nonstationary and has a stochastic
component, there are questions about the utility of nonlinear-
dynamics based methods, and some studies have reported no
significant difference in the seizure detection or prediction
performance between linear and nonlinear measures.20–22 In
addition, there has been a lack of large-scale studies consist-
ing of long time series necessary to validate prediction
claims. Other significant factors that may hamper the valida-
tion of prediction claims include lack of standardization in
the choice of method parameters, digital precision, filtering
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methods, amplitude normalization schemes, and window
length. Most existing reports8–10,23 have been based on very
short �10–60 min� time series, an insufficient time to test
reliability and specificity of the methods. Though the depen-
dence of fractal dimension computation on method param-
eters and window length has been discussed at length in the
literature,1 the effects of filtering methods and amplitude nor-
malization have received much less attention but they have at
least as much if not more impact on the value of the fractal
dimension.19 And, the intensive computational requirement
of these algorithms, a barrier to real-time application and
miniaturization, remains an under-studied problem.

To address these current limitations, in this paper we �1�
implement the correlation integral computation in an effi-
cient manner; �2� compute correlation integral-based mea-
sures for 2347 h of continuous ECoG data from 20 subjects
with a median of 124 h �mean 117 h� per subject; and �3�
assess the interplay between time-frequency changes in the
signal and the responses of the measures. These systematic
approaches suggest strongly that neither the correlation di-
mension nor the correlation integral is useful for seizure pre-
diction.

In Sec. II, we present our efficient method for computing
the correlation integral and dimension. In Sec. III, we de-
scribe how our data were collected. Important computational
issues such as amplitude normalization, autocorrelation, fil-
tering, embedding, and surrogate data analysis are addressed
in Sec. IV. Section V gives results on validation using long
time series. A discussion is presented in Sec. VI.

II. EFFICIENT METHOD FOR COMPUTING
CORRELATION INTEGRAL

The correlation dimension, one definition of a fractal
dimension, is often computed from experimental time series
due to its relative ease of computation with this type of data.
A generalized definition of the fractal dimension is24–26

Dq = lim
�→0

1

q − 1

log �i
I�q,��

log �
, �1�

where a grid of size � is used to cover the attractor,

I�q,�� = �
i=1

N���

�i
q,

and �i
q is the fraction of time a typical trajectory spent in the

ith cell, or its natural measure. The sum over the natural
measure can be written as a weighted average,24–26

�
i=1

N���

�i
q = �

i=1

N���

�i��i
�q−1�� = ��i

�q−1�� , �2�

and if q=2, the expectation value is the arithmetic average.
Typically, this average is expressed through the correlation
integral, which computes the fraction of pairs of points on
the attractor within a hypersphere of radius �. The correlation
integral can be approximated by the correlation sum

C�N,�� =
1

N�N − 1��i�j

��� − �xi − x j�� , �3�

where N is the number of data points x in the reconstructed
phase space. The definition for the dimension with q=2 thus
becomes

D2 = lim
N→�

lim
�→0

log C�N,��
log �

. �4�

For scalar time-series data, we perform computations of
the correlation integrals by using the standard time-delay
embedding27 in order to recover hidden degrees of freedom

yi = �xi,xi+�, xi+2�, . . . ,xi+�m−1��� , �5�

where m is the embedding dimension, and � is the time de-
lay. In order to remove possible autocorrelations due to over-
sampling of the data,28 we remove delay vector points with a
temporal separation of less than t=W /Fs, where Fs is the
sampling rate of the data, and W is an integer threshold
called the Theiler correction.29 Incorporating this correction
and exploiting the fact that �xi−x j�= �x j −xi�, we obtain the
standard Theiler-corrected form of the correlation sum:

C�N,�� = F �
k=W

N−1

�
i=1

N−k

��� − �xi − xi+k�� , �6�

where k= j− i, and

F = 1	
�
k=W

N−1

�
i=1

N−k

1� = 2/�N2 + N − 2WN − W − W2� .

For the correlation dimension computation, the quantity of
interest is the scaling of the correlation sum with respect to �,
thus Eq. �6� typically is repeated for geometrically spaced
values of �. Since a point pair within a hypersphere of radius
�d is also within hyperspheres of radius �d+n, where �d+n

��d, the correlation sum can be written as the sum of the
fraction of point pairs between consecutive discrete values of
�d.30,31 This can be expressed as

�C�N,d� = F �
k=W

N−1

�
i=1

N−k

���− �d−1 + �x j − xi��

� ���d − �x j − xi��� ,

C�N,d� = �
i=1

d

�C�N,i� . �7�

If we choose �d=�010d/r, then from ���d−1− �x j −xi��=1, we
find the indices of the corresponding �C�N ,d� bin: d
=int�r log10�x j −xi�−r log10�0�.

A number of additional improvements can be made to
the basic correlation sum algorithm computed from time-
delay vectors.31 For time-delay embedding, any given coor-
dinate difference may appear in up to m different positions in
point difference vectors. These redundant difference compu-
tations can be eliminated by computing all the coordinate
differences, storing them in an array, and performing a table
lookup to compute the interpoint differences. Additional
speed improvement can be made by computing the maximal
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coordinate distance for each interpoint difference rather than
the Euclidean distance. This is equivalent to changing the
geometry of hyperspheres to hypercubes. Switching to the
maximal norm also enables us to switch the order of opera-
tions of the logarithm and the maximum operators, since the
logarithm preserves the sequence order of a set of numbers.
This means that the logarithm can be performed at the time
of the coordinate differences computation.

