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By employing an adaptive time-dependent density-matrix-renormalization-group method, we
investigate the dynamics of a charged bipolaron in the presence of both electron-phonon and
electron-electron interactions. We use a Su–Schrieffer–Heeger model modified to include
electron-electron interactions via a Hubbard Hamiltonian, a Brazovskii–Kirova symmetry-breaking
term, and an external electric field. Our results show that the velocity of the bipolaron increases first
and then decreases with the increasing of the on-site Coulomb interaction, U. Furthermore, the
dependence of the bipolaron velocity, bipolaron effective mass, and bipolaron stability on the lattice
structures is discussed. © 2009 American Institute of Physics. �DOI: 10.1063/1.3155207�

I. INTRODUCTION

Conjugated polymers, as quasi-one-dimensional materi-
als, have a property that their lattice structure can be easily
distorted due to the strong electron-lattice interactions.1 As a
result, charge injections or photoexcitations will induce self-
trapped elementary excitations, such as solitons,2,3 polarons,4

and bipolarons.5 It has been generally accepted that the
charge carriers in conjugated polymers are these excitations
including both charge and lattice distortion.1 There have
been considerable research works devoted to the study of
those nonlinear elementary excitations in conjugated
polymers.6 The motivation behind these works stems from
the fact that these excitations play an important role in or-
ganic optoelectronic devices, including light-emitting diodes,
field-effect transistors, photocells and lasers,7 and so on. The
formation and transport of such charge carriers are believed
to be of fundamental importance.

Recently, UV visible near-infrared spectroscopy studies
on poly�p-phenylene vinylene� combined with the follow up
of the kinetics of doping with iodine vapor were reported and
interpreted as direct observations of the formation of po-
laronic charge carriers.8 However, by following different
doping levels with I2 doping, bipolaron formation is identi-
fied as well, showing that polarons and bipolarons coexist in
the oxidized polymer. Both polarons and bipolarons, which
are composite particles with internal structure, can be formed
in nondegenerate conjugated polymers, such as poly�phe-
nylenevinylene� and polythiophene. The bipolarons are spin-
less species with charge �2�e�, in contrast to the spin-bearing
polarons �spin 1/2, charge �2�e��. Therefore, the properties
of the transport and the recombination of bipolarons will be
much different from that of polarons. The existence of bipo-
larons is likely to play an important role in understanding the

operation of these optoelectronic devices based on conju-
gated polymers.5 There have been considerable amounts of
research works devoted to the properties of bipolarons, for
example, the formation and stability of bipolaron,9–14 the in-
frared active vibrational modes around a bipolaron,15,16 and
the bipolaron lattice at metal-polymer interface.17 However,
most of these works were focusing on the static properties of
bipolarons. Most of processes in organic optoelectronic de-
vices, such as the injection of charge from electrodes, the
transport of charge carriers, and the recombination of oppo-
sitely charged polarons and/or bipolarons, are dynamical pro-
cesses accompanying with both charge motion and lattice
distortion driven by applied electric field. Therefore, a real
time dynamical model should be much appropriate for the
simulations of these processes.

The lattice dynamics18–27 has been widely used to simu-
late the formation of these nonlinear elementary excitations
induced by photoexcitations or charge injections, and their
motion driven by applied electric field, within the tight-
binding Su–Schrieffer–Heeger �SSH� model3 as well as its
extended versions for nondegenerate polymers.4 For ex-
ample, it has been shown that the photocarriers �charged po-
larons� are generated directly by photoexcitations with a
quantum yield about 25%.18 Importantly, the formation
mechanism of charged polarons can only be understood
within the dynamical scheme. In the presence of external
electric fields, solitons as well as polarons move as one entity
consisting of both the charge and the lattice deformation with
a stationary velocity after being accelerated for a short time.
A breatherlike lattice oscillation is developed behind the po-
laron, which bears the increased energy due to the electric
field acting on the polaron.19 Solitons are shown to have a
maximum velocity 2.7vs, where vs is the sound velocity.26,27

The situation is different for polarons, which have a maxi-
mum velocity 4vs.