Application of this measure to prediction requires that it
is applied to a finite window Xi�j� , j=1, . . . ,N of time-series
data, and then reapplied to following windows Xk�j� , j
=1, . . . ,N of the same size, whose starting point is offset
from the first Xk�1��Xi�1�. To improve temporal resolution
in this scheme of sliding windows, there may be overlap
between the windows, i.e., Xk�j�−Xi�j�	N. In this case,
some of the coordinate differences will be in common be-
tween adjacent windows. The limits of the coordinate differ-
ence array are depicted by the outer boundary of the shape
shown in Fig. 1, and the total number of coordinate differ-
ences in coordinate difference array D is

ND = 1/2�N − W�2 − 1/2�m − 1�2�2 + 1/2�N − W − �m − 1��� .

We let Xk�j�−Xi�j�=Nslide, so that the points in the coordinate
difference array that are in common between the Xkth and
Xk+1th windows are given by

�D�i, j�,i = Nslide + 1, . . . ,N − W, j = W, . . . ,N − i
 ,

which totals

NDslide = 1/2�N − W − Nslide��N − W − Nslide − 1�

points. In the Xk+1th window, the indices of the values cor-
respond to �D�i , j� , i=1, . . . ,N−W−Nslide , j=W , . . . , i
. These
values are copied into their new positions in the array, and
only the remaining coordinate differences are recomputed.

In any nonstationary time series, such as ECoG, various
time-frequency-energy properties of the signal may vary
from window to window. We attempt to remove these non-
stationary effects prior to computation of the correlation

integral-based measures, since these effects are more easily
and accurately quantifiable by other measures. One of these
properties is the amount of autocorrelation in the signal, but
this effect can be compensated for through the Theiler cor-
rection. Another simple effect is the amplitude of the data.
For a nonperiodic or quasiperiodic signal, there is no stan-
dard definition of the signal’s amplitude, so here we use rank
order statistics to quantify the spread in the data,

A = �xp1
− xp2

�/2, �8�

where x is a window of the scalar time series, and p1 and p2

are percentile values of the ranked time series. If the original,
unnormalized coordinate difference array is defined by
�D=r log10�xi−xi+k� ; i=W ,N− �m−1��−1; j=1,N− i
, the
amplitude-normalized coordinate difference array is D
=r log10��xi−xi+k� /A�+K, where K is a constant identical for
all data windows that shifts the coordinate differences back
to the approximate dynamical range of the original values, so
that they remain integers. Here, we choose K=r10 log102 for
data with 10 bits of precision. Coordinate differences in
common between two adjacent windows due to window
overlap can be easily renormalized Dj+1=Dj +log10 Aj

−log10 Aj+1.
For on-line amplitude normalization based on order sta-

tistics, each window is subdivided into sections equal in size
to the amount of overlap between windows with an addi-
tional section equivalent to the remaining amount for cases
where the length of the window is not an integer multiple of
the overlap between windows. These subdivisions are stored
in a two-dimensional buffer that is circular in one dimension,
individually sorted using a quick sort, and then merged to-
gether with a merge sort. Then, order-statistics can be deter-
mined by the position in the ordered list. In this method, at
most only two subdivisions need to be resorted in every win-
dow, resulting in a great reduction in the number of opera-
tions performed.

FIG. 1. A schematic of the coordinate difference array
is shown. Coordinate differences from the ith window
in the triangle at the right are copied into their corre-
sponding positions into the triangle on the left in the
�i+1�th window. The remainder of the array is filled
with the new coordinate differences from the �i+1�th
window. N is the number of data points per window, W
is the Theiler correction, Nslide is the number of points
between the right-hand indices of consecutive windows,
m is the embedding dimension, and � is the delay time.
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III. DATA

Twenty ECoG data sets �anonymized data from a previ-
ous HSC-approved study� were selected from consecutive
admissions of subjects with pharmaco-resistant seizures who
underwent evaluation for epilepsy surgery at the University
of Kansas Comprehensive Epilepsy Center. The data were
recorded via depth electrodes �Ad-Tech� implanted stereo-
taxically into the amygdalo-hippocampal region. Correctness
of placement was assessed with MRI. The signal was
sampled at a rate of 240 Hz, amplified, passed through a
0.5–70 Hz analog bandpass filter, and digitized to 10 bits
precision using commercially available devices �Nicolet,
Madison WI�. The recordings were deemed of good technical
quality and suitable for analysis. Data sets were required to
be at least 75 h and no more than 125 h long for each sub-
ject, and to contain a minimum of five seizures. For subjects
with data longer than 125 h, the first 125 h segment of good
quality data containing five typical seizures was chosen. The
total number of hours of ECoG analyzed was 2347, with a
median of 124 h �mean 117 h� per subject.

Seizure scoring was performed using a validated, ge-
neric, automated detection method32,33 and confirmed
through visual review by an epileptologist �I. Osorio�, who
determined false and true positives, as well as visually scor-
ing electrographic onset times. Because the degree of seizure
continuum varies, the discriminating statistic in this auto-
mated seizure detection algorithm �SDA� may oscillate
above and below the preset, generic detection threshold. This
can result in multiple, closely spaced detections that could be
counted as separate seizures. To eliminate this complicating
factor, detections were clustered together using a temporal
criterion of 60 s, which was based on the distributions of
durations of seizure discontinuities.33

After clustering, there were a median of 18 seizure de-
tections �mean 48 detections� per subject. For purposes of
parameter training and more detailed analysis of the behavior
of the methods, a training data set was chosen consisting of
10 five hour segments of data. Each segment contains at least
one typical seizure chosen at random from the time series.

IV. COMPUTATIONAL ISSUES

A. Amplitude normalization

We have previously observed18,19 that even simple
changes in the signal amplitude can cause large changes in
the correlation integral or dimension. For instance, consider
two windows of ECoG recorded from the same subject, one
during the interseizure state with amplitude A1, and the other
during a seizure with amplitude A2, where A2�A1. The cor-
relation integral depends on the number of point pairs sepa-
rated by at most a distance �. Selecting one arbitrary point xi,
we draw a sphere of radius � around the point and count the
number of point pairs enclosed by the sphere. In the intersei-
zure window, the points are clustered into a far tighter group
than in the seizure window, and the number of points within
the fixed sphere of radius � is higher than that generated by
the seizure data. This leads to a decrease in the correlation
integral during the seizure relative to the interseizure state. If
we make the simplistic assumption that the interseizure and

seizure data are uniformly distributed in A1 and A2, respec-
tively, the probability of a point pair being inside a ball of
radius � is proportional to �� /A1�m during the interseizure
period, and to �� /A2�m during the seizure period. The relative
decrease in the correlation integral then would be on the
order of �A1 /A2�m. While a realistic ECoG signal is not likely
to follow a uniform distribution, we intuit that the correlation
integral is sensitive to changes in the signal amplitude.

In general, defining the amplitude for a random signal is
not as simple as it is in the case of a periodic signal or even
a quasiperiodic one. Here, we take the notion that the ampli-
tude can be approximated in terms of rank order statistics
according to Eq. �8�. One possible definition of amplitude is
to use the maximal and minimal values of the windowed
scalar time series. However, ECoG often has interseizure
spikes. With this definition, any data segment containing one
of these spikes would be compressed unreasonably. A more
reasonable definition may be to choose an amplitude that
represents the typical spread of the data in the window, such
as for interdecile ranges �for p1=90% and p2=10%� or in-
terquartile ranges �for p1=75% and p2=25%�. In Fig. 2, cor-
relation integral curves are shown for 50 representative sei-
zure �black� and nonseizure �grey� windows. The windows
are 15 s in length, and were chosen from the 10 five hour
files �one per subject� that composed the training data set.
Figure 2�a� shows the curves for the unnormalized signal,
while �b�–�d� show the curves for different window-by-
window amplitude normalization schemes. In Fig. 2�a�, we
see that the seizure curves tend to cluster toward larger
length scales, while nonseizure curves tend to be at smaller
scales. Normalizing the window to the extrema values, as in
Fig. 2�b�, reduces the spread in the curve locations without
changing the shape of the curves. Normalizing to the �10,
90�th and �25, 75�th percentiles further clusters the curves
�Figs. 2�c� and 2�d��, though the clustering appears tighter
with the �10, 90� normalization scheme �Fig. 2�c��, which
appears to be the optimal scheme among these four.

Using the �10, 90� amplitude definition, we now examine
the correlation integral time series for correlations with the
amplitude of the signal. For each 5 hour file, the correlation
integral is computed for embedding dimensions m
=1, . . . ,25, and �=10d/20, d=1, . . . ,80 in 15 s windows with
a 10 s overlap between windows. Delay time �=1/12 s and
W=1 �no Theiler correction� were kept fixed. The amplitude
A is computed for the same 15 s windows. The slope �p� of
log10 C�m ,d� vs log10�1/A� is computed using a linear least-
squares fit with d fixed, and Pearson’s r values is computed
to characterize the degree of correlation. For a typical sub-
ject, the C�m=25,d� curves for all 1795 windows in the
training segment are shown overlaid in Fig. 3�a�. In Fig.
3�b�, the slopes of the best-fitting line �p� of log10 C�25,d� vs
log10 1 /A are plotted versus the length scale d, and the cor-
responding correlation coefficients are shown in Fig. 3�c�.
We see that the strongest dependence on amplitude occurs
around d�39, which corresponds to the higher length scales
over which log10 C�m ,d� varies. For the same subject, Figs.
4�a� and 4�b� show the slope of the least-squares fit line and
Pearson’s r values, respectively, varying both m and d. We
see that the slope increases with embedding dimension, es-
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pecially in the region between d�30 and 45. Thus, the larger
length scales are most consistent with the stochastic model,
in that �1� the value of log10 C�m ,d� is highly sensitive to the
amplitude of the signal and �2� this sensitivity is dependent
on the embedding dimension. Intuitively, this makes sense
since our amplitude definition is based on the large absolute
deviations of the data rather than the structure at small length
scales.

B. Autocorrelation

The correlation dimension D2 is usually estimated by
examining the slope within a linear scaling region of the plot
of log CN�m ,�� vs log � for a series of increasing values of
m. For m	D2, the dimension of the reconstructed phase
space is not high enough to resolve the structure of the dy-
namical state and, hence, the slope approximates the embed-
ding dimension. As m increases, the resolution of the dy-
namical state in the reconstructed phase space improves. For
a low-dimensional dynamical system, the slope �S� in the
plot of log CN�m ,�� vs log � increases with m until it reaches
a plateau; its value at the plateau is then taken as the estimate
of D2.24,34 For stochastic dynamics, the slope increases with
m, never reaching a plateau.