20 At extremely high electric fielda�Electronic mail: zhaoh@fudan.edu.cn.
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strengths, the soliton or polaron becomes unstable and disso-
ciates due to the charge moving faster and not allowing the
distortion to occur.

Because both electron-phonon and electron-electron in-
teractions are expected to be important features of the elec-
tronic structure of organic materials, it is necessary to ad-
dress the role of these interactions on charge carriers. In the
SSH model, however, only the electron-lattice interactions
are considered while the electron-electron interactions are
ignored. Therefore, it should be asked, how the electron cor-
relation affects the dynamical properties of polymers. Many
research works have suggested that the electron correlation
effect is of fundamental importance for understanding the
physics properties of conjugated polymers,6 for example, the
branch ratio between the singlet and the triplet excitons in
polymer-based light-emitting diodes.28–31 Recently works
on the dynamics of solitons and polarons in conjugated
polymers show that the adaptive time-dependent
density-matrix-renormalization-group32 �t-DMRG� method is
an efficient approach to perform a real time dynamics of
many-body systems including both electron-electron and
electron-phonon interactions.33–35 In this paper, we apply the
t-DMRG method on this system with both electron-phonon
and electron-electron interactions, and investigate the dy-
namics of bipolarons.

In realistic devices, the charge transport is largely lim-
ited by interchain hopping rather than by intrachain pro-
cesses. Even so, it is still very important and well worth to
study the intrachain processes in depth theoretically because
the charge transport in polymers is not well understood. For
this reason, we focus on the dynamics of charged bipolarons
driven by an external electric field in a single conducting
polymer chain. In fact, the rapidly developing investigations
in the area of nanometer-scale systems and its concomitant
potential technological applications in real devices have in-
duced considerable interest in the study of electrical trans-
port through single conductive molecules or molecular
wires.36

The paper is organized as follows. In Sec. II, we present
SSH model modified to include electron-electron interactions
via a Hubbard Hamiltonian for a polymer chain under the
influence of an external electric field and describe the dy-
namical evolution method used in this work. In Sec. III the
dynamical evolution of a bipolaron under an applied electric
field will be discussed. A summary is given in Sec. IV.

II. MODEL AND METHOD

The model Hamiltonian we consider for a polymer chain
in this paper takes the following form:

H = Hel + Hlatt + HE. �1�

The first part is to describe the electron energy, which con-
tains both the electron-lattice coupling and electron-electron
interactions, modeled by Hubbard extension of an SSH-type
Hamiltonian,37–39

Hel = − �
i,�

ti�ci,�
† ci+1,� + H . c .� + U�

i

ci↑
† ci↑ci↓

† ci↓, �2�

where ti��t0−��ui+1−ui�+ �−1�ite� is the hopping integral
between sites i and i+1; � describes the electron-lattice cou-
pling between neighboring sites due to the lattice bond
stretch or compression; ui is the monomer displacement of
site i from its undimerized equilibrium position; and te is the
Brazovskii–Kirova symmetry-breaking term introduced for
nondegenerate polymers.4 U is the on-site Coulomb interac-
tion; ci,�

† �ci,�� is the creation �annihilation� operator of an
electron with spin � at the site i.

The second part in Eq. �1� is to describe the lattice elas-
tic potential energy and the kinetic energy,

Hlatt =
K

2 �
i

�ui+1 − ui�2 +
M

2 �
i

u̇i
2, �3�

where K denotes the force constant originating from the
�-bond between carbon atoms, and M is the mass of a site,
such as that of a CH unit for trans-polyacetylene.

The electric field E�t� is included in the Hamiltonian as a
scalar potential. This gives the following contribution to the
Hamiltonian:

HE = �e�E�t��
i,�

�ia + ui��ci,�
† ci,� −

1

2
	 . �4�

The model parameters used in this work are those
generally chosen for trans-polyacetylene:1 t0=2.5 eV,
K=21.0 eV /Å2, �=4.1 eV /Å, a=1.22 Å,
M =1349.14 eV fs2 /Å2, te is between 0 and 0.2 eV, and a
bare optical phonon energy ��Q=�
4K /M =0.16 eV. All
energies are given below in units of the hopping integral t0.