Once the log C vs d curves have been normalized
window-by-window for amplitude, we compute the slopes of
any linear scaling regions present in the data. Figure 5�a�
shows the curves for m=1, . . . ,35 for a typical window of
interseizure data. In the region log C= �−3.85,−2.50�, the
slopes of the curves reach a plateau as the value of m is
increased. In Figs. 5�b�–5�d�, values of the slopes S in this
scaling region are plotted for each window for m
= �5,15,25�, respectively. A seizure �shown by the arrows�
occurs at t=12 675 s.

FIG. 2. �a� Correlation integral curves
�log10 C�m=25,d�, where d is a length
scale and m is the embedding dimen-
sion� for unnormalized seizure �black�
and nonseizure �grey� windows; �b� As
in �a�, except data are preprocessed by
normalizing to each window’s ex-
trema; �c� As in �a�, except data are
normalized with p1=90% and p2

=10%; �d� As in �a�, except data are
normalized with p1=75% and p2

=25%.

FIG. 3. �a� The logarithm of the correlation integral �log10 C�m=25,d�� vs
length scale parameter d. �b� Slopes of the least-squares fit line �p� of
log10 C�m ,d� vs log10 1 /A, plotted vs d. �c� Pearson’s r value for the least-
squares fit in �b�.
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Theiler points out29 that for a finite, autocorrelated data
set, the plot of C�m ,�� on a logarithmic scale can exhibit
approximately linear regions with distinct slopes, such as
those depicted in Fig. 5�a�. For a data set �xj
, j=1, . . . ,N
consisting of autocorrelated Gaussian noise, the autocorrela-
tion 
 is defined by �xjxj+k� /�2=
k. We estimate 
 through
the following average: 
= �1/M��k=1

M ��xjxj+k� / �xj
2��1/k, with

m=6. If this time series has N points with autocorrelation
0	
	1, Theiler argues that if N is large enough, or if 
 is
small enough �near zero�, the effect of autocorrelation is neg-
ligible. However, if N is not sufficiently large �as in the case
of ECoG analysis where a temporally moving window is slid
through the time series� and/or if 
 is not close to zero, the
effect of autocorrelation becomes noticeable, leading to an
anomalous scaling region in the plot of log C�m ,��. The
slope of the plot in the anomalous scaling region is not de-
pendent on the embedding dimension, and as such it does not
reflect the stochastic nature of the underlying process.

We see from Fig. 6 that the slope of the log C�m ,��
curves in the anomalous scaling region �a� are highly specific
to the detection of the seizure, indicated by an arrow. The
decay of the autocorrelation envelope, 
 �b� also detects the
seizure, though is somewhat less specific. But, the number of
upcrossings of zero, �c� is highly specific. For a stationary
Gaussian process, the expected number of zero upcrossings
is related to the autocorrelation through Rice’s formula,35–37

Nup =
1

2�
�−


��0�

�0� �1/2

, �9�

where 
�0� is the autocorrelation at zero lag, and 
��0� is its
second derivative. Qualitatively, the seizure discriminating
ability of the anomalous slope appears similar to that of the
number of zero upcrossings, though for the latter, there is
more variance in the measure between seizures, probably
related to the variability of 
.

The anomalous scaling region can be eliminated by
implementing the Theiler correction,29 which omits point
pairs from the correlation sum that are temporally separated
by less than some time T. We choose T to be the first zero of
the autocorrelation function. Now, we compute T on this
basis, window-by-window, to remove the autocorrelative ef-
fect. However, when the Theiler correction is performed in
this manner, no linear scaling region is apparent up to em-
bedding dimension m=25, as shown in Fig. 7 for a nonsei-
zure window. Additionally, the seizure discriminating ability
of this window-by-window Theiler corrected method was ei-
ther greatly reduced or nonexistent for all of the training
data.

C. Filtering

To attempt to gain more understanding of the interplay
between the correlation integral and the power spectrum of
the underlying input data, various filters are applied to the
data as a preprocessing step. First, the “seizure component”
of the signal is extracted using a 22-coefficient DAUB4
Level 3 wavelet filter, which functions as a bandpass filter
roughly in the 10–40 Hz range. This matches the approxi-
mate frequency band in which seizure activity typically
occurs.32 Then, the correlation integral iscomputed using the
previously described method on the filtered output. Figure
8�a� shows log C�m ,d=15� for m=1, . . . ,25. For m
5, the
seizure at t=1800 s is easily detectable, but no predictive
ability is apparent. The correlation integrals remain distinctly
different from each other throughout the 30 min following
the seizure.

In order to determine whether the correlation integral
might be sensitive to possible preseizure spectral changes
outside the seizure activity band, the data are instead filtered
to select only the nonseizure component of the signal using a
band stop filter that removes the band from 10 to 40 Hz and

FIG. 4. �a� Slope of best fit line of log10 C�m ,d� vs
log10�1/A� as a function of m and d. �b� Pearson’s r for
the best fit line in �a�. The strongest dependence on the
amplitude occurs in the region d�30–45 for larger m.
A is the amplitude of the signal in each window, C is
the correlation integral, m is the embedding dimension,
and d is a length scale parameter.
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frequencies greater than 55 Hz �in order to remove 60 Hz
line noise�. Figure 8�b� shows the correlation integrals at the
same parameter settings on the “nonseizure component” of
the signal. Sensitivity to seizure is reduced in the nonseizure
component. For this subject and at m=1–14, there are sta-
tistically significant changes within 5 min prior to seizure
onset, as measured by a Kolmogorov–Smirnov test48 to a
95% confidence level. These changes are not generally
present at these parameter values for other patients, though
some other patients show potential predictive ability in this
time frame for other parameter values. There are no param-
eter regions that consistently show potential predictive abil-
ity across multiple patients.

Bandpass filters of width 5 Hz are also applied to the
data in order to examine whether discriminating ability is
limited to any certain frequency bands. One hour segments
of data, each containing at least one seizure, are bandpass

filtered into 11 different bands: �0.01, 5�, �5, 10�,…,�50, 55�,
and the correlation integral was computed on the resulting 11
filtered data sets. To quantify the ability of the correlation
integral to detect seizures in the different bands, a ratio �R� is
computed, which is the maximum value of the measure in
seizure divided by the mean value of the measure during the
nonseizure period. In Fig. 9, we plot R versus the frequency
band and see that the ratio maximizes in bands 25–30 and
30–35 Hz. However, the rhythmic seizure patterns occur for
this data segment from 12 to 17 Hz, from visual inspection
of this seizure’s ECoG. Thus, perhaps C�m ,d�, at least with
the parameter settings used in this run, are not even optimal
for detection of this seizure activity since the measure does
not exhibit seizure discrimination in the dominant seizure
frequencies. The segment is too short to accurately quantify
the correlation integral’s predictive ability in this case, due in

FIG. 5. �a� Anomalous slope �S� of log C�m ,d� vs
length scale parameter d for embedding dimension m
=1, . . . ,35 for a typical window for interseizure data.
There is a linear scaling region between the dashed
lines. �b� For embedding dimension m=5, the slope in
the linear scaling region for a 5 h segment of data with
a seizure at t=12 675. �c� As in �b�, but with m=15. �d�
As in �b�, but with m=25.
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part to the fact that clinical seizures are followed by a char-
acteristically different postseizure period that can last 30 min
or longer. So, it is not possible to say, for instance, whether
activity prior to the second seizure is truly predictive or if it
merely represents the postseizure activity gradually decaying
to baseline.

D. Embeddings

In addition to time-delay embedding, we have investi-
gated alternate embedding schemes in order to determine
whether particular schemes result in improved performance
and whether specific embedding schemes differ in the re-
sponse to time-frequency changes from that of the delay em-
bedded signal. We use the following additional embedding
schemes:

�1� Spatial embedding defined by

x�t� = �x1�t�,x2�t�, . . . ,xm�t�
 , �10�

where m is the number of simultaneous spatially distributed
dynamical variables �the number of channels of ECoG�.

�2� Spatiotemporal embedding defined by

x�t� = �x1�t�,x1�t + ��, . . . ,x1�t + �q − 1���
 ,

x2�t�,x2�t + ��, . . . ,x2�t + �q − 1��� ,

�

�xl�t�,xl�t + ��, . . . ,xl�t + �q − 1���
 , �11�

where m=ql is the embedding dimension, l is the number of
spatially distributed time series, and � is a delay time. The
parameters m and � are selected based on the same consid-
erations as in delay coordinate embedding.

�3� Threshold-crossing interspike intervals �TCII� em-
bedding defined by38,39

Tn = �Tn,Tn+1, . . . ,Tm
 ,

where Tn is the time between the nth and �n+1�th upcross-
ings of a threshold, xth. This recent embedding strategy has
been developed to deal with “spiky” data, such as that re-
corded from the epileptic brain, and is less sensitive to fluc-
tuations of the amplitude and to noise than other embedding
methods.

Delay coordinate and threshold-crossing embeddings are
single-channel methods, while spatial and spatiotemporal
embeddings require multiple channels. Performing spatial
embedding over multiple channels rather than the traditional
delay-embedding may be particularly useful to characterize
the spatial evolution of seizures. Likewise, a threshold-

FIG. 6. For a segment of ECoG containing a single seizure �indicated by the
arrow�, �a� Slope in the anomalous scaling region on log C�m ,d� vs d. �b�
Decay in autocorrelation 
 for the same time series as in �a�. �c� Number of
zero upcrossings �Nupcross� for the same time series as in �a�.

FIG. 7. �a� For m=1, . . . ,25, the log10 C vs d curves for a Theiler corrected
window. �b� The derivatives of the curves in �a�. C is the correlation integral,
m is the embedding dimension, and d is a length scale parameter.
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crossing embedding scheme may be sensitive to seizures
with preseizure changes such as increases or decreases in
“spike” frequency.

Of the embeddings studied, spatiotemporal and
threshold-crossing are found to have barriers to practical util-
ity: for spatiotemporal the computational requirements �com-
putations with five channels were taking running 1/6 real
time on a 1.9 GHz PC, or on the order of 2.5 days for a 5 h
input data file�, and for threshold-crossing embedding the
severe reduction of the number of computed points, resulting
in exceptionally high noise level.