In the absence of an external electric field, we can deter-
mine the static structure or the initial conditions by the mini-
mization of the total energy of the system. The total energy is
obtained by the expectation value of Hamiltonian �1� at the
ground state �g�,

Et = �g�Hel�g� +
K

2 �
i

�ui+1 − ui�2. �5�

The electronic states are determined by the electronic part of
Hamiltonian �2� and the lattice configuration of the polymer
ui� is determined by the minimization of the total energy in
the above expression,

ui+1 − ui = −
�

K
�
�

�g�ci,�
† ci+1,� + H . c . �g� + � , �6�

where � is a Lagrangian multiplier to guarantee the polymer
chain length unchanged, i.e., �i�ui+1−ui�=0. The initial con-
figuration of a bipolaron in the following dynamical evolu-
tion will be obtained from the solution of the above self-
consistent Eq. �6� at the ground state.

At t=0, the polymer chain contains a positively charged
bipolaron at the center. When an electric field is turned on,
the lattice configuration at any time t��0� should be gov-
erned by the Newtonian equations of motion,
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Müi�t� = − K�2ui�t� − ui+1�t� − ui−1�t��

+ ��
�

����t��ci,�
† ci+1,� + H . c . ���t��

− ���t��ci−1,�
† ci,� + H . c . ���t��� − �e�E�t�

	����t���
�

ci,�
† ci,����t�� − 1� , �7�

where ���t�� are the time-evolved states at time t. In prin-
ciple, the time evolution can be done by operating on ���t��
with the time-evolution operator,

���t + 
t�� = e−iH�t�
t/����t�� = e−i�H�t����t�� . �8�

The time development of the lattice distortions and the elec-
tronic wave functions are obtained by solving the coupled
Newtonian equation of motion Eq. �7� and the time-
dependent Schrödinger equation Eq. �8�.

The real time dynamics of such a many-body system
including both electron-phonon and electron-electron inter-
actions is a challenge work. A recently developed numerical
method, the adaptive t-DMRG �adaptive t-DMRG�,32 which
is an efficient implementation of Vidal’s time-evolving
block-decimation �TEBD� algorithm40 in the DMRG
framework,41 enables us to perform this task. The key idea of
t-DMRG is to incorporate the second order Suzuki–Trotter
decomposition of the time-evolution operator Eq. �8� into the
DMRG finite-system algorithm. The two main conditions for
this method to be applicable, namely, that the system must be
one dimensional and have nearest-neighbor interactions only,
are met for the present system. Details about this method can
be found in recent papers.33–35 The t-DMRG results show
excellent agreement with exact results in the noninteracting
case because of the introduction of classical phonons, which
will reduce the DMRG truncation error significantly. In this
paper, we present quasiexact numerical results of the real
time dynamics of the Hamiltonian Eq. �1� for realistic sizes
of up to N=128 sites.

III. RESULTS AND DISCUSSIONS

In this section, we present our results on the motion of
bipolarons in the presence of an external electric field. In our
simulation, a polymer chain with total sites N=128 is con-
sidered. The starting geometry is obtained by minimizing the
total energy of the chain where the electronic band is half
filled with two extra holes. In order to reduce the lattice
vibration in the accelerated process of the bipolaron, the
electric field is turn on smoothly, that is, the field strength
changes as E�t�=E0 exp�−�t− tc�2 / tw

2 � for 0� t� tc, E�t�=E0

for tc� t with tc being a smooth turn-on period, and tw being
the width. Here, we take tw=10 fs and tc=20 fs.