Figure 10 shows the correlation integral computation for
the four different embedding schemes, as well as the dis-
criminating statistic from a validated automated seizure de-

tection method.32 There are seizures at approximately 11,440
and 15,592 s. Parameter values which showed the greatest
sensitivity to seizures are used. Except for the threshold-
crossing embedding, all embedding methods are found to
specifically detect the seizures. In the case of the threshold-
crossing embedding �Fig. 10�c��, some sensitivity for the sei-
zures is found, but the method is largely unable to distin-
guish between seizure and postseizure activity.

Conceptually, it might be thought that the coordinate dif-
ferences in the spatially embedded correlation integral would
reflect the degree of similarity between channels. To examine
this further, we compute an index of phase synchronization40

that examines the interdependence of weakly interacting sig-
nals. In this method, we first generate proper rotations by
bandpass filtering the windowed signals to a band of
�10,20� Hz using a FIR filter, and then compute the analytic
signal41 by using the Hilbert transform. Then, the difference
in the complex phases, which are confined in �0,2��, are
normalized to the interval �−1,1�. The interval is divided
into M =e0.626+0.4 ln�N−1� bins, where N is the number of points
in a window, since this is the optimum number of bins in a
histogram.42 This yields pk �k=1, . . . ,M�, the probability of
observing the phase difference in each bin. By summing up
−pk ln pk, the Shannon entropy can be computed, from which
a synchronization index S can be defined.40 If there is no
synchronization, i.e., the phase differences are uniformly dis-
tributed in �−1,1�, we have S=0. If, on the other hand, there
is a perfect phase synchronization, then the phase differences
distribution follow a delta function, which gives S=1. The
variation in S from window-to-window thus quantifies the
degree of the phase synchronization between the two ECoG
channels as a function of time.

In Fig. 11, we see that the phase synchronization mea-
sure is more specific for detection of the seizures, with better
specificity and lower signal-to-noise ratio. The spatially em-
bedded correlation integral, on the other hand, does not even
detect the first of the two seizures.

E. Surrogate analysis

To test the null hypothesis that the observed dynamics of
the ECoG are due to a linear Gaussian process, the method of
surrogate data analysis is used. Since we have found that the
signal amplitude influences the value of the correlation inte-
grals, we choose the amplitude adjusted Fourier transform
surrogate.43 This surrogate specifically tests the null hypoth-
esis that the observed time series is a monotonic nonlinear

FIG. 8. �a� For data from subject 4 that is preprocessed with the level-3
DAUB4 wavelet filter in order to extract the seizure component, the time
series of log C�m ,d=16�, computed without Theiler correction or amplitude
normalization, and with delay time �=20. �b� As in �a�, except data are
preprocessed with a bandpass filter that extracts the �0 10� and �40 55�
frequency band, eliminating the seizure component of the signal. Though the
seizure at t=1800 s is detected by both the seizure and nonseizure compo-
nents of the signal, no changes are apparent in the measure prior to the
electrographic onset. In both plots, C is the correlation integral, m is the
embedding dimension, and d is a length scale parameter.

FIG. 9. For subject 3, R is the ratio of the maximum
value of log C�m=25,d=23� in seizure with respect to
the mean value between seizures. The data are prepro-
cessed by bandpass filtering to restrict the frequency to
bands 5 Hz wide, without amplitude normalization or
Theiler correction, and with delay time �=20. There are
two seizures, one at t�250 s, and one at t�1820 s.
The measure is most sensitive to seizures for
25–35 Hz.
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transformation of a linear Gaussian process. Given an origi-
nal scalar time series x of length N, we first generate a time
series y also of length N, consisting of independently gener-
ated Gaussian random numbers. Gaussian time series y is
then reordered so that the ranks of the elements match those
of the original time series x. Thus, if xi is the pth largest
value in x, y is reordered so that yi is the pth largest value in
y. The Fourier transform is performed on y, and the phases
are randomized by multiplying each complex amplitude by
ei�, where � is chosen uniformly and randomly from the
interval �0,2��. Then, the inverse Fourier transform is taken
to produce y�, and x is reordered so that the ranks of its
elements match those of y�. This surrogate time series has
the same amplitude distribution as the original time series.

Here, we wish to gain insight into whether the nonlinear
or the time-energy-frequency properties of the signal contrib-
ute to the predictability or detectability of seizures. To do
this, surrogate data is computed window-by-window, and the
correlation integrals are computed for each of these windows
and compared with the correlation integrals computed on the
original data.

FIG. 10. �a� Log C�d=110� for data
spatially embedded across five differ-
ential channels; �b� log C�m=25,d
=90� for data spatially embedded
across five differential channels and a
delay-time embedding dimension of
m=25; �c� log C�d=46,m=25� with
embedding constructed of m=25 suc-
cessive upcrossings of zero; �d�
log C�d=90,m=25� for delay-time
embedding with m=25; �e� discrimi-
nating measure �r� from an automated
seizure detection algorithm �Ref. 32�.
In all these plots, seizures occur at ap-
proximately 11 440 and 15,592 s. C is
the correlation integral, m is the em-
bedding dimension, and d is a length
scale parameter.

FIG. 11. �a� For a spatially embedded run, log10 C�d=90� vs t, �b� synchro-
nization index S. There are two seizures, one at t�3260 and t�9150 s. C is
the correlation integral and d is a length scale parameter.
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Figure 12�a� depicts for subject 3, the time series of the
correlation dimension time-locked for a 1 h segment contain-
ing two seizures �indicated by arrows�. Figure 12�b� shows
the same from the surrogate time series of the same data.
Surrogate and original D2 time series are shown overlaid for
m=20 in Fig. 12�c�. The seizure discriminating ability is
roughly the same in the surrogate and original time series for
one seizure, and is actually improved in the surrogate time
series for the other seizure. No predictive ability is apparent
in either. Since the seizure detection ability i preserved in the
surrogate time series, the implication is that it is the time-
frequency-energy properties of the signal that are responsible
for the measure’s seizure discriminating ability, not the
lower-level dynamics of the brain.

V. VALIDATION ON LONG TIME SERIES

In order to validate any seizure detection or prediction
abilities of the correlation integral-based measures, we apply
the method to the testing data set, consisting of the long time
series from 20 subjects described earlier. Based on previous
analysis, parameter settings are chosen that eliminate the in-

fluence of known time-frequency-energy properties more
easily quantifiable through other means, while at the same
time providing the maximum seizure-signal content of the
ECoG. For these validation runs, the parameters are chosen
to be: delay-embedding dimensions m= �5,20,35�, �=17,
and Theiler correction W=30, based on a sampling rate of
Fs=240 Hz. An interdecile range amplitude normalization
scheme is used, and the length of the sliding windows is
chosen to be 15 s, overlapped by 5 s.

The resulting time series is divided into three epochs,
time-locked to each seizure onset: 15–30, 45–60, and
75–90 min before seizure onset. These length scales are cho-
sen to be comparable with those cited in the literature as the
seizure prediction times for various measures,44–46 though a
few methods using time-frequency-energy techniques have
reported longer prediction times. Preseizure epochs are in-
cluded for each seizure only if the previous seizure has oc-
curred 30 min earlier than the beginning time of the epoch,
in order to permit the signal to return to a baseline state after
the postseizure period.47 To quantify whether there is a sta-
tistically significant change in these sets of epochs that

FIG. 12. For a 1 h segment of data with two seizures
taken from subject 3, �a� the time series of correlation
dimension D2�m� for the original data, �b� the time se-
ries of D2�m� for the surrogate data, and �c� a single
time series at embedding dimension m=20 of the origi-
nal and surrogate data, overlaid on the same axis. Since
the seizure detection ability is approximately the same
or is actually somewhat improved for the surrogate data
vs the original, the implication is that the time-
frequency-energy properties of the signal are what de-
tects the seizure, rather than any possible change in the
dynamical structure of the signal. Seizures occur at ap-
proximately 250 and 1820 s.
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would indicate predictive ability between 15 and 90 min be-
fore seizure, the Kolmogorov-Smirnov d-statistic48 is com-
puted on every possible pair of epochs between two different
sets, e.g., between the set of 15–30 min epochs and the set
of 45–60 min epochs.

The Kolmogorov–Smirnov �KS� test is a nonparametric
test of whether two distributions are different. The KS statis-
tic is defined as the maximum value of the absolute differ-
ence between two cumulative distributions:

D = max
−�	x	�

�Pi�x� − Pj�x�� . �12�

The cumulative distribution of the resulting D-statistic is
shown in Fig. 13�a�, and the differences in the cumulative
distributions are shown in 13�b�. Computing the
Kolmogrov–Smirnov statistic between these cumulative dis-
tributions leads to no significant difference between them to
the p=0.05 level �pi-ii�0.10, pii-iii�0.21, piii-i�0.52�.

To evaluate whether there is any short-term predictive
ability �on a time scale less than 15 min�, we overlay corre-
lation integral from preseizure time series 0–15 min before
seizure onset. Then, we compute the 0th, 50th, and 90th per-
centiles of the measure at every time index, as shown in Fig.
14 for subject 2, and Fig. 15 for subject 5. For some subjects,
a sudden increase in the value of the measure, especially at
lower values of d, is seen within 1 min prior to SDA detec-
tion, as is the case in Fig. 15�a�. In these cases, this is typi-
cally due to a late detection of electrographic onset by the
automated seizure detection algorithm, as confirmed by vi-
sual review. In one case �subject 20�, precursor activity in the
form of quasiperiodic complexes is detected by the correla-
tion integrals a few minutes before electrographic onset. No
statistically significant changes are found in the 50th percen-
tile values between the first and last 7.5 min for any of these
overlay plots, as measured by a KS test.

We also quantify the sensitivity of the correlation inte-
gral measures to detect seizures. Using the seizure detection
scoring provided by the automated seizure detection algo-

FIG. 13. �a� Cumulative distributions �CDF� of Kolmogorov—Smirnov
�KS� d-statistic between all pairs of 15 min epochs between the following
groups: �1� 15–30 min before seizure, �2� 45–60 min before seizure, and
�3� 75–90 min before seizure. �b� Differences in the distributions in �a�.

FIG. 14. ECoG segments 0–15 min
before seizure are overlaid, and per-
centage levels computed at each time
index are computed. �a� The 0th, 50th,
and 100th percentiles of the distribu-
tion log10 C�35,100� at every time in-
dex for overlaid preseizure epochs for
subject 2. The dashed lines are the
original percentile levels, and the solid
lines are ten point moving averages.
�b�–�d� The same as in �a�, but for
log10 C�35,104�, log10 C�35,108�, and
log10 C�35,112�, respectively.
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rithm and confirmed by expert visual analysis, the time series
are divided into seizure and nonseizure periods. For correla-
tion values that exceed a specific threshold, values from sei-
zure windows are considered true positive detections, and
those from all other windows are considered false positive
detections. The number of true or false positives is divided
by the number of seizure or nonseizure windows. The thresh-
old can be varied to parametrize a curve �ROC curve� indi-
cating the relationship between true positives and false posi-
tives as the threshold changes. The area under the curve is
denoted by �. Figure 16 shows � for the parameter values in
d in the correlation integral that generated the largest � �solid
line�, in order to assess the best performance of the measure
for each patient. To provide a basis of comparison of the
measure’s seizure detection ability, we also compute the
SDA discriminating statistic32,33 for the same windows of
data as were used for the correlation integral. This is shown
as the dashed line in Fig. 16. The correlation integral appar-
ently has no advantage over the SDA in detecting seizures.