The time evolution of the charge center Xc of the bipo-
laron under a moderate electric field, E0=2.0 mV /Å, is
shown in Fig. 1. When the electric field is turned on, the
bipolaron is accelerated first, and then moves with a constant
velocity as one entity consisting of both charge and lattice
defect. The stability for the bipolaron velocity occurs be-
cause the moving bipolaron shall emit localized phonon-
multibreather excitations, which bear the increased energy of

the system due to the external electric field.19 The velocity is
scaled by the sound velocity vs=
4K /Ma /2 and is averaged
in order to cancel out the fluctuations because only the sta-
tionary velocity is focused below. In order to confirm the
validity of our results, we compare the t-DMRG calculations
with the exact numerical results for a noninteracting �te

=0.02,U=0� chain of the same set of parameters described
above. The excellent agreement was found in both the charge
center Xc and the staggered bond parameters �not shown in
the figure� up to time t�200 fs even when keeping m
=128 states per block. In the following we always keep m
=200 states per block and use a time step �=0.05 �in unit of
� / t0�.

When the Coulomb interaction is turned on, the velocity
of the bipolaron increases first and then decreases with in-
creasing of the on-site Coulomb interaction. In addition, one
can find that the bipolaron velocity calculated by the
t-DMRG method is smaller than that obtained at the unre-
stricted Hartree–Fock level. The electron correlation effects
have been considered in t-DMRG calculations, thus, it indi-
cates that the motion of bipolarons is more suppressed by the
electron correlation effects. Moreover, it should be noted that
the bipolaron velocity depends not only on the electron-
electron interaction, but also on the electron-phonon cou-
pling constant, the sound velocity, etc. In what follows, in
order to study the electron correlation effects on the bipo-
laron dynamics, we will only focus on the stationary veloci-
ties of the bipolaron for different electron-electron interac-
tion strengths with the condition that the other parameters are
fixed.

As described above, the motion of a charged bipolaron
has been presented in the weak coupling region �U3.0�,
based on the SSH and Hubbard model �HM�. Figure 2 shows
the stationary velocity of a bipolaron varies with the on-site
Coulomb interaction U for different parameters te. In Fig. 2,
we see that velocity of the bipolaron decreases with the in-
crease in parameter te at U=0 limit. This is because the dif-
ference in hopping integrals between the nearest-neighboring
bonds becomes large when te increases. Moreover the large
difference in hopping integrals is unfavorable for bipolaron
motion. As a result, bipolaron velocity decreases as te in-
creases. In addition, one can find that the velocity of the
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FIG. 1. �Color online� The time evolution of the charge center Xc of the
bipolaron for different numbers of states m kept in DMRG, calculated with
parameters te=0.02 and E0=2.0 mV /Å.
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bipolaron increases first, then decreases with the increase in
the on-site Coulomb interaction for all the different te. To
understand the electron correlation effects on the dynamics
of bipolarons, we explore the relation between the stationary
velocity of the bipolaron and its localization from a static
view. In Fig. 3 we show the excessive electron charge distri-
bution of a static charged bipolaron calculated with different
U. Clearly, due to the existence of a bipolaron, there are large
charge fluctuations within the lattice defect. With the on-site
repulsion U increases, a large charge fluctuation becomes
increasingly unfavorable and the excessive charge density
tends to be equally distributed at different CH monomers.
Consequently, the charge oscillation is reduced substantially
with the increase in Hubbard U. In fact, in the case of not too
large U, the increase in the on-site Coulomb interaction can
improve the bipolaron transport because the on-site repulsion
makes the electrons �or holes� hop to the neighbor site more
easily, just as similar as that of a soliton.34 On the other hand,
in contrast to the polaron, the width of the bipolaron is
broadened by the Hubbard U because the Coulomb repulsive
does not favor two different particles to occupy the same
site. The staggered bond order parameter �i= �−1�i�2ui−ui−1

−ui+1� /4 of a static bipolaron is shown in the inset of Fig. 3
for several values of U. It is found that the width of the

bipolaron is an increasing function of the Hubbard U. In
general, the broader the bipolaron width is, the smaller the
effective mass is �see Fig. 4�.33 Along with the reduction in
effective mass, the bipolaron becomes unstable and the sta-
tionary velocity of the bipolaron increases. Therefore, the
stationary velocity of a charged bipolaron increases while the
value of U increases, as displayed in Fig. 2. When the on-site
Coulomb interactions U increase further and become to be
dominant, the strong Coulomb interactions destabilize the
bipolaron, and the complex particle is a two bounded polaron
rather than a bipolaron. In addition, the electrons localized in
the bipolaron have to overcome the potential barrier induced
by Hubbard U in order to move from one site to another
because of the lattice tending to be singly occupied in the
spin-density-wave phase, thus the velocity of the bipolaron
decreases.