VI. DISCUSSION

The current state of the seizure prediction field is that
there is little to no consensus on whether seizures are pre-
dictable to a degree useful for clinical application, or whether
the methods used by any of the groups are reliable. There is
also no consensus on the time scale of a distinctive presei-
zure state though there is speculation that some such state
exists.44–46,49,50

One class of seizure prediction methods are those based
on the correlation integral,8–10,23 which includes the correla-
tion density, the related dynamical similarity index, and the
effective correlation dimension. Retrospective studies with
these measures yield seizure prediction times on the order of

10 min.8–10 Our motivation for this study is to understand
precisely what type of signal characteristics these measures
are sensitive to, and also to validate the fundamental compo-
nent of the methods, the correlation integral, on long time
series. We previously performed preliminary analyses of
short ECoG segments which elucidated the measures’ depen-
dence on amplitude and autocorrelation.18,19 This study is the
first to perform a systematic, large-scale study on correlation
integral-based measures that not only meticulously examined

FIG. 15. ECoG segments 0–15 min
before seizure are overlaid, and per-
centage levels at each time index are
computed. �a� The 0th, 50th, and 100th
percentiles of the distribution
log10 C�35,100� at every time index
for overlaid preseizure epochs for sub-
ject 5. The dashed lines are the origi-
nal percentile levels, and the solid
lines are ten point moving averages.
�b�–�d� The same as in �a�, but for
log10 C�35,104�, log10 C�35,108�, and
log10 C�35,112�, respectively.

FIG. 16. Maximum area under ROC curve for log C�m=25,d�, d=100+2i,
i=1, . . . ,6 �solid line�; area under the ROC curve for the maximum seizure
detection algorithm ratio in 15 s windows, overlapped by 10 s �dashed line�;
area under the ROC curve for the maximum ratio corrected for a worst-case
false negative rate �dotted line�. C is the correlation integral, m is the em-
bedding dimension, and d is a length scale parameter.
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the sensitivity to the individual parameters and method varia-
tions, but also tested the method on long time series, includ-
ing continuous computation on over 2000 h of ECoG data.

We have confirmed in this comprehensive work that sei-
zure detection measures based on the correlation integral are
sensitive to time-frequency-energy signal changes such as
those quantified by autocorrelation and signal amplitude,18,19

which we robustly measure using the spread of the win-
dowed data measured with interdecile or interquartile ranges.
Window-by-window amplitude normalization and Theiler
correction29 can eliminate these effects but significantly re-
duce the ability of the measures to discriminate seizures from
interseizure periods. This suggests that the seizure detection
ability of the correlation-integral based measures is directly
linked to the signal’s variation in the time-frequency-energy
characteristics rather than to any nonlinear dynamics present
in the ECoG. This is supported by our results with surrogate
data, which illustrate that the seizure detection ability is ap-
proximately equivalent for both original and shuffled data.

No significant improvement in seizure detection or pre-
diction ability is seen when the data are preprocessed
through filtering to extract frequency bands that may be
prominent in seizure or “precursor” activity. Likewise, dif-
ferent embedding schemes do not substantially improve the
measures’ abilities to detect or predict seizures.

No evidence of prediction is found on a time scale of
15–90 min before seizure onset, and on overlaid time series
within a scale of 0–15 min before seizure; the only ad-
vanced warning is less than 1 min prior to seizure for some
seizures in some subjects. However, advanced warnings can
be easily obtained through subject-tuning of an existing au-
tomated seizure detection algorithm32 which is far more
computationally efficient than the correlation integral
method. Furthermore, the correlation integral method is far
less specific in terms of false positives than the discriminat-
ing statistic used in the automated seizure detection algo-
rithm, thus the correlation integral probably has little value
as a seizure detector, let alone a predictor.

Other measures with claimed predictive ability need to
be rigorously tested in a manner similar to what has been
done here to examine the validity of prediction claims. We
have reported previously preliminary work on the Lyapunov
exponents that demonstrates their inability to detect slow pa-
rameter drift into a dynamical crisis in a noisy dynamical
system �such as the brain51�, an analogy to a dynamical route
to seizure that would justify usage of nonlinear dynamical
measures.52 A recent study which examines the sensitivity
and specificity of a large collection of measures used in the
literature for seizure prediction found that univariate mea-
sures, including many nonlinear dynamical measures like the
correlation dimension, were inadequate for clinical
application.49 Those results and ours suggest that seizure pre-
diction is far from being a solved challenge. Studies such as
these need to be expanded, particularly focusing on validat-
ing prediction claims with Lyapunov exponents, synchroni-
zation measures, and the accumulated energy, which are cur-
rently the primary focus of the seizure prediction
community.44,50,53–55
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