In connection with the stationary of the velocity, it is
interesting to trace the behavior of the effective mass of bi-
polarons. The effective mass mbp of the bipolaron can be
calculated by using the same method described in Ref. 33.
First, the static lattice configuration is smoothed by spline
interpolation, allowing us to compute the configuration at
any desired points. Then, the bipolaron effective mass can be
determined by calculating the energy of a slowly moving
domain wall,

u�x,t� = u�x − vbpt,t� . �9�

Using the adiabatic approximation for the electronic motion,
one can show that the effective mass of the bipolaron is
related �ui for a small change in domain wall position, by

1

2�
i

Mu̇i
2�t� =

1

2
mbpvbp

2 . �10�

It is clear that the effective mass will appear in the transport
coefficients of the bipolaron.

In Fig. 4, the U-dependence of the effective mass mbp

scaled by the free electron mass me is summarized. From the
staggered bond order parameters of the bipolarons at U=0
limit, we give the bipolaron effective masses as 11.5me,
12.5me, and 13.6me for te / t0=0.02, 0.04, and 0.06, respec-
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FIG. 2. �Color online� The stationary velocity of a bipolaron driven by an
external electric field �E0=2.0 mV /Å� as a function of U for different
parameters te.
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gered bond order parameter �i of a static bipolaron for several values of U.
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tively, which are heavier than the effective mass of soliton
�about 6.0me �Ref. 3�� and polaron �about 3.3me �Ref. 33��.
As stated above, one can find that the effective mass de-
creases first and increases subsequently, which is consistent
with the observed dynamic behavior of bipolarons under the
influence of an external electric field, although the critical
points are slightly different. This is because that we obtain
the effective mass from the static geometry structure of the
bipolaron and assume that the geometry does not change
when it moves. In fact, the moving bipolaron shall emit
phonons to keep its steady motion,19 and the width of a mov-
ing bipolaron shows small oscillations in time because of the
excitation of amplitude modes. Therefore, the obtained effec-
tive mass of the bipolaron may be slightly different from that
of a moving bipolaron.

As is well known that the existence of bipolarons is chal-
lenged by the Coulomb repulsion,13,14 therefore, the mini-
mum value of effective mass can be considered as the cross-
over when the bipolaron becomes unstable and breaks into
two bounded polaron. The corresponding critical values of
Uc for different te shown in the inset of Fig. 4 form a straight
line. The critical values Uc for this crossover are about
U / t0=0.19, 0.32, and 0.45 for te / t0=0.02, 0.04, and 0.06,
respectively. It indicates that bipolarons in the materials with
strong Brazovskii–Kirova symmetry-breaking energy are
more stable. When the Hubbard U is sufficient large, the
bipolaron will dissociate into two bounded polaron. At U
=� limit, the SSH Hamiltonian can be mapped onto a two-
body system plus classical phonons.33 Furthermore, the lat-
tice defect should be two independent acoustic polarons be-
cause no electron exchange or spin exchange are allowed
between these two particles. The dynamics of an acoustic
polaron has been extensively studied via analytical42 and
numerical43 techniques, and its stationary velocity is the
sound velocity of the system.

IV. SUMMARY

In summary, the effects of electron-electron interaction
on the motion of a bipolaron driven by an external electric
field in nondegenerate conjugated polymers are investigated
by using an adaptive t-DMRG method. We give both the
static and the dynamic properties of bipolarons in the case of
Hubbard U varying from zero to infinite. Our results show
that the motion of the bipolaron is first enhanced, and then
suppressed as the on-site Coulomb interaction increases. Ac-
cordingly, the effective mass first decreases then monotoni-
cally increases to the asymptotic value. Additionally, the sta-
bility of a bipolaron relative to a pair of polarons as a
function of on-site Coulomb interaction is also discussed.
